Real-Time Sensing and Control of Integrative Horticultural Lighting Systems
Abstract
:1. Introduction
2. Precision Agriculture
3. Light Optimization
4. Light Optimization for Horticulture
5. Challenges and Future
- -
- the identification of physiological markers,
- -
- database generation,
- -
- the development of the processing model and constraints,
- -
- testing sensor sensitivity and accuracy,
- -
- designing and testing feedback loops,
- -
- validation.
Funding
Conflicts of Interest
References
- Shry, C.; Reiley, E. Introductory Horticulture; Cengage Learning: Boston, MA, USA, 2016. [Google Scholar]
- Zhu, X.-G.; Long, S.P.; Ort, D.R. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr. Opin. Biotechnol. 2008, 19, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Pinho, P.; Jokinen, K.; Halonen, L. Horticultural lighting—Present and future challenges. Lighting Res. Technol. 2012, 44, 427–437. [Google Scholar] [CrossRef]
- Möglich, A.; Yang, X.; Ayers, R.A.; Moffat, K. Structure and function of plant photoreceptors. Annu. Rev. Plant Biol. 2010, 61, 21–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrow, R.C. Led lighting in horticulture. HortScience 2008, 43, 1947–1950. [Google Scholar] [CrossRef] [Green Version]
- Piromalis, D.; Arvanitis, K.; Papageorgas, P.; Ferentinos, K. Smart precision lighting for urban and landscape closed controlled horticultural environments. In Urban Horticulture; Springer: Berlin/Heidelberg, Germany, 2018; pp. 107–140. [Google Scholar]
- Pattison, P.; Tsao, J.; Brainard, G.; Bugbee, B. Leds for photons, physiology and food. Nature 2018, 563, 493–500. [Google Scholar] [CrossRef]
- Dillon, H.E.; Ross, C.; Dzombak, R. Environmental and energy improvements of led lamps over time: A comparative life cycle assessment. LEUKOS 2020, 16, 229–237. [Google Scholar] [CrossRef]
- Kagel, H.; Jacobs, H.; Bier, F.F.; Glökler, J.; Frohme, M. A Novel Microtiter Plate Format High Power Open Source Led Array. In Photonics; Multidisciplinary Digital Publishing Institute: Basel, Switzerland, 2019; p. 17. [Google Scholar]
- Kamilaris, A.; Kartakoullis, A.; Prenafeta-Boldú, F.X. A review on the practice of big data analysis in agriculture. Comput. Electron. Agric. 2017, 143, 23–37. [Google Scholar] [CrossRef]
- Muangprathub, J.; Boonnam, N.; Kajornkasirat, S.; Lekbangpong, N.; Wanichsombat, A.; Nillaor, P. Iot and agriculture data analysis for smart farm. Comput. Electron. Agric. 2019, 156, 467–474. [Google Scholar] [CrossRef]
- Ries, H.; Leike, I.; Muschaweck, J.A. Optimized additive mixing of colored light-emitting diode sources. Opt. Eng. 2004, 43, 1531–1537. [Google Scholar]
- Neumann, A.; Wierer, J.; Davis, W.; Ohno, Y.; Brueck, S.; Tsao, J. Four-color laser white illuminant demonstrating high color-rendering quality. Opt. Express 2011, 19, A982–A990. [Google Scholar] [CrossRef]
- Hillman, W.S.; Galston, A.W. Inductive control of indoleacetic acid oxidase activity by red and near infrared light. Plant Physiol. 1957, 32, 129. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, M. Plant response to solar ultraviolet radiation. In Physiological Plant Ecology I; Springer: Berlin/Heidelberg, Germany, 1981; pp. 169–197. [Google Scholar]
- Blackmore, S.; Godwin, R.J.; Fountas, S. The analysis of spatial and temporal trends in yield map data over six years. Biosyst. Eng. 2003, 84, 455–466. [Google Scholar] [CrossRef]
- Richardson, A.D.; Duigan, S.P.; Berlyn, G.P. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol. 2002, 153, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Emmi, L.; Paredes-Madrid, L.; Ribeiro, A.; Pajares, G.; Gonzalez-de-Santos, P. Fleets of robots for precision agriculture: A simulation environment. Ind. Robot Int. J. 2013, 40, 41–58. [Google Scholar] [CrossRef]
- Yong, H.; Hui, F.; Lei, F. Information processing system for precision agriculture based on GPS and GIS. Trans. Chin. Soc. Agric. Eng. 2002, 1, 145. [Google Scholar]
- Zude-Sasse, M.; Fountas, S.; Gemtos, T.A.; Abu-Khalaf, N. Applications of Precision Agriculture in Horticultural Crops. Eur. J. Hort. Sci. 2016, 81, 78–90. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, N.; Wang, M. Wireless sensors in agriculture and food industry—Recent development and future perspective. Comput. Electron. Agric. 2006, 50, 1–14. [Google Scholar] [CrossRef]
- Li, Q.; Wang, M.; Gu, W. Computer vision based system for apple surface defect detection. Comput. Electron. Agric. 2002, 36, 215–223. [Google Scholar] [CrossRef]
- Rocha, A.; Hauagge, D.C.; Wainer, J.; Goldenstein, S. Automatic fruit and vegetable classification from images. Comput. Electron. Agric. 2010, 70, 96–104. [Google Scholar] [CrossRef] [Green Version]
- Cope, J.S.; Corney, D.; Clark, J.Y.; Remagnino, P.; Wilkin, P. Plant species identification using digital morphometrics: A review. Expert Syst. Appl. 2012, 39, 7562–7573. [Google Scholar] [CrossRef]
- Neto, J.C.; Meyer, G.E.; Jones, D.D.; Samal, A.K. Plant species identification using elliptic fourier leaf shape analysis. Comput. Electron. Agric. 2006, 50, 121–134. [Google Scholar] [CrossRef]
- Li, K.; Sha, Z.; Xue, W.; Chen, X.; Mao, H.; Tan, G. A fast modeling and optimization scheme for greenhouse environmental system using proper orthogonal decomposition and multi-objective genetic algorithm. Comput. Electron. Agric. 2020, 168, 105096. [Google Scholar] [CrossRef]
- Shamshirband, S.; Khoshnevisan, B.; Yousefi, M.; Bolandnazar, E.; Anuar, N.B.; Wahab, A.W.A.; Khan, S.U.R. A multi-objective evolutionary algorithm for energy management of agricultural systems—A case study in iran. Renew. Sustain. Energy Rev. 2015, 44, 457–465. [Google Scholar] [CrossRef]
- Krüger, C.; Castellani, F.; Geldermann, J.; Schöbel, A. Peat and pots: An application of robust multiobjective optimization to a mixing problem in agriculture. Comput. Electron. Agric. 2018, 154, 265–275. [Google Scholar] [CrossRef]
- Hemming, S.; de Zwart, F.; Elings, A.; Righini, I.; Petropoulou, A. Remote control of greenhouse vegetable production with artificial intelligence—greenhouse climate, irrigation, and crop production. Sensors 2019, 19, 1807. [Google Scholar] [CrossRef] [Green Version]
- Ferentinos, K.P.; Albright, L. Optimal design of plant lighting system by genetic algorithms. Eng. Appl. Artif. Intell. 2005, 18, 473–484. [Google Scholar] [CrossRef]
- Ziamtsov, I.; Navlakha, S. Machine learning approaches to improve three basic plant phenotyping tasks using three-dimensional point clouds. Plant Physiol. 2019, 181, 1425–1440. [Google Scholar] [CrossRef] [Green Version]
- Breen, M.; Upton, J.; Murphy, M.D. Development of a discrete infrastructure optimization model for economic assessment on dairy farms (diomond). Comput. Electron. Agric. 2019, 156, 508–522. [Google Scholar] [CrossRef]
- Durmus, D.; Davis, W. Appearance of achromatic colors under optimized light source spectrum. IEEE Photonics J. 2018, 10, 1–11. [Google Scholar] [CrossRef]
- Abdalla, D.; Duis, A.; Durmus, D.; Davis, W. Customisation of Light Source Spectrum to Minimise Light Absorbed by Artwork. In Proceedings of the CIE 2016 Lighting Quality & Energy Efficiency, Melbourne, Australia, 3–5 March 2016; pp. 22–31. [Google Scholar]
- Durmus, D. Impact of Surface Reflectance on Spectral Optimization for Melanopic Illuminance and Energy Efficiency. In Proceedings of the Optical Devices and Materials for Solar Energy and Solid-state Lighting 2019, Burlingame, CA, USA, 29 July–2 August 2019; p. PT2C. 5. [Google Scholar]
- Botero-Valencia, J.-S.; Valencia-Aguirre, J.; Durmus, D.; Davis, W. Multi-channel low-cost light spectrum measurement using a multilayer perceptron. Energy Build. 2019, 199, 579–587. [Google Scholar] [CrossRef]
- Tominaga, S.; Tanaka, N. Estimating reflection parameters from a single color image. IEEE Comput. Graph. Appl. 2000, 20, 58–66. [Google Scholar] [CrossRef]
- Cuttle, C. Damage to museum objects due to light exposure. Int. J. Lighting Res. Technol. 1996, 28, 1–9. [Google Scholar] [CrossRef]
- Durmus, D.; Abdalla, D.; Duis, A.; Davis, W. Spectral optimization to minimize light absorbed by artwork. Leukos 2020, 16, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Durmus, D.; Davis, W. Blur perception and visual clarity in light projection systems. Opt. Express 2019, 27, A216–A223. [Google Scholar] [CrossRef] [PubMed]
- Vázquez, D.; Fernández-Balbuena, A.; Canabal, H.; Muro, C.; Durmus, D.; Davis, W.; Benítez, A.; Mayorga, S. Energy optimization of a light projection system for buildings that virtually restores artworks. Digit. Appl. Archaeol. Cult. Herit. 2020, 16, e00128. [Google Scholar] [CrossRef]
- Durmus, D. Optimising Light Source Spectrum to Reduce the Energy Absorbed by Objects. Ph.D. Thesis, The University of Sydney, Sydney, Australia, 21 October 2017. [Google Scholar]
- Gómez-Lorente, D.; Rabaza, O.; Estrella, A.E.; Peña-García, A. A new methodology for calculating roadway lighting design based on a multi-objective evolutionary algorithm. Expert Syst. Appl. 2013, 40, 2156–2164. [Google Scholar] [CrossRef]
- Canham, A.E. Artificial lighting for plant growth. Trans. Illum. Eng. Soc. 1954, 19, 235–261. [Google Scholar] [CrossRef]
- Weir, J. Artificial lighting fόr commercial horticulture. Lighting Res. Technol. 1975, 7, 209–225. [Google Scholar] [CrossRef]
- Barta, D.; Tibbitts, T.; Bula, R.; Morrow, R. Evaluation of light emitting diode characteristics for a space-based plant irradiation source. Adv. Space Res. 1992, 12, 141–149. [Google Scholar] [CrossRef]
- Brown, C.S.; Schuerger, A.C.; Sager, J.C. Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting. J. Am. Soc. Hortic. Sci. 1995, 120, 808–813. [Google Scholar] [CrossRef] [Green Version]
- Goins, G.D.; Yorio, N.C.; Sanwo, M.; Brown, C. Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (leds) with and without supplemental blue lighting. J. Exp. Bot. 1997, 48, 1407–1413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stutte, G.W. Light-emitting diodes for manipulating the phytochrome apparatus. HortScience 2009, 44, 231–234. [Google Scholar] [CrossRef]
- Schuerger, A.C.; Brown, C.S. Spectral quality affects disease development of three pathogens on hydroponically grown plants. HortScience 1997, 32, 96–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poulet, L.; Massa, G.; Morrow, R.; Bourget, C.; Wheeler, R.; Mitchell, C. Significant reduction in energy for plant-growth lighting in space using targeted led lighting and spectral manipulation. Life Sci. Space Res. 2014, 2, 43–53. [Google Scholar] [CrossRef]
- Oh, J.H.; Kang, H.; Park, H.K.; Do, Y.R. Optimization of the theoretical photosynthesis performance and vision-friendly quality of multi-package purplish white led lighting. Rsc Adv. 2015, 5, 21745–21754. [Google Scholar] [CrossRef]
- Massa, G.D.; Kim, H.-H.; Wheeler, R.M.; Mitchell, C.A. Plant productivity in response to led lighting. HortScience 2008, 43, 1951–1956. [Google Scholar] [CrossRef]
- Durmus, D.; Davis, W. Object color naturalness and attractiveness with spectrally optimized illumination. Opt. Express 2017, 25, 12839–12850. [Google Scholar] [CrossRef]
- Schuerger, A.C.; Richards, J.T. Effects of artificial lighting on the detection of plant stress with spectral reflectance remote sensing in bioregenerative life support systems. Int. J. Astrobiol. 2006, 5, 151–169. [Google Scholar] [CrossRef]
- Olvera-Gonzalez, E.; Alaniz-Lumbreras, D.; Torres-Argüelles, V.; González-Ramírez, E.; Villa-Hernández, J.; Araiza-Esquivel, M.; Ivanov-Tsonchev, R.; Olvera-Olvera, C.; Castaño, V. A led-based smart illumination system for studying plant growth. Lighting Res. Technol. 2014, 46, 128–139. [Google Scholar] [CrossRef]
- Pinho, P.; Hytönen, T.; Rantanen, M.; Elomaa, P.; Halonen, L. Dynamic control of supplemental lighting intensity in a greenhouse environment. Lighting Res. Technol. 2013, 45, 295–304. [Google Scholar] [CrossRef]
- Jha, K.; Doshi, A.; Patel, P.; Shah, M. A comprehensive review on automation in agriculture using artificial intelligence. Artif. Intell. Agric. 2019, 2, 1–12. [Google Scholar] [CrossRef]
- Grzesiak, M.T.; Hura, K.; Jurczyk, B.; Hura, T.; Rut, G.; Szczyrek, P.; Grzesiak, S. Physiological markers of stress susceptibility in maize and triticale under different soil compactions and/or soil water contents. J. Plant Interact. 2017, 12, 355–372. [Google Scholar] [CrossRef] [Green Version]
- Ferrández-Pastor, F.J.; Alcañiz-Lucas, S.; García-Chamizo, J.M.; Platero-Horcajadas, M. Smart Environments Design on Industrial Automated Greenhouses. Proceedings 2019, 31, 36. [Google Scholar]
- Shadrin, D.; Menshchikov, A.; Somov, A.; Bornemann, G.; Hauslage, J.; Fedorov, M. Enabling precision agriculture through embedded sensing with artificial intelligence. IEEE Trans. Instrum. Meas. 2019, 69, 4103–4113. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durmus, D. Real-Time Sensing and Control of Integrative Horticultural Lighting Systems. J 2020, 3, 266-274. https://doi.org/10.3390/j3030020
Durmus D. Real-Time Sensing and Control of Integrative Horticultural Lighting Systems. J. 2020; 3(3):266-274. https://doi.org/10.3390/j3030020
Chicago/Turabian StyleDurmus, Dorukalp. 2020. "Real-Time Sensing and Control of Integrative Horticultural Lighting Systems" J 3, no. 3: 266-274. https://doi.org/10.3390/j3030020
APA StyleDurmus, D. (2020). Real-Time Sensing and Control of Integrative Horticultural Lighting Systems. J, 3(3), 266-274. https://doi.org/10.3390/j3030020