Tardive Dyskinesia and Dopamine Oxidation, Cumulative Effects
Abstract
:1. Introduction
2. Conclusions
References
- Lerer, B. Pharmacogenetics of antipsychotic therapy: Pivotal research issues and the prospects for clinical implementation. Dialogues Clin. Neurosci. 2006, 8, 85–94. [Google Scholar]
- Glazer, W.; Morgenstern, H.; Doucette, J. Predicting the long-term risk of tardive dyskinesia in outpatients maintained on neuroleptic medications. J. Clin. Psychiatry 1993, 54, 133–139. [Google Scholar] [PubMed]
- Gervin, M.; Browne, S.; Lane, A.; Clarke, M.; Waddington, J.; Larkin, C.; O’Callaghan, E. Spontaneous abnormal involuntary movements in first-episode schizophrenia and schizophreniform disorder: Baseline rate in a group of patients from an Irish catchment area. Am. J. Psychiatry 1998, 155, 1202–1206. [Google Scholar] [CrossRef]
- McCreadie, R.; Padmavati, R.; Thara, R.; Srinivasan, T. Spontaneous dyskinesia and parkinsonism in never-medicated, chronically ill patients with schizophrenia: 18-month follow-up. Br. J. Psychiatry 2002, 181, 135–137. [Google Scholar] [CrossRef]
- Fenton, W.; Wyatt, R.; McGlashan, T. Risk factors for spontaneous dyskinesia in schizophrenia. Arch. Gen. Psychiatry 1994, 51, 643–650. [Google Scholar] [CrossRef]
- Ward, K.; Citrome, L. Antipsychotic-related movement disorders: Drug-induced parkinsonism vs. tardive dyskinesia—Key differences in pathophysiology and clinical management. Neurol. Ther. 2018, 7, 233–248. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Barr, A.; Ramos-Miguel, A.; Procyshyn, R. Antipsychotic induced dopamine supersensitivity psychosis: A comprehensive review. Curr. Neuropharmacol. 2017, 15, 174–183. [Google Scholar] [CrossRef]
- Chouinard, G.; Samaha, A.; Chouinard, V.; Peretti, C.; Kanahara, N.; Takase, M.; Iyo, M. Antipsychotic-induced dopamine supersensitivity psychosis: Pharmacology, criteria, and therapy. Psychother. Psychosom. 2017, 86, 189–219. [Google Scholar] [CrossRef] [PubMed]
- Factor, S.; Jankovic, J. Randomized trial of IV valproate vs metoclopramide vs ketorolac for acute migraine (comment). Neurology 2014, 83, 1388–1389. [Google Scholar] [CrossRef]
- Karimi Khaledi, M.; Suda, K.; Shelton, C. Tardive dyskinesia after short-term treatment with oral metoclopramide in an adolescent. Int. J. Clin. Pharm. 2012, 34, 822–824. [Google Scholar] [CrossRef] [PubMed]
- Parkman, H.; Mishra, A.; Jacobs, M.; Pathikonda, M.; Sachdeva, P.; Gaughan, J.; Krynetskiy, E. Clinical response and side effects of metoclopramide: Associations with clinical, demographic, and pharmacogenetic parameters. J. Clin. Gastroent. 2012, 46, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Camilleri, M.; Shin, A. Lessons from pharmacogenetics and metoclopramide: Toward the right dose of the right drug for the right patient. J. Clin. Gastroent. 2012, 46, 437. [Google Scholar] [CrossRef]
- Horn, J.; Hansten, P. Metoclopramide and Dyskinesia. 2012. Available online: https://www.pharmacytimes.com/publications/issue/2012/august2012/metoclopramide-and-dyskinesia (accessed on 1 March 2019).
- Diehl, A.; Reinhard, I.; Schmitt, A.; Mann, K.; Gattaz, W. Does the degree of smoking effect the severity of tardive dyskinesia? A longitudinal clinical trial. Eur. Psychiatry 2009, 24, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Abdul Qayyum, R.; Chaudry, Z.; Blanchet, P. New and emerging treatments for symptomatic tardive dyskinesia. Drug Design Devel. Ther. 2013, 7, 1329–1340. [Google Scholar] [CrossRef]
- Segman, R.; Heresco-Levy, U.; Finkel, B.; Inbar, R.; Neeman, T.; Schlafman, M.; Dorevitch, A.; Yakir, A.; Lerner, A.; Goltser, T.; et al. Association between the serotonin 2C receptor gene and tardive dyskinesia in chronic schizophrenia: Additive contribution of 5-HT2Cser and DRD3gly alleles to susceptibility. Psychopharmacology 2000, 152, 408–413. [Google Scholar] [CrossRef]
- De Mei, C.; Ramos, M.; Iitaka, C.; Borrelli, E. Getting specialized: Presynaptic and postsynaptic dopamine D2 receptors. Curr. Opin. Pharmacol. 2009, 9, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.; Odunze, I. Oxygen free radicals and Parkinson’s disease. Free Rad. Biol. Med. 1991, 10, 161–169. [Google Scholar] [CrossRef]
- Adams, J.; Chang, M.; Klaidman, L. Redox mechanisms in the induction of Parkinson’s disease. Curr. Med. Chem. 2001, 8, 809–814. [Google Scholar] [CrossRef]
- Frei, K. Tardive dyskinesia: Who gets it and why. Parkinsonism Related Dis. 2018, in press. [Google Scholar] [CrossRef]
- Andreassen, O.; Jorgenson, H. Neurotoxicity associated with neuroleptic induced oral dyskinesias in rats implications for tardive dyskinesia? Prog. Neurobiol. 2000, 61, 525–541. [Google Scholar] [CrossRef]
- Castaño, A.; Ayala, A.; Rodriguez-Gomez, J.; de la Cruz, C.; Revilla, E.; Cano, J.; Machado, A. Increase in dopamine turnover and tyrosine hydroxylase enzyme in hippocampus of rats fed on low selenium diet. J. Neurosci. Res. 1995, 42, 684–691. [Google Scholar] [CrossRef]
- Adams, J.; Klaidman, L.; Ribeiro, P. Tyrosine hydroxylase: mechanism of oxygen radical formation. Redox Rep. 1997, 3, 273–279. [Google Scholar] [CrossRef]
- Waln, O.; Jankovic, J. An update on tardive dyskinesia: From phenomenology to treatment. Tremor Other Hyperkin. Movements 2013, 3, 1–11. [Google Scholar]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adams, J.D., Jr. Tardive Dyskinesia and Dopamine Oxidation, Cumulative Effects. J 2019, 2, 138-141. https://doi.org/10.3390/j2020011
Adams JD Jr. Tardive Dyskinesia and Dopamine Oxidation, Cumulative Effects. J. 2019; 2(2):138-141. https://doi.org/10.3390/j2020011
Chicago/Turabian StyleAdams, James David, Jr. 2019. "Tardive Dyskinesia and Dopamine Oxidation, Cumulative Effects" J 2, no. 2: 138-141. https://doi.org/10.3390/j2020011
APA StyleAdams, J. D., Jr. (2019). Tardive Dyskinesia and Dopamine Oxidation, Cumulative Effects. J, 2(2), 138-141. https://doi.org/10.3390/j2020011