Fractional SIR-Model for Estimating Transmission Dynamics of COVID-19 in India
Abstract
:- A time-dependent susceptible-infected-recovered (SIR) model is constructed which includes the most effective parameters related to the intensity of the infection, population density and contact rate.
- Looking at the great diversity and differences in different geographic locations in India, the value of the basic reproduction number is calculated based on the COVID-19 data from Indian districts which forecasts the transmission rate of COVID-19 infection in different situations.
- We found that the performance of the proposed SIR model is different for different fractional-order nonlinear dynamical systems.
- District-wise spatial distribution maps illustrating reproduction rates with and without lockdown measures are prepared with the help of ArcGIS 10.2.
1. Introduction
2. Mathematical Modelling
2.1. Formulation of the SIR-Model
2.2. The Feasible Region
2.3. Equilibrium Points and the Basic Reproduction Number
- 1.
- Disease free equilibrium point:
- 2.
- Endemic equilibrium point:
3. Data-Driven Forecasting of Covid-19 in India
4. Susceptibility of with Respect to the Parameters
5. Numerical Simulation
6. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tian, H.; Liu, Y.; Li, Y.; Wu, C.H.; Chen, B.; Kraemer, M.U.; Li, B.; Cai, J.; Xu, B.; Yang, Q.; et al. An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China. Science 2020, 368, 638–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostarelos, K. Nanoscale nights of COVID-19 Doctoral dissertation. Nat. Nanotechnol. 2020, 15, 343–344. [Google Scholar] [CrossRef]
- Rahman, B.; Sadraddin, E.; Porreca, A. The basic reproduction number of SARS-CoV-2 in Wuhan is about to die out, how about the rest of the World? Rev. Med. Virol. 2020, 30, e2111. [Google Scholar] [CrossRef] [PubMed]
- Gettleman, J.; Schultz, K. Modi Orders 3-Week Total Lockdown for All 1.3 Billion Indians. The New York Times, 24 March 2020; ISSN 0362–4331. [Google Scholar]
- Sandhya, R. R0 data shows India’s coronavirus infection rate has slowed, gives lockdown a thumbs up. The Print, 2 May 2020. [Google Scholar]
- Helen, R.; Esha, M.; Swati, G. India Places Millions under Lockdown to Fight Coronavirus; CNN: Atlanta, GA, USA, 2020. [Google Scholar]
- COVID-19. Lockdown across India, in line with WHO guidance. UN News, 24 March 2020.
- Hu, H.; Nigmatulina, K.; Eckhoff, P. The scaling of contact rates with population density for the infectious disease models. Math. Biosci. 2013, 244, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Banerjee, S.; Das, S. Significance of geographical factors to the COVID-19 outbreak in India. Modeling Earth Syst. Environ. 2020, 6, 2645–2653. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, D.; Suhail, S.A.; Bazaz, M.A. Evaluation and prediction of COVID-19 in India: A case study of worst hit states. Chaos Solitons Fractals 2020, 139, 110014. [Google Scholar] [CrossRef] [PubMed]
- Sy, K.T.L.; White, L.F.; Nichols, B.E. Population density and basic reproductive number of COVID-19 across United States counties. medRxiv 2020, 16, e0249271. [Google Scholar]
- Mahajan, A.; Sivadas, N.A.; Solanki, R. An epidemic model SIPHERD and its application for prediction of the spread of COVID-19 infection in India. Chaos Solitons Fractals 2020, 140, 110156. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, A.S.; Shaikh, I.N.; Nisar, K.S. A mathematical model of COVID-19 using fractional derivative: Outbreak in India with dynamics of transmission and control. Adv. Differ. Equ. 2020, 2020, 373. [Google Scholar] [CrossRef] [PubMed]
- Mohamadou, Y.; Halidou, A.; Kapen, P.T. A review of mathematical modeling, artificial intelligence and datasets used in the study, prediction and management of COVID-19. Appl. Intell. 2020, 50, 3913–3925. [Google Scholar] [CrossRef]
- Roda, W.C.; Varughese, M.B.; Han, D.; Li, M.Y. Why is it difficult to accurately predict the COVID-19 epidemic? Infect. Dis. Model. 2020, 5, 271–281. [Google Scholar]
- Edridge, A.W.; Kaczorowska, J.; Hoste, A.C.; Bakker, M.; Klein, M.; Loens, K.; Jebbink, M.F.; Matser, A.; Kinsella, C.M.; Rueda, P.; et al. Seasonal coronavirus protective immunity is short-lasting. Nat. Med. 2020, 26, 1691–1693. [Google Scholar] [CrossRef] [PubMed]
- Diekmann, O.; Heesterbeek, J.A.P.; Metz, J.A. On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 1990, 28, 365–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Driessche, P.; Watmough, J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 2002, 180, 29–48. [Google Scholar] [CrossRef]
- Caputo, M. Linear models of dissipation whose Q is almost frequency independent—II. Geophys. J. Int. 1967, 13, 529–539. [Google Scholar] [CrossRef]
Place | ||||
---|---|---|---|---|
World | 0.04491 | 0.00944 | 0.79691 | 0.58339 |
India | 0.02713 | 0.177 | 0.32977 | 0.62355 |
Maharashtra | 0.04258 | 0.1764 | 0.94322 | 0.54372 |
Tamil Nadu | 0.01366 | 0.1561 | 0.79683 | 0.57899 |
Delhi | 0.0309 | 0.2121 | 3.00906 | 0.715 |
Gujarat | 0.0532 | 0.1917 | 0.3052 | 0.71417 |
Uttar Pradesh | 0.02825 | 0.202 | 0.07166 | 0.66731 |
Rajasthan | 0.02228 | 0.2131 | 0.1509 | 0.78683 |
West Bengal | 0.03389 | 0.1384 | 0.12592 | 0.66277 |
Madhya Pradesh | 0.04037 | 0.2035 | 0.10522 | 0.75759 |
Haryana | 0.01577 | 0.199 | 0.3452 | 0.76183 |
Karnataka | 0.01588 | 0.2716 | 0.20707 | 0.41589 |
Andhra Pradesh | 0.01194 | 0.1098 | 0.11834 | 0.44558 |
Bihar | 0.00799 | 0.2542 | 0.05831 | 0.7425 |
Telangana | 0.01189 | 0.1358 | 0.36463 | 0.5744 |
Jammu and Kashmir | 0.01591 | 0.2364 | 0.34586 | 0.61303 |
Assam | 0.00119 | 0.1693 | 0.18828 | 0.67164 |
Odisha | 0.00504 | 0.1758 | 0.15281 | 0.68087 |
Punjab | 0.02604 | 0.1389 | 0.11698 | 0.69234 |
Kerala | 0.00498 | 0.176 | 0.08416 | 0.59417 |
Uttarakhand | 0.01329 | 0.1881 | 0.1567 | 0.8181 |
Chhattisgarh | 0.00424 | 0.1806 | 0.05134 | 0.8 |
Jharkhand | 0.00701 | 0.2242 | 0.04326 | 0.7246 |
Tripura | 0.00059 | 0.1484 | 0.23027 | 0.72045 |
Ladakh | 0.001 | 0.1387 | 3.76441 | 0.83184 |
Goa | 0.00386 | 0.0823 | 0.62151 | 0.58522 |
Himachal Pradesh | 0.00929 | 0.1753 | 0.07845 | 0.69638 |
Manipur | 0 | 0.245 | 0.24336 | 0.52806 |
Manipur | 0 | 0.245 | 0.24336 | 0.52806 |
Chandigarh | 0.01232 | 0.1719 | 0.23071 | 0.82341 |
Puducherry | 0.01385 | 0.2873 | 0.53194 | 0.47478 |
Nagaland | 0 | 0.6441 | 0.15795 | 0.3888 |
Mizoram | 0 | 0.2348 | 0.08977 | 0.67513 |
Arunachal Pradesh | 0.00741 | 0.2603 | 0.09756 | 0.34074 |
Sikkim | 0 | 0.1289 | 0.10236 | 0.52 |
Dadra and Nagar Haveli and Daman and Diu | 0 | 0.5588 | 0.58189 | 0.4375 |
Andaman and Nicobar Islands | 0 | 0.0686 | 0.18524 | 0.52482 |
Meghalaya | 0.01136 | 0.2795 | 0.01483 | 0.48864 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, N.H.; Suthar, A.H.; Jayswal, E.N.; Sikarwar, A. Fractional SIR-Model for Estimating Transmission Dynamics of COVID-19 in India. J 2021, 4, 86-100. https://doi.org/10.3390/j4020008
Shah NH, Suthar AH, Jayswal EN, Sikarwar A. Fractional SIR-Model for Estimating Transmission Dynamics of COVID-19 in India. J. 2021; 4(2):86-100. https://doi.org/10.3390/j4020008
Chicago/Turabian StyleShah, Nita H., Ankush H. Suthar, Ekta N. Jayswal, and Ankit Sikarwar. 2021. "Fractional SIR-Model for Estimating Transmission Dynamics of COVID-19 in India" J 4, no. 2: 86-100. https://doi.org/10.3390/j4020008
APA StyleShah, N. H., Suthar, A. H., Jayswal, E. N., & Sikarwar, A. (2021). Fractional SIR-Model for Estimating Transmission Dynamics of COVID-19 in India. J, 4(2), 86-100. https://doi.org/10.3390/j4020008