Validation of Methodology for Quantifying Caffeic and Ferulic Acids in Raw and Roasted Coffee Extracts by High-Performance Liquid Chromatography
Abstract
1. Introduction
2. Materials and Methods
2.1. Standards and Reagents
2.2. Equipment
2.3. Coffee Samples
2.4. Sample Preparation
2.5. The Figures of Merit Used in the Validation of the HPLC Method
2.5.1. Linearity
2.5.2. Accuracy
2.5.3. Precision
2.5.4. Robustness
2.5.5. Limit of Quantification
2.5.6. Limit of Detection
2.5.7. Matrix Effect
2.6. Extraction of Bioactive Phenolic Acids
2.7. Analysis by HPLC-UV
3. Results and Discussion
3.1. Chromatograms of Raw and Roasted Coffee Extracts
3.1.1. Linearity Results
3.1.2. Accuracy Results
3.1.3. Precision Results
3.1.4. Robustness Results
3.1.5. Matrix Effect Results
3.2. The Quantification of Caffeic and Ferulic Acids Using the Methodology Developed in Five Different Varieties of Raw and Roasted Coffee
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spencer, J.P.E.; Mohsen, M.M.A.E.; Minihane, A.M.; Mathers, J.C. Biomarkers of the Intake of Dietary Polyphenols: Strengths, Limitations and Application in Nutrition Research. Br. J. Nutr. 2008, 99, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Ormaza-Zapata, A.M.; Dáz-Arango, F.; Rojano, B.A. Efecto de la Preparación fría de Café (Coffea arabica L. var. Castillo) sobre la Capacidad Antioxidante y la Calidad Sensorial. Inf. Tecnol. 2022, 33, 57–70. [Google Scholar] [CrossRef]
- Coman, V.; Vodnar, D.C. Hydroxycinnamic Acids and Human Health: Recent Advances. J. Sci. Food Agric. 2020, 100, 483–499. [Google Scholar] [CrossRef] [PubMed]
- Alamri, E.; Rozan, M.; Bayomy, H. A Study of Chemical Composition, Antioxidants, and Volatile Compounds in Roasted Arabic Coffee. Saudi J. Biol. Sci. 2022, 29, 3133–3139. [Google Scholar] [CrossRef]
- Mirzaei, S.; Gholami, M.H.; Zabolian, A.; Saleki, H.; Farahani, M.V.; Hamzehlou, S.; Far, F.B.; Sharifzadeh, S.O.; Samarghandian, S.; Khan, H.; et al. Caffeic Acid and its Derivatives as Potential Modulators of Oncogenic Molecular Pathways: New Hope in the Fight Against Cancer. Pharmacol. Res. 2021, 171, 105759. [Google Scholar] [CrossRef]
- Espíndola, K.M.M.; Ferreira, R.G.; Narvaez, L.E.M.; Rosario, A.C.R.S.; Silva, A.H.M.D.; Silva, A.G.B.; Vieira, A.P.O.; Monteiro, M.C. Chemical and Pharmacological Aspects of Caffeic Acid and its Activity in Hepatocarcinoma. Front. Oncol. 2019, 9, 541. [Google Scholar] [CrossRef]
- Soares, S.E. Ácidos Fenólicos como Antioxidantes. Rev. Nutr. 2002, 15, 71–81. [Google Scholar] [CrossRef]
- Teixeira, J.; Gaspar, A.; Garrido, E.M.; Garrido, J.; Borges, F. Hydroxycinnamic Acid Antioxidants: An Electrochemical Overview. BioMed Res. Int. 2013, 2013, 251754. [Google Scholar] [CrossRef]
- Urbaniak, A.; Kujawski, J.; Czaja, K.; Szelag, M. Antioxidant properties of several caffeic acid derivatives: A theoretical study. Comptes Rendus Chim. 2017, 20, 1072–1082. [Google Scholar] [CrossRef]
- Oliveira, D.M.; Bastos, D.H.M. Biodisponibilidade de Ácidos Fenólicos. Quim. Nova 2011, 34, 1051–1056. [Google Scholar] [CrossRef]
- Kaup, R.M.; Khayyal, M.T.; Verspohl, E.J. Antidiabetic Effects of a Standardized Egyptian Rice Bran Extract. Phytother. Res. 2013, 27, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, C.; Santangelo, R. Ferulic acid: Pharmacological and Toxicological Aspects. Food Chem. Toxicol. 2014, 65, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, A.E.; Sánchez, S.; Tolosa, A.R.; Perez-Burillo, S.; Olalla, M. Evaluation of Differences in the Antioxidant Capacity and Phenolic Compounds of Green and Roasted Coffee and their Relationship with Sensory Properties. LWT—Food Sci. Technol. 2020, 128, 109457. [Google Scholar] [CrossRef]
- SCA. Protocol for Coffee Sensory Analysis—SCAA Methodology. SCAA Cupping Protocols; SCA: Irvine, CA, USA, 2008. [Google Scholar]
- Storion, A.C.; Gonçalves, C.P.; Marcucci, M.C. Hifened Analytical Techniques in the Identification of Chemical Markers and Adulterations in Natural Products. Rev. Virt. Quim. 2020, 12, 1038–1055. [Google Scholar]
- Yilmaz, P.K.; Kolak, U. SPE-HPLC Determination of Chlorogenic and Phenolic Acids in Coffee. J. Chromatogr. Sci. 2017, 55, 712–718. [Google Scholar] [CrossRef]
- Klikarová, J.; Česlová, L. Targeted and Non-Targeted HPLC Analysis of Coffee-Based Products as Effective Tools for Evaluating the Coffee Authenticity. Molecules 2022, 27, 7419. [Google Scholar] [CrossRef]
- Gani, M.R.; Istyastono, E.P. Determination of Caffeic Acid in Ethanolic Extract of Spent Coffee Grounds by High-Performance Liquid Chromatography with UV Detection. Indones. J. Chem. 2021, 21, 1281–1286. [Google Scholar] [CrossRef]
- SENAR. Coleção SENAR—Café: Cafés especiais. Serviço Nac. Aprendiz. Rural. 2017, 193, 25–40. [Google Scholar]
- Plackett, R.L.; Burman, J.P. The Design of Optimum Multifactorial Experiments. Biometrika 1946, 33, 305–325. [Google Scholar] [CrossRef]
- FDA. Reviewer Guidance: Validation of Chromatographic Methods; Center for Drug Evaluation and Research: Beltsville, MD, USA, 1994.
- ICH. Q2(R1) Validation of Analytical Procedures: Text and Methodology Guidance for Industry; U.S. Department of Health and Human Services Food and Drug Administration: Silver Spring, MD, USA, 2005.
- ANVISA. Farmacopeia Brasileira, 5th ed.; Primeiro Suplemento; Agência Nacional de Vigilância Sanitária: Brasília, Brazil, 2016.
- ANVISA. Resolução da Diretoria Colegiada—RDC No 166; Agência Nacional de Vigilância Sanitária: Brasília, Brazil, 2017.
- INMETRO. DOQ-CGCRE-008 Orientação Sobre Validação de Métodos Analíticos; Instituto Nacional de Metrologia, Qualidade e Tecnologia (revisão 09): Rio de Janeiro, Brazil, 2020. [Google Scholar]
- Garambone, E.; Rosa, G. Possible Health Benefits of Chlorogenic Acid. Alim Nutr. 2008, 18, 229–235. [Google Scholar]
- Díaz, F.O.; Ormaza, A.M.; Rojano, B.A. Effect of Coffee Roasting (Coffea arabica L. var. Castillo) on Cup Profile, Antioxidant Compound Content and Antioxidant Activity. Inf. Tecnol. 2018, 29, 31–42. [Google Scholar] [CrossRef]
- Debona, D.G.; Pinheiro, P.F.; Pinheiro, C.A.; Gomes, W.S.; Abreu, R.O.; Moreli, A.P.; Siqueira, E.A.; Pereira, L.L. Evaluation of the Chemical Composition of Arabic Coffee Submitted to Different Roast Profiles. Rev. Ifes Ciência 2020, 6, 124–133. [Google Scholar]
- Rodrigues, F.A.; Carré’missio, V.; Jham, G.N.; Berhow, M.; Schurt, D. Levels of Chlorogenic Acid in Leaves of Coffee Plants Supplied with Silicon and Infected by Hemileia vastatrix. Trop. Plant Pathol. 2011, 36, 404–408. [Google Scholar]
Conditions | Combination of Factors | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Parameters | Nominal (1) | Variation (−1) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
p1 | 15 | 16 | −1 | −1 | −1 | 1 | −1 | 1 | 1 | 1 |
p2 | 40 | 42 | 1 | −1 | 1 | 1 | −1 | −1 | −1 | 1 |
p3 | 1 | 1.1 | −1 | 1 | 1 | −1 | −1 | −1 | 1 | 1 |
p4 | 272 | 274 | −1 | 1 | −1 | 1 | 1 | −1 | −1 | 1 |
p5 | Êxodo Científica | Dinâmica Química Contemporânea LTDA | 1 | −1 | −1 | −1 | 1 | −1 | 1 | 1 |
p6 | 1 | 1.5 | −1 | −1 | 1 | −1 | 1 | 1 | −1 | 1 |
p7 | acetic | formic | 1 | 1 | −1 | −1 | −1 | 1 | −1 | 1 |
Caffeic Acid | Ferulic Acid | |
---|---|---|
Correlation coefficient | 0.9980 | 0.9978 |
R2 | 0.9960 | 0.9948 |
Linear coefficient | 142.87 | 132.34 |
Angular coefficient | 130.60 | 120.45 |
Limit of quantification (µg mL−1) | 0.250 | 0.250 |
Limit of detection (µg mL−1) | 0.075 | 0.075 |
C calculated | 0.511 | 0.385 |
Compound | Caffeic Acid | Ferulic Acid | ||||
---|---|---|---|---|---|---|
Theoretical Concentration (µg mL−1) | Experimental Concentration (µg mL−1) | Recovery (%) | Coefficient of Variation (%) | Experimental Concentration (µg mL−1) | Recovery (%) | Coefficient of Variation (%) |
4 | 3.82 | 95.5 | 2.29 | 4.16 | 104.0 | 3.32 |
8 | 7.25 | 90.6 | 0.81 | 9.03 | 112.8 | 1.45 |
12 | 11.26 | 93.8 | 0.11 | 12.06 | 100.5 | 0.84 |
16 | 15.63 | 97.7 | 2.16 | 15.74 | 98.38 | 3.33 |
20 | 19.22 | 96.1 | 3.51 | 19.52 | 97.6 | 1.37 |
Average | - | 94.7 | - | - | 102.66 | - |
Compound | Caffeic Acid | Ferulic Acid | ||||
---|---|---|---|---|---|---|
Theoretical Concentration (µg mL−1) | Experimental Concentration (µg mL−1) | Recovery (%) | Coefficient of Variation (%) | Experimental Concentration (µg mL−1) | Recovery (%) | Coefficient of Variation (%) |
4 | 4.50 | 112.5 | 3.32 | 4.18 | 104.5 | 3.71 |
8 | 8.15 | 101.8 | 1.86 | 8.50 | 106.3 | 1.13 |
12 | 11.75 | 97.9 | 3.05 | 11.80 | 98.3 | 3.01 |
16 | 16.68 | 104.3 | 0.49 | 15.21 | 95.1 | 0.31 |
20 | 20.25 | 101.3 | 2.04 | 19.10 | 95.5 | 0.72 |
Média | - | 103.56 | 2.15 | - | 99.94 | 1.78 |
Compound | Caffeic Acid | Ferulic Acid | ||
---|---|---|---|---|
Theoretical Concentration (µg mL−1) | Experimental Concentration (µg mL−1) | Coefficient of Variation (%) | Experimental Concentration (µg mL−1) | Coefficient of Variation (%) |
5 | 4.96 | 0.17 | 5.22 | 3.63 |
10 | 9.39 | 0.86 | 9.66 | 2.93 |
15 | 14.22 | 1.54 | 14.11 | 1.75 |
22 | 21.55 | 2.08 | 21.18 | 3.30 |
Parameters | Caffeic Acid | Ferulic Acid | ||
---|---|---|---|---|
p-Value for RT | p-Value for Area | p-Value for RT | p-Value for Area | |
p1 | 0.8783 | 0.5219 | 0.5173 | 0.7739 |
p2 | 0.7109 | 0.7322 | 0.7288 | 0.8175 |
p3 | 0.2769 | 0.5038 | 0.3319 | 0.3417 |
p4 | 0.2150 | 0.0892 | 0.3788 | 0.1254 |
p5 | 0.4316 | 0.6108 | 0.5649 | 0.5649 |
p6 | 0.8565 | 0.3213 | 0.7896 | 0.3893 |
p7 | 0.5649 | 0.6600 | 0.5649 | 0.6322 |
Red Catucai | Yellow Catucai | Yellow Catuai | Siriema | IPR 98 | |
---|---|---|---|---|---|
Caffeic acid (mg g−1) | |||||
Roasted | 1.564 Aa | 1.646 Aa | 1.429 Aa | 1.541 Aa | 1.934 Ab |
Raw | 0.197 Bc | 0.156 Bc | 0.224 Bc | 0.233 Bc | 0.384 Bd |
Training fee | 693.91% | 955.13% | 537.95% | 561.37% | 403.65% |
Ferulic acid (mg g−1) | |||||
Roasted | 0.296 Ab | 0.303 Ab | 0.276 Ab | 0.354 Ab | 0.504 Aa |
Raw | 0.135 Bc | 0.162 Bc | 0.142 Bc | 0.127 Bc | 0.141 Bc |
Training fee | 119.26% | 87.04% | 94.34% | 178.74% | 257.45% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, W.B.; Rocha, L.M.; Soares, M.S.; Good God, P.I.V.; da Silva, S.A.; Moreira, D.B.; Silva, G.H. Validation of Methodology for Quantifying Caffeic and Ferulic Acids in Raw and Roasted Coffee Extracts by High-Performance Liquid Chromatography. J 2025, 8, 8. https://doi.org/10.3390/j8010008
da Silva WB, Rocha LM, Soares MS, Good God PIV, da Silva SA, Moreira DB, Silva GH. Validation of Methodology for Quantifying Caffeic and Ferulic Acids in Raw and Roasted Coffee Extracts by High-Performance Liquid Chromatography. J. 2025; 8(1):8. https://doi.org/10.3390/j8010008
Chicago/Turabian Styleda Silva, Walace Breno, Larissa Martins Rocha, Marcio Santos Soares, Pedro Ivo Vieira Good God, Sabrina Alves da Silva, Daniele Birck Moreira, and Geraldo Humberto Silva. 2025. "Validation of Methodology for Quantifying Caffeic and Ferulic Acids in Raw and Roasted Coffee Extracts by High-Performance Liquid Chromatography" J 8, no. 1: 8. https://doi.org/10.3390/j8010008
APA Styleda Silva, W. B., Rocha, L. M., Soares, M. S., Good God, P. I. V., da Silva, S. A., Moreira, D. B., & Silva, G. H. (2025). Validation of Methodology for Quantifying Caffeic and Ferulic Acids in Raw and Roasted Coffee Extracts by High-Performance Liquid Chromatography. J, 8(1), 8. https://doi.org/10.3390/j8010008