Insights into Molecular Interplay in Tuberculosis–COVID-19 Co-Infection via Integrated Multi-Omics Strategies
Abstract
1. Introduction
1.1. M. tb and COVID-19 Co-Infection: Clinical Aspects
1.2. COVID-19 and TB Immunopathogenesis
1.2.1. COVID-19 Immunopathogenesis
Lymphocyte Dysfunction
Lymphopenia
Abnormal Granulocytes and Agranulocytes
Elevated Level of Cytokines
Antibody Dependent Cell Mediated Cytotoxicity (ADCC)
1.2.2. M. tb Immunopathogenesis
Innate Immune Response in M. tb
- a.
- Macrophages in M. tb phagocytosis
- b.
- Neutrophils
- c.
- Innate T cells
- d.
- The Granuloma
Adaptive Immune Responses of M. tb Infection
- a.
- T cells in M. tb Infection
- b.
- B Cell Response in TB Defense
1.3. COVID-19 and Tuberculosis: Intersection
| Feature | Tuberculosis (TB) | COVID-19 | References |
|---|---|---|---|
| Causative Agent | Mycobacterium tuberculosis | COVID-19 | [105] |
| Primary Site of Infection | Lungs (pulmonary TB), can become systemic | Respiratory tract (lungs), can affect multiple organs | [106] |
| Innate Immune Response | Activation of macrophages and dendritic cells; formation of granulomas | Activation of epithelial cells, macrophages, and neutrophils; excessive inflammation in severe cases | [107] |
| Adaptive Immune Response | Th1-mediated immunity (IFN-γ, TNF-α), CD4+ and CD8+ T cells crucial | Early IFN response, then dysregulated T-cell response; lymphopenia common in severe cases | [108] |
| Cytokine Profile | Elevated IL-12, IFN-γ, TNF-α; chronic inflammation | High IL-6, IL-1β, TNF-α in severe cases; cytokine storm in critical patients | [109] |
| Immune Evasion Mechanisms | Inhibits phagosome-lysosome fusion; survives in macrophages | Suppresses type I IFN response; induces T-cell exhaustion and apoptosis | [110] |
| Tissue Pathology | Granuloma formation; caseous necrosis in lungs | Diffuse alveolar damage; endothelial injury and microthrombosis | [111] |
| Immune Exhaustion/Immunopathology | Chronic immune activation may lead to T-cell exhaustion | Severe cases show T-cell exhaustion and overactive innate immunity | [112] |
| Co-infection Impact | COVID-19 can exacerbate TB or lead to reactivation | TB may worsen COVID-19 outcomes due to underlying lung damage | [113] |
2. Multi-Omics Approaches to Dissect the TB-COVID-19 Syndemic
2.1. Genomics
2.2. Role of Proteomics to Explore Tb-COVID Coinfection
2.3. Transcriptomics
2.4. Metabolomics
2.5. Epigenomics
2.6. Microbiomics
| Muti-Omics Approach | Biological Molecule | Analyzed Molecules | Techniques for Analysis | Application in TB & COVID-19 Co-Infection | Major/Significant Findings |
|---|---|---|---|---|---|
| Genomics | DNA (genome) | Genes, mutations, SNPs | Whole Genome Sequencing (WGS), PCR, GWAS | Analyses variations and resistance genes, finds host and pathogen mutations, and determines genetic vulnerability to TB/COVID. | A study highlighted the role of gut and respiratory microbiota in regulating host immunity during viral infections such as influenza and coronavirus, affecting vulnerability, disease severity, and responses to vaccines and, thus, proposed microbiome-targeted strategies as supplementary treatments [142]. Genome-to-genome analysis in TB patients from Tanzania uncovered notable links between human genetic variants and the genomic variation of Mycobacterium tuberculosis, underscoring the co-evolution of host and pathogen and its influence on the outcomes of TB disease [143]. |
| Transcriptomics | RNA (transcriptome) | mRNA, non-coding RNA | RNA-Seq, Microarrays, qRT-PCR | detects immune response pathways, reveals changes in gene expression, and differentiates between illness phases and co-infection markers. | A study used whole-genome sequencing to explore host genetic factors influencing COVID-19 outcomes and identified variants linked to susceptibility and disease severity. The findings suggested that host genetic background plays a crucial role in determining individual responses to SARS-CoV-2 infection [144]. |
| Proteomics | Proteins (proteome) | Protein levels, modifications | Mass Spectrometry (LC-MS/MS), Western blot, ELISA | examines alterations in functional proteins, finds therapeutic targets and indicators of inflammation, and investigates immunological dysregulation in co-infection. | A review explored the growing importance of non-coding RNAs in the regulation of the immune system and the development of autoimmune diseases, emphasizing how microRNAs, lncRNAs, and circRNAs affect the differentiation, signaling, and tolerance of immune cells. It also underscored recent advancements in technology that facilitate their investigation, while acknowledging significant challenges for clinical application [145]. Another study demonstrated the importance of proteomics in investigating new and re-emerging RNA virus infections, emphasizing how proteomic strategies reveal interactions between hosts and viruses, immune responses, and possible biomarkers. It emphasizes proteomics as an effective method for comprehending viral pathogenesis and informing the development of therapies [146]. |
| Metabolomics | Small molecules/metabolites | Amino acids, lipids, nucleotides, organic acids, carbohydrates | NMR spectroscopy, LC-MS/MS, GC-MS | Identifies metabolic signatures linked to immune dysregulation in co-infection; e.g., altered tryptophan, arginine, and lipid metabolism affecting macrophage function and cytokine storms. | Tandem mass spectrometry (MS/MS) has become a valuable technique for analyzing proteins, facilitating structural analysis, the identification of biomarkers, and clinical diagnostics related to infectious diseases. Additionally, another research highlighted that proteomic, metabolomic, and epigenetic profiles can shed light on host reactions in COVID-19/TB co-infection and guide future approaches for diagnostics and treatment strategies [147,148]. |
| Epigenomics | DNA, chromatin | DNA methylation, histone modifications, chromatin accessibility | Whole-genome bisulfite sequencing (WGBS), ChIP-seq, ATAC-seq | Reveals host epigenetic reprogramming during M. tb and COVID-19 infections; explains altered immune gene expression, T cell exhaustion, and trained immunity. | Research into epigenomics has demonstrated how trained immunity affects the host’s defense mechanisms, with tuberculosis (TB) and COVID-19 exhibiting shared immune reprogramming processes. Metabolomic analysis has shown significant disruptions in immune metabolism during co-infection, characterized by changes in crucial energy and amino acid pathways. Moreover, recent studies indicate that gut microbiota has the potential to influence systemic immunity and affect the outcomes of COVID-19, suggesting it could serve as a therapeutic target. Collectively, these findings highlight the interconnected significance of epigenetic memory, metabolic control, and microbial ecology in influencing host vulnerability and the progression of diseases such as TB and COVID-19 [149]. |
| Microbiomics | Microbial nucleic acids | 16S rRNA genes, microbial DNA/RNA | 16S rRNA sequencing, whole metagenome sequencing (WMS), qPCR | Characterizes lung and gut microbiome shifts; disrupted microbiota in TB or COVID-19 affects immune modulation, secondary infections, inflammation, and recovery trajectories. | Recent studies emphasized the significance of the microbiome in influencing host responses to COVID-19 and tuberculosis. Alterations in gut microbiota were associated with dysfunctional immune responses in both infections, indicating that microbial imbalances could worsen disease progression or severity. Additionally, shifts in the lung microbiome during COVID-19 have been linked to inflammation, weakened immunity, and secondary infections, highlighting its role in respiratory diseases. More extensive reviews further endorse a two-way relationship between microbiota composition and COVID-19 outcomes, suggesting that the microbiome may serve as both a marker and a potential modulator of the disease. Together, these insights imply that targeting the microbiome could pave the way for novel therapeutic and diagnostic approaches in COVID-19 and TB [150]. |
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Global Tuberculosis Report 2023; World Health Organization: Geneva, Switzerland, 2023; Available online: https://iris.who.int/handle/10665/373828 (accessed on 26 July 2025).
- Morse, D.; Brothwell, D.R.; Ucko, P.J. Tuberculosis in ancient Egypt. Am. Rev. Respir. Dis. 1964, 90, 524–541. [Google Scholar]
- Cave, A.J.; Demonstrator, A. The evidence for the incidence of tuberculosis in ancient Egypt. Br. J. Tuberc. 1939, 33, 142–152. [Google Scholar] [CrossRef]
- Flick, L.F. Development of Our Knowledge of Tuberculosis; Wickersham: Sheffield, UK, 1925. [Google Scholar]
- Singh, H.; Singh, J.; Khubaib, M.; Jamal, S.; Sheikh, J.A.; Kohli, S.; Rahman, S.A. Mapping the genomic landscape & diversity of COVID-19 based on >3950 clinical isolates of SARS-CoV-2: Likely origin & transmission dynamics of isolates sequenced in India. Indian J. Med. Res. 2020, 151, 474–478. [Google Scholar] [PubMed]
- WHO. Global Tuberculosis Report 2021; World Health Organization: Geneva, Switzerland, 2021; Available online: https://www.who.int/publications/i/item/9789240037021 (accessed on 27 July 2025).
- Tadolini, M.; Codecasa, L.R.; García-García, J.-M.; Blanc, F.-X.; Borisov, S.; Alffenaar, J.-W.; Andréjak, C.; Bachez, P.; Bart, P.-A.; Belilovski, E.; et al. Active tuberculosis, sequelae and COVID-19 co-infection: First cohort of 49 cases. Eur. Respir. J. 2020, 56, 2001398. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Global Tuberculosis Report 2020; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- O’Garra, A.; Redford, P.S.; McNab, F.W.; Bloom, C.I.; Wilkinson, R.J.; Berry, M.P.R. The immune response in tuberculosis. Annu. Rev. Immunol. 2013, 31, 475–527. [Google Scholar] [CrossRef] [PubMed]
- Flynn, J.L.; Chan, J. Immunology of tuberculosis. Annu. Rev. Immunol. 2001, 19, 93–129. [Google Scholar] [CrossRef]
- Merad, M.; Martin, J.C. Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages. Nat. Rev. Immunol. 2020, 20, 355–362. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Fleming, J.; Yu, Y.; Gu, Y.; Liu, C. Active or latent tuberculosis increases susceptibility to COVID-19 and disease severity. medRxiv 2020. [Google Scholar] [CrossRef]
- Stochino, C.; Villa, S.; Zucchi, P.; Parravicini, P.; Gori, A.; Raviglione, M.C. Clinical characteristics of COVID-19 and active tuberculosis co-infection in an Italian reference hospital. Eur. Respir. J. 2020, 56, 2001708. [Google Scholar] [CrossRef]
- Riou, C.; du Bruyn, E.; Stek, C.; Daroowala, R.; Goliath, R.T.; Abrahams, F.; Said-Hartley, Q.; Allwood, B.W.; Hsiao, N.Y.; Wilkinson, K.A.; et al. Relationship of SARS-CoV-2-specific CD4 response to COVID-19 severity and impact of HIV-1 and tuberculosis coinfection. J. Clin. Investig. 2021, 131, e149125. [Google Scholar] [CrossRef]
- Acharya, D.; Liu, G.; Gack, M.U. Dysregulation of type I interferon responses in COVID-19. Nat. Rev. Immunol. 2020, 20, 397–398. [Google Scholar] [CrossRef]
- Sia, J.K.; Rengarajan, J. Immunology of M. tuberculosis infections. Microbiol. Spectr. 2019, 7, GPP3–GPP0022. [Google Scholar] [CrossRef]
- Torrelles, J.B.; Schlesinger, L.S. Integrating lung physiology, immunology, and tuberculosis. Trends Microbiol. 2017, 25, 688–697. [Google Scholar] [CrossRef] [PubMed]
- Park, A.; Iwasaki, A. Type I and Type III interferons—Induction, signaling, evasion, and application to combat COVID-19. Cell Host Microbe 2020, 27, 870–878. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.K.; Mohan, A.; Kohli, M. COVID-19 and tuberculosis: A double trouble. Indian, J. Tuberc. 2020, 67, S1–S2. [Google Scholar] [CrossRef]
- Yang, L.; Xiang, F.; Wang, D.; Guo, Q.; Deng, B.; Jiang, D.; Ren, H. The safety and immunogenicity of inactivated COVID-19 vaccine in old pulmonary tuberculosis patients. Eur. J. Clin. Microbiol. Infect. Dis. 2023, 42, 503–512. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ong, C.W.M.; Migliori, G.B.; Raviglione, M.; MacGregor-Skinner, G.; Sotgiu, G.; Alffenaar, J.W.; Tiberi, S.; Adlhoch, C.; Alonzi, T.; Archuleta, S.; et al. Epidemic and pandemic viral infections: Impact on tuberculosis and the lung: A consensus by the World Association for Infectious Diseases and Immunological Disorders (WAidid), Global Tuberculosis Network (GTN), and members of the European Society of Clinical Microbiology and Infectious Diseases Study Group for Mycobacterial Infections (ESGMYC). Eur. Respir. J. 2020, 56, 2001727. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Burel, J.G. Transcriptomic profiling reveals immune dysregulation in COVID-19 and TB coinfection. Front. Immunol. 2021, 12, 678604. [Google Scholar]
- Yan, Q.; Wadsworth, M.H., II; He, A.; Wang, S.; Li, R.; Tran, L.M.; Zhang, L.; Yu, J.; Ng, C.T.; Park, S.M.; et al. Interferon response in COVID-19–TB coinfection: Insights from blood transcriptomics. Cell Rep. Med. 2021, 2, 100402. [Google Scholar]
- Messner, C.B.; Demichev, V.; Wendisch, D.; Michalick, L.; White, M.; Freiwald, A.; Textoris-Taube, K.; Vernardis, S.I.; Egger, A.S.; Kreidl, M.; et al. Ultra-High-Throughput Clinical Proteomics Reveals Classifiers of COVID-19 Infection. Cell Syst. 2020, 11, 11–24.e4. [Google Scholar] [CrossRef]
- Flores-Lovon, K.; Ortiz-Saavedra, B.; Cueva-Chicaña, L.A.; Aperrigue-Lira, S.; Montes-Madariaga, E.S.; Soriano-Moreno, D.R.; Bell, B.; Macedo, R. Immune responses in COVID-19 and tuberculosis coinfection: A scoping review. Front. Immunol. 2022, 13, 992743. [Google Scholar] [CrossRef]
- Mantovani, A.; Netea, M.G. Trained innate immunity, epigenetics, and COVID-19. New Engl. J. Med. 2020, 383, 1078–1080. [Google Scholar] [CrossRef]
- Cheong, J.G.; Ravishankar, A.; Sharma, S.; Parkhurst, C.N.; Grassmann, S.A.; Wingert, C.K.; Laurent, P.; Ma, S.; Paddock, L.; Miranda, I.C.; et al. Epigenetic memory of coronavirus infection in innate immune cells. Cell 2023, 186, 1290–1304.e17. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Shen, X.; Wang, A.; Hu, C.; Chen, J. The gut microbiome: A line of defense against tuberculosis development. Front. Cell. Infect. Microbiol. 2023, 13, 1149679. [Google Scholar] [CrossRef] [PubMed]
- Comberiati, P.; Di Cicco, M.; Paravati, F.; Pelosi, U.; Di Gangi, A.; Arasi, S.; Barni, S.; Caimmi, D.; Mastrorilli, C.; Licari, A.; et al. The role of gut and lung microbiota in susceptibility to tuberculosis. Int. J. Environ. Res. Public Health 2021, 18, 12220. [Google Scholar] [CrossRef] [PubMed]
- Otchere, I.D.; Aboagye, S.Y.; Arthur, P.K.; Asante-Poku, A. Viewpoint of multi-omics potential in tuberculosis research: Identifying biomarkers for biomanufacturing of efficient control tools. Front. Trop. Dis. 2024, 5, 1443248. [Google Scholar] [CrossRef]
- Imran, M.; Alzahrani, H.A.; Elmagzoub, R.M.; Rehman, Z.U.; Abd Elaleem, K.G.; Mohamed, A.S.; Elsharief, A.A.; Alhuthali, H.M. A Systems Biology Approach to Elucidating Functional and Genomic Signatures in Host-Pathogen Interactions of Triple Infections: Tuberculosis, HIV, and SARS-CoV-2. J. Pure Appl. Microbiol. 2025, 19, 1154–1173. [Google Scholar] [CrossRef]
- Mousquer, G.T.; Peres, A.; Fiegenbaum, M. Pathology of TB/COVID-19 co-infection: The phantom menace. Tuberculosis 2021, 126, 102020. [Google Scholar] [CrossRef]
- Tay, M.Z.; Poh, C.M.; Rénia, L.; MacAry, P.A.; Ng, L.F.P. The trinity of COVID-19: Immunity, inflammation and intervention. Nat. Rev. Immunol. 2020, 20, 363–374. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Palepu, S.; Palepu, S.; Handu, S. COVID-19 and tuberculosis co-infection—A neglected paradigm. Monaldi Arch. Chest Dis. 2020, 90, 1437. [Google Scholar] [CrossRef]
- Dheda, K.; Perumal, T.; Moultrie, H.; Perumal, R.; Esmail, A.; Scott, A.J.; Udwadia, Z.; Chang, K.C.; Peter, J.; Pooran, A.; et al. The intersecting pandemics of tuberculosis and COVID-19: Population-level and patient-level impact, clinical presentation, and corrective interventions. Lancet Respir. Med. 2022, 10, 603–622. [Google Scholar] [CrossRef] [PubMed]
- Visca, D.; Ong, C.W.M.; Tiberi, S.; Centis, R. Tuberculosis and COVID-19 interaction: A review of biological, clinical and public health effects. Pulmonology 2021, 27, 151–165. [Google Scholar] [CrossRef] [PubMed]
- Thevarajan, I.; Nguyen, T.H.O.; Koutsakos, M.; Druce, J.; Caly, L.; van de Sandt, C.E.; Jia, X.; Nicholson, S.; Catton, M.; Cowie, B.; et al. Breadth of concomitant immune responses prior to patient recovery: A case report of non-severe COVID-19. Nat. Med. 2020, 26, 453–455. [Google Scholar] [CrossRef] [PubMed]
- Sy, K.T.L.; Haw, N.J.L.; Uy, J. Previous and active tuberculosis increases risk of death and prolongs recovery in patients with COVID-19. Infect. Dis. 2020, 52, 902–907. [Google Scholar] [CrossRef]
- TB/COVID-19 Global Study Group. Tuberculosis and COVID-19 co-infection: Description of the global cohort. Eur. Respir. J. 2022, 59, 2102538. [Google Scholar] [CrossRef]
- Sheerin, D.; Wang, X.; Johnson, W.E.; Coussens, A. Systematic evaluation of transcriptomic disease risk and diagnostic biomarker overlap between COVID-19 and tuberculosis: A patient-level meta-analysis. medRxiv 2020. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Zhang, L.; Zhao, J. Clinical characteristics and outcomes of COVID-19 patients with tuberculosis: A systematic review and meta-analysis. PLoS Neglected Trop. Dis. 2024, 18, e0012136. [Google Scholar] [CrossRef]
- Muflihah, A.N.; Rahmawati, I.; Sutanto, H. Impact of tuberculosis on COVID-19 outcomes: A meta-analysis. Respir. Med. 2024, 220, 107456. [Google Scholar]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Westwood, D.; MacFadden, D.R.; Soucy, J.R.; Daneman, N. Bacterial co-infection and secondary infection in patients with COVID-19: A living rapid review and meta-analysis. Clin. Microbiol. Infect. 2023, 29, 22–36. [Google Scholar] [CrossRef]
- Calderón-Parra, J.; Muiño-Miguez, A.; Bendala-Estrada, A.D.; Ramos-Martínez, A.; Muñez-Rubio, E.; Fernández Carracedo, E. Grupo COVID-19 del Hospital Universitario Ramón y Cajal. Secondary infections in COVID-19 patients: A systematic review. J. Infect. 2023, 86, 135–148. [Google Scholar]
- Chan, J.F.; Yuan, S.; Kok, K.H.; To, K.K.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C.; Poon, R.W.; et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet 2020, 395, 514–523. [Google Scholar] [CrossRef]
- Li, C.K.; Wu, H.; Yan, H.; Ma, S.; Wang, L.; Zhang, M.; Tang, X.; Temperton, N.J.; Weiss, R.A.; Brenchley, J.M.; et al. T cell responses to whole SARS coronavirus in humans. J. Immunol. 2008, 181, 5490–5500. [Google Scholar] [CrossRef]
- Zhou, Y.; Fu, B.; Zheng, X.; Wang, D.; Zhao, C.; Qi, Y.; Sun, R.; Tian, Z.; Xu, X.; Wei, H. Aberrant pathogenic GM-CSF+ T cells and inflammatory CD14+ CD16+ monocytes in severe pulmonary syndrome patients of a new coronavirus. bioRxiv 2020. [Google Scholar] [CrossRef]
- Ragab, D.; Eldin, H.S.; Taeimah, M.; Khattab, R.; Salem, R. The COVID-19 cytokine storm; what we know so far. Front. Immunol. 2020, 11, 551898. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, S.; Liu, J.; Liang, B.; Wang, X.; Wang, H.; Li, W.; Tong, Q.; Yi, J.; Zhao, L.; et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of COVID-19 infected patients. EBioMedicine 2020, 55, 102763. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Plebani, M. Laboratory abnormalities in patients with COVID-2019 infection. Clin. Chem. Lab. Med. (CCLM) 2020, 58, 1131–1134. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.; Zhou, L.; Hu, Z.; Zhang, S.; Yang, S.; Tao, Y.; Xie, C.; Ma, K.; Shang, K.; Wang, W.; et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin. Infect. Dis. 2020, 71, 762–768. [Google Scholar] [CrossRef]
- Tan, L.; Wang, Q.; Zhang, D.; Ding, J.; Huang, Q.; Tang, Y.Q.; Wang, Q.; Miao, H. Lymphopenia predicts disease severity of COVID-19: A descriptive and predictive study. Signal Transduct. Target. Ther. 2020, 5, 33. [Google Scholar] [CrossRef]
- Liguoro, I.; Pilotto, C.; Bonanni, M.; Ferrari, M.E.; Pusiol, A.; Nocerino, A.; Vidal, E.; Cogo, P. COVID-19 infection in children and newborns: A systematic review. Eur. J. Pediatr. 2020, 179, 1029–1046. [Google Scholar] [CrossRef]
- Yang, W.; Cao, Q.; Qin, L.E.; Wang, X.; Cheng, Z.; Pan, A.; Dai, J.; Sun, Q.; Zhao, F.; Qu, J.; et al. Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease (COVID-19): A multi-center study in Wenzhou city, Zhejiang, China. J. Infect. 2020, 80, 388–393. [Google Scholar] [CrossRef]
- Wu, J.; Liu, J.; Zhao, X.; Liu, C.; Wang, W.; Wang, D.; Li, L. Clinical characteristics of imported cases of coronavirus disease 2019 (COVID-19) in Jiangsu Province: A multicenter descriptive study. Clin. Infect. Dis. 2020, 71, 706–712. [Google Scholar] [CrossRef] [PubMed]
- Schulte-Schrepping, J.; Reusch, N.; Paclik, D.; Baßler, K.; Schlickeiser, S.; Zhang, B.; Krämer, B.; Krammer, T.; Brumhard, S.; Bonaguro, L.; et al. Severe COVID-19 is marked by a dysregulated myeloid cell compartment. Cell 2020, 182, 1419–1440.e23. [Google Scholar] [CrossRef] [PubMed]
- Costela-Ruiz, V.J.; Illescas-Montes, R.; Puerta-Puerta, J.M.; Ruiz, C.; Melguizo-Rodríguez, L. COVID-19 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev. 2020, 54, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Suthar, M.S.; Zimmerman, M.G.; Kauffman, R.C.; Mantus, G.; Linderman, S.L.; Hudson, W.H.; Vanderheiden, A.; Nyhoff, L.; Davis, C.W.; Adekunle, O.; et al. Rapid generation of neutralizing antibody responses in COVID-19 patients. Cell Rep. Med. 2020, 1, 100040. [Google Scholar] [CrossRef]
- Witkowski, M.; Tizian, C.; Ferreira-Gomes, M.; Niemeyer, D.; Jones, T.C.; Heinrich, F.; Frischbutter, S.; Angermair, S.; Hohnstein, T.; Mattiola, I.; et al. Untimely TGFβ responses in COVID-19 limit antiviral functions of NK cells. Nature 2021, 600, 295–301. [Google Scholar] [CrossRef]
- Junqueira, C.; Crespo, Â.; Ranjbar, S.; de Lacerda, L.B.; Lewandrowski, M.; Ingber, F.D. FcγR-mediated COVID-19 infection of monocytes activates inflammation. Nature 2022, 606, 576–584. [Google Scholar] [CrossRef]
- Chan, C.E.Z.; Seah, S.G.K.; Chye, H.; Massey, S.; Torres, M.; Lim, A.P.C.; Wong, S.K.K.; Neo, J.J.Y.; Wong, P.S.; Lim, J.H.; et al. The Fc-mediated effector functions of a potent SARS-CoV-2 neutralizing antibody, SC31, isolated from an early convalescent COVID-19 patient, are essential for the optimal therapeutic efficacy of the antibody. PLoS ONE 2021, 16, e0253487. [Google Scholar] [CrossRef]
- Diao, B.; Wang, C.; Tan, Y.; Chen, X.; Liu, Y.; Ning, L.; Chen, L.; Li, M.; Liu, Y.; Wang, G.; et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front. Immunol. 2020, 11, 544639. [Google Scholar] [CrossRef]
- Gagneux, S. Host–pathogen coevolution in human tuberculosis. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 850–859. [Google Scholar] [CrossRef]
- Dye, C.; Scheele, S.; Pathania, V.; Raviglione, M.C. Global burden of tuberculosis: Estimated incidence, prevalence, and mortality by country. JAMA 1999, 282, 677–686. [Google Scholar] [CrossRef]
- Wallgren, A. The time-table of tuberculosis. Tubercle 1948, 29, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Sud, D.; Sharma, S.; Madan, P. Textbook of Pulmonary Medicine; Jaypee Brothers: New Delhi, India, 2006. [Google Scholar]
- Cambier, C.J.; Falkow, S.; Ramakrishnan, L. Host evasion and exploitation schemes of Mycobacterium tuberculosis. Cell 2014, 159, 1497–1509. [Google Scholar] [CrossRef] [PubMed]
- Tait, D.R.; Hatherill, M.; Van Der Meeren, O.; Ginsberg, A.M.; Van Brakel, E.; Salaun, B.; Scriba, T.J.; Akite, E.J.; Ayles, H.M.; Bollaerts, A.; et al. Final analysis of a trial of M72/AS01E vaccine to prevent tuberculosis. New Engl. J. Med. 2019, 381, 2429–2439. [Google Scholar] [CrossRef] [PubMed]
- Stylianou, E.; Paul, M.J.; Reljic, R.; McShane, H. Mucosal delivery of tuberculosis vaccines: A review of current approaches and challenges. Expert Rev. Vaccines 2019, 18, 1271–1284. [Google Scholar] [CrossRef]
- Cohen, S.B.; Gern, B.H.; Delahaye, J.L.; Adams, K.N.; Plumlee, C.R.; Winkler, J.K.; Urdahl, K.B. Alveolar macrophages provide an early Mycobacterium tuberculosis niche and initiate dissemination. Cell Host Microbe 2018, 24, 439–446. [Google Scholar] [CrossRef]
- Keane, J.; Balcewicz-Sablinska, M.K.; Remold, H.G.; Chupp, G.L.; Meek, B.B.; Fenton, M.J.; Kornfeld, H. Infection by Mycobacterium tuberculosis promotes human alveolar macrophage apoptosis. Infect. Immun. 1997, 65, 298–304. [Google Scholar] [CrossRef]
- Engele, M.; Stöβel, E.; Castiglione, K.; Schwerdtner, N.; Wagner, M.; Bölcskei, P.; Stenger, S. Induction of TNF in human alveolar macrophages as a potential evasion mechanism of virulent Mycobacterium tuberculosis. J. Immunol. 2002, 168, 1328–1337. [Google Scholar] [CrossRef]
- Barnes, P.F.; Leedom, J.M.; Chan, L.S.; Wong, S.F.; Shah, J.; Vachon, L.A.; Modlin, R.L. Predictors of short-term prognosis in patients with pulmonary tuberculosis. J. Infect. Dis. 1988, 158, 366–371. [Google Scholar] [CrossRef]
- Lowe, D.M.; Bandara, A.K.; Packe, G.E.; Barker, R.D.; Wilkinson, R.J.; Griffiths, C.J.; Martineau, A.R. Neutrophilia independently predicts death in tuberculosis. Eur. Respir. J. 2013, 42, 1752–1757. [Google Scholar] [CrossRef]
- Berry, M.P.; Graham, C.M.; McNab, F.W.; Xu, Z.; Bloch, S.A.; Oni, T.; Wilkinson, K.A.; Banchereau, R.; Skinner, J.; Wilkinson, R.J.; et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 2010, 466, 973–977. [Google Scholar] [CrossRef]
- Davis, J.M.; Ramakrishnan, L. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 2009, 136, 37–49. [Google Scholar] [CrossRef]
- Godfrey, D.I.; Uldrich, A.P.; McCluskey, J.; Rossjohn, J.; Moody, D.B. The burgeoning family of unconventional T cells. Nat. Immunol. 2019, 20, 1110–1119. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.L.; Flynn, J.L. The end of the binary era: Revisiting the spectrum of tuberculosis. J. Immunol. 2015, 195, 2461–2468. [Google Scholar] [CrossRef] [PubMed]
- Llibre, A.; Gomes, A.; Ferrer, M.; Rosàs, M.; Torre, A. Tissue-resident memory T cells in the lung and their role in protection against respiratory infections. Front. Immunol. 2021, 12, 715972. [Google Scholar] [CrossRef]
- Pallett, L.J.; Davies, J. The role of tissue-resident T cells in the lung. Immunology 2021, 164, 413–423. [Google Scholar] [CrossRef]
- Srivastava, S.; Ernst, J.D. Cell-to-cell transfer of M. tuberculosis antigens optimizes CD4 T cell priming. Cell Host Microbe 2014, 15, 741–752. [Google Scholar] [CrossRef]
- Flynn, J.L.; Chan, J.; Triebold, K.J.; Dalton, D.K.; Stewart, T.A.; Bloom, B.R. An essential role for interferon gamma in resistance to M. tuberculosis infection. J. Exp. Med. 1993, 178, 2249–2254. [Google Scholar] [CrossRef]
- Cooper, A.M. Cell-mediated immune responses in tuberculosis. Annu. Rev. Immunol. 2009, 27, 393–422. [Google Scholar] [CrossRef]
- Lewinsohn, D.M.; Briden, A.L.; Reed, S.G.; Grabstein, K.H.; Alderson, M.R. Mycobacterium tuberculosis-reactive CD8+ T lymphocytes: The relative contribution of classical versus nonclassical HLA restriction. J. Immunol. 2000, 165, 925–930. [Google Scholar] [CrossRef] [PubMed]
- Khader, S.A.; Bell, G.K.; Pearl, J.E.; Fountain, J.J.; Rangel-Moreno, J.; Cilley, G.E.; Shen, F.; Eaton, S.M.; Gaffen, S.L.; Swain, S.L.; et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during M. tuberculosis challenge. Nat. Immunol. 2007, 8, 369–377. [Google Scholar] [CrossRef]
- Barry, C.E.; Boshoff, H.I.; Dartois, V.; Dick, T.; Ehrt, S.; Flynn, J.; Schnappinger, D.; Wilkinson, R.; Young, D. The spectrum of latent tuberculosis: Rethinking the biology and intervention strategies. Nat. Rev. Microbiol. 2009, 7, 845–855. [Google Scholar] [CrossRef]
- Seder, R.A.; Darrah, P.A.; Roederer, M. T-cell quality in memory and protection: Implications for vaccine design. Nat. Rev. Immunol. 2008, 8, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Lindestam Arlehamn, C.S.; Sette, A. Definition of CD4 immunosubsets in tuberculosis. Curr. Top. Microbiol. Immunol. 2016, 404, 127–142. [Google Scholar] [CrossRef]
- Achkar, J.M.; Casadevall, A. Antibody-mediated immunity against tuberculosis: Implications for vaccine development. Cell Host Microbe 2013, 13, 250–262. [Google Scholar] [CrossRef] [PubMed]
- Torrado, E.; Cooper, A.M. IL-17 and Th17 cells in tuberculosis. Cytokine Growth Factor Rev. 2010, 21, 455–462. [Google Scholar] [CrossRef]
- Maglione, P.J.; Xu, J.; Chan, J. B cells moderate inflammatory progression and enhance bacterial containment upon pulmonary challenge with Mycobacterium tuberculosis. J. Immunol. 2007, 178, 7222–7234. [Google Scholar] [CrossRef]
- Barber, D.L.; Mayer-Barber, K.D.; Feng, C.G.; Sharpe, A.H.; Sher, A. CD4 T cells promote rather than control tuberculosis in the absence of PD-1–mediated inhibition. J. Immunol. 2011, 186, 1598–1607. [Google Scholar] [CrossRef]
- Behar, S.M.; Divangahi, M.; Remold, H.G. Evasion of innate immunity by Mycobacterium tuberculosis: Is death an exit strategy? Nat. Rev. Microbiol. 2010, 8, 668–674. [Google Scholar] [CrossRef]
- Fontenot, J.D.; Rasmussen, J.P.; Gavin, M.A.; Rudensky, A.Y. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat. Immunol. 2005, 6, 1142–1151. [Google Scholar] [CrossRef]
- Yang, M.; Chen, S.; Huang, B.; Zhong, J.-M.; Su, H.; Chen, Y.-J.; Cao, Q.; Ma, L.; He, J.; Li, X.-F.; et al. Pathological findings in the testes of COVID-19 patients: Clinical implications. Eur. Urol. Focus 2020, 6, 1124–1129. [Google Scholar] [CrossRef]
- Krupa, A. Binding of CXCL8/IL-8 to M. tuberculosis modulates the innate immune response. Mediat. Inflamm. 2015, 2015, 124762. [Google Scholar] [CrossRef] [PubMed]
- Pai, M.; Denkinger, C.M.; Kik, S.V.; Rangaka, M.X.; Zwerling, A.; Oxlade, O.; Banaei, N. Gamma interferon release assays for detection of Mycobacterium tuberculosis infection. Clin. Microbiol. Rev. 2014, 27, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Hunter, R.L. Pathology of post primary tuberculosis of the lung: An illustrated critical review. Tuberculosis 2011, 91, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Shah, T.; Shah, Z.; Yasmeen, N.; Baloch, Z.; Xia, X. Pathogenesis of COVID-19 and M. tuberculosis coinfection. Front. Immunol. 2022, 13, 909011. [Google Scholar] [CrossRef]
- Bostanghadiri, N.; Jazi, F.M.; Razavi, S.; Fattorini, L.; Darban-Sarokhalil, D.M. Tuberculosis and COVID-19 coinfections: A review. Front. Microbiol. 2022, 12, 747827. [Google Scholar] [CrossRef]
- Aiello, A.; Najafi-Fard, S.; Goletti, D. Initial immune response after exposure to M. tuberculosis or to COVID-19: Similarities and differences. Front. Immunol. 2023, 14, 1244556. [Google Scholar] [CrossRef]
- Najafi-Fard, S.; Aiello, A.; Navarra, A.; Cuzzi, G.; Vanini, V.; Migliori, G.B.; Gualano, G.; Cerva, C.; Grifoni, A.; Sette, A.; et al. Characterization of the immune impairment of patients with tuberculosis and COVID-19 coinfection. Int. J. Infect. Dis. 2023, 130, S34–S42. [Google Scholar] [CrossRef]
- Chandra, P.; Grigsby, S.J.; Philips, J.A. Immune evasion and provocation by Mycobacterium tuberculosis. Nat. Rev. Microbiol. 2022, 20, 750–766. [Google Scholar] [CrossRef]
- Lazarevic, I.; Pravica, V.; Miljanovic, D.; Cupic, M. Immune evasion of COVID-19 emerging variants: What have we learnt so far? Viruses 2021, 13, 1192. [Google Scholar] [CrossRef]
- Wang, Q.; Cao, Y.; Liu, X.; Fu, Y.; Zhang, J.; Zhang, Y.; Zhang, L.; Wei, X.; Yang, L. Systematic review and meta-analysis of Tuberculosis and COVID-19 Co-infection: Prevalence, fatality, and treatment considerations. PLoS Neglected Trop. Dis. 2024, 18, e0012136. [Google Scholar] [CrossRef] [PubMed]
- Kant, S.; Tyagi, R. The impact of COVID-19 on tuberculosis: Challenges and opportunities. Ther. Adv. Infect. Dis. 2021, 8, 20499361211016973. [Google Scholar] [CrossRef] [PubMed]
- Zenaro, E.; Donini, M.; Dusi, S. Induction of Th1/Th17 immune response by Mycobacterium tuberculosis: Role of dectin-1, mannose receptor, and DC-SIGN. J. Leukoc. Biol. 2009, 86, 1393–1401. [Google Scholar] [CrossRef] [PubMed]
- Fattorini, L.; Creti, R.; Palma, C.; Pantosti, A. Bacterial coinfections in COVID-19: An underestimated adversary. Ann. Dell’istituto Super. Di Sanita 2020, 56, 359–364. [Google Scholar]
- Ahamad, N.; Gupta, S.; Parashar, D. Using omics to study leprosy, tuberculosis, and other mycobacterial diseases. Front. Cell. Infect. Microbiol. 2022, 12, 792617. [Google Scholar] [CrossRef]
- Jagielski, T.; Minias, A.; van Ingen, J.; Rastogi, N.; Brzostek, A.; Żaczek, A.; Dziadek, J. Methodological and clinical aspects of the molecular epidemiology of M. tuberculosis and other mycobacteria. Clin. Microbiol. Rev. 2016, 29, 239–290. [Google Scholar] [CrossRef]
- Kato-Maeda, M.; Rhee, J.T.; Gingeras, T.R.; Salamon, H.; Drenkow, J.; Smittipat, N.; Small, P.M. Comparing genomes within the species Mycobacterium tuberculosis. Genome Res. 2001, 11, 547–554. [Google Scholar] [CrossRef]
- Cioboata, R.; Biciusca, V.; Olteanu, M.; Vasile, C.M. COVID-19 and tuberculosis: Unveiling the dual threat and shared solutions perspective. J. Clin. Med. 2023, 12, 4784. [Google Scholar] [CrossRef]
- Ji, Y.; Zhang, Y.; Tong, Y.; Cao, L.; Zeng, L.; Xu, Y.; Zhao, X. Whole-cell response of coronavirus-infected BMDCs through proteomic and transcriptomic analyses. Front. Immunol. 2025, 16, 1513952. [Google Scholar] [CrossRef]
- He, J.; Zhou, X.; Zhang, D.; Cai, Y.; Pan, H.; Huang, T.; He, F. Investigation of the relationship between chronic hepatitis B and tuberculosis using bioinformatics and systems biology approaches. Front. Med. 2025, 12, 1519216. [Google Scholar] [CrossRef]
- Gajula, S.N.R.; Khairnar, A.S.; Jock, P.; Kumari, N.; Pratima, K.; Munjal, V.; Sonti, R. LC-MS/MS: A sensitive and selective analytical technique to detect COVID-19 protein biomarkers in the early disease stage. Expert Rev. Proteom. 2023, 20, 5–18. [Google Scholar] [CrossRef]
- Rajczewski, A.T.; Jagtap, P.D.; Griffin, T.J. An overview of technologies for MS-based proteomics-centric multi-omics. Expert Rev. Proteom. 2022, 19, 165–181. [Google Scholar] [CrossRef] [PubMed]
- Sheerin, D.; Peton, N.; Vo, W.; Allison, C.C.; Wang, X.; Johnson, W.E.; Coussens, A.K. Immunopathogenic overlap between COVID-19 and tuberculosis identified from transcriptomic meta-analysis and human macrophage infection. Iscience 2022, 25, 104464. [Google Scholar] [CrossRef] [PubMed]
- Ramasamy, S.; Subbian, S. Critical determinants of cytokine storm and type I interferon response in COVID-19 pathogenesis. Clin. Microbiol. Rev. 2021, 34, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Weiner, J., 3rd; Parida, S.K.; Maertzdorf, J.; Black, G.F.; Repsilber, D.; Telaar, A.; Kaufmann, S.H. Correction: Biomarkers of inflammation, immunosuppression and stress with active disease are revealed by metabolomic profiling of tuberculosis patients. PLoS ONE 2012, 7, 10–1371. [Google Scholar] [CrossRef]
- Frediani, J.K.; Jones, D.P.; Tukvadze, N.; Uppal, K.; Sanikidze, E.; Kipiani, M.; Ziegler, T.R. Plasma metabolomics in human pulmonary tuberculosis disease: A pilot study. PLoS ONE 2014, 9, e108854. [Google Scholar] [CrossRef]
- Shen, B.; Yi, X.; Sun, Y.; Bi, X.; Du, J.; Zhang, C.; Guo, T. Proteomic and metabolomic characterization of COVID-19 patient sera. Cell 2020, 182, 59–72. [Google Scholar] [CrossRef]
- Thomas, T.; Stefanoni, D.; Reisz, J.A.; Nemkov, T.; Bertolone, L.; Francis, R.O.; D’Alessandro, A. COVID-19 infection alters kynurenine and fatty acid metabolism, correlating with IL-6 levels and renal status. JCI Insight 2020, 5, e140327. [Google Scholar] [CrossRef]
- Wang, K.; Khoramjoo, M.; Srinivasan, K.; Gordon, P.M.; Mandal, R.; Jackson, D.; Oudit, G.Y. Sequential multi-omics analysis identifies clinical phenotypes and predictive biomarkers for long COVID. Cell Rep. Med. 2023, 4, 101254. [Google Scholar] [CrossRef]
- Collins, J.M.; Siddiqa, A.; Jones, D.P.; Liu, K.; Kempker, R.R.; Nizam, A.; Ziegler, T.R. Tryptophan catabolism reflects disease activity in human tuberculosis. JCI Insight 2020, 5, e137131. [Google Scholar] [CrossRef]
- Preez, I.D.; Luies, L.; Loots, D.T. Metabolomics biomarkers for tuberculosis diagnostics: Current status and future objectives. Biomark. Med. 2017, 11, 179–194. [Google Scholar] [CrossRef] [PubMed]
- Khadela, A.; Chavda, V.P.; Postwala, H.; Shah, Y.; Mistry, P.; Apostolopoulos, V. Epigenetics in Tuberculosis: Immunomodulation of Host Immune Response. Vaccines 2022, 10, 1740. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saeed, S.; Quintin, J.; Kerstens, H.H.; Rao, N.A.; Aghajanirefah, A.; Matarese, F.; Cheng, S.-C.; Ratter, J.; Berentsen, K.; van der Ent, M.A.; et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 2014, 345, 1251086. [Google Scholar] [CrossRef]
- Netea, M.G.; van der Meer, J.W.M. Trained immunity: A tool for reducing susceptibility to and the severity of COVID-19 infection. Cell 2020, 181, 969–977. [Google Scholar] [CrossRef]
- Corley, M.J.; Pang, A.P.; Dody, K.; Mudd, P.A.; Patterson, B.K.; Seethamraju, H.; Bram, Y.; Peluso, M.J.; Torres, L.; Iyer, N.S.; et al. Genome-wide DNA methylation profiling of peripheral blood reveals epigenetic signatures associated with severe COVID-19. J. Leukoc. Biol. 2021, 110, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, E.; Reynolds, G.; Botting, R.A.; Calero-Nieto, F.J.; Morgan, M.; Tuong, Z.K.; Bach, K.; Sungnak, W.; Worlock, K.B.; Yoshida, M.; et al. The cellular immune response to COVID-19 deciphered by single-cell multi-omics across three UK centres. Nature 2021, 599, 506–514. [Google Scholar] [CrossRef]
- Naidoo, C.C.; Nyawo, G.R.; Wu, B.G.; Walzl, G.; Warren, R.M. The microbiome and tuberculosis: A review. Tuberculosis 2021, 126, 102038. [Google Scholar] [CrossRef]
- Li, S.; Zhuo, M.; Huang, X.; Huang, Y.; Zhou, J.; Xiong, D.; Li, J.; Liu, Y.; Pan, Z.; Li, H.; et al. Altered gut microbiota associated with symptom severity in schizophrenia. PeerJ 2020, 8, e9574. [Google Scholar] [CrossRef]
- Zuo, T.; Zhang, F.; Lui, G.C.Y.; Yeoh, Y.K.; Li, A.Y.L.; Zhan, H.; Wan, Y.; Chung, A.C.K.; Cheung, C.P.; Chen, N.; et al. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology 2020, 159, 944–955.e8. [Google Scholar] [CrossRef]
- Deriu, E.; Pezoldt, J.; Lochner, M. Host–microbiota interactions in viral infections: Lessons from influenza and coronavirus. Immunity 2021, 54, 1584–1599. [Google Scholar] [CrossRef]
- Xu, Z.M.; Zwyer, M.; Hiza, H.; Schmidiger, S.; Sasamalo, M.; Reinhard, M.; Doetsch, A.; Borrell, S.; Naret, O.; Rüeger, S.; et al. Genome-to-genome analysis reveals associations between human and mycobacterial genetic variation in tuberculosis patients from Tanzania. BMC Med. Genom. 2025, 18, 99. [Google Scholar] [CrossRef]
- Wang, F.; Huang, S.; Gao, R.; Zhou, Y.; Lai, C.; Li, Z.; Liu, L. Initial whole-genome sequencing and analysis of the host genetic contribution to COVID-19 severity and susceptibility. Cell Discov. 2020, 6, 83. [Google Scholar] [CrossRef]
- Kumar, D.; Sahoo, S.S.; Chauss, D.; Kazemian, M.; Afzali, B. Non-coding RNAs in immunoregulation and autoimmunity: Technological advances and critical limitations. J. Autoimmun. 2023, 134, 102982. [Google Scholar] [CrossRef] [PubMed]
- Sperk, M.; van Domselaar, R.; Rodriguez, J.E.; Mikaeloff, F.; Sá Vinhas, B.; Saccon, E.; Sönnerborg, A.; Singh, K.; Gupta, S.; Végvári, Á.; et al. Utility of Proteomics in Emerging and Re-Emerging Infectious Diseases Caused by RNA Viruses. J. Proteome Res. 2020, 19, 4259–4274. [Google Scholar] [CrossRef] [PubMed]
- Neagu, A.N.; Jayathirtha, M.; Baxter, E.; Donnelly, M.; Petre, B.A.; Darie, C.C. Applications of Tandem Mass Spectrometry (MS/MS) in Protein Analysis for Biomedical Research. Molecules 2022, 27, 2411. [Google Scholar] [CrossRef] [PubMed]
- Herbert, C.; Luies, L.; Loots, D.T.; Williams, A.A. The metabolic consequences of HIV/TB co-infection. BMC Infect. Dis. 2023, 23, 536. [Google Scholar] [CrossRef]
- Carrero Longlax, S.; Koster, K.J.; Kamat, A.M.; Lozano, M.; Lerner, S.P.; Hannigan, R.; Nishiguchi, T.; Abhimanyu Sheikh, D.; Ladki, M.; Portillo, A. BCG-Induced DNA Methylation Changes Improve Coronavirus Disease 2019 Vaccine Immunity Without Decreasing the Risk for Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Open Forum Infect. Dis. 2025, 12, ofaf007. [Google Scholar] [CrossRef]
- Sun, G.; Wang, Q.; Shan, X.; Kuerbanjiang, M.; Ma, R.; Zhou, W.; Sun, L.; Li, Q. Metabolomics and lipidomics of plasma biomarkers for tuberculosis diagnostics using UHPLC-HRMS. Front. Cell. Infect. Microbiol. 2025, 15, 1526740. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Khatiwada, S.; Subedi, A. Lung microbiome and coronavirus disease 2019 (COVID-19): A narrative review. Int. J. Infect. Dis. 2021, 103, 476–482. [Google Scholar] [CrossRef]
- Mulder, W.J.M.; Ochando, J.; Joosten, L.A.B.; Fayad, Z.A.; Netea, M.G. Epigenomic approaches to understand trained immunity in TB and COVID-19. Cell Host Microbe 2021, 29, 728–731. [Google Scholar] [CrossRef]
- Nardelli, C.; Gentile, I.; Setaro, M.; di Domenico, C.; di Dato, M.T.; Rizzo, M.R. Microbiota and COVID-19: Possible link and implications. Int. J. Mol. Sci. 2021, 22, 4474. [Google Scholar] [CrossRef]
- Yu, Y.; Jiang, X.X.; Li, J.C. Biomarker discovery for tuberculosis using metabolomics. Front. Mol. Biosci. 2023, 10, 1099654. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pacis, A.; Nédélec, Y.; Barreiro, L.B.; Gagneux, S. Epigenetic immune memory in mycobacterial infection. Trends Immunol. 2019, 40, 900–915. [Google Scholar] [CrossRef]
- Madden, K.; Liang, Y.C.; Rajabalee, N.; Alvarez, G.G.; Sun, J. Surveying the Epigenetic Landscape of Tuberculosis in Alveolar Macrophages. Infect. Immun. 2022, 90, e00522-21. [Google Scholar] [CrossRef]
- Sengupta, S.; Pattanaik, K.P.; Mishra, S.; Sonawane, A. Epigenetic orchestration of host immune defences by Mycobacterium tuberculosis. Microbiol. Res. 2023, 273, 127400. [Google Scholar] [CrossRef]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaudhari, M.; Verma, S.; Deb, S. Insights into Molecular Interplay in Tuberculosis–COVID-19 Co-Infection via Integrated Multi-Omics Strategies. J 2025, 8, 41. https://doi.org/10.3390/j8040041
Chaudhari M, Verma S, Deb S. Insights into Molecular Interplay in Tuberculosis–COVID-19 Co-Infection via Integrated Multi-Omics Strategies. J. 2025; 8(4):41. https://doi.org/10.3390/j8040041
Chicago/Turabian StyleChaudhari, Megha, Sunita Verma, and Sushanta Deb. 2025. "Insights into Molecular Interplay in Tuberculosis–COVID-19 Co-Infection via Integrated Multi-Omics Strategies" J 8, no. 4: 41. https://doi.org/10.3390/j8040041
APA StyleChaudhari, M., Verma, S., & Deb, S. (2025). Insights into Molecular Interplay in Tuberculosis–COVID-19 Co-Infection via Integrated Multi-Omics Strategies. J, 8(4), 41. https://doi.org/10.3390/j8040041

