Educational Attainment Promotes Fruit and Vegetable Intake for Whites but Not Blacks
Abstract
:1. Background
2. Aim
3. Methods
3.1. Design and Setting
3.2. Ethics
3.3. Sampling
3.4. Survey
3.5. Measures
3.5.1. Independent Variables
3.5.2. Dependent Variables
3.5.3. Covariates
3.5.4. Moderator
3.6. Statistical Analysis
3.6.1. Survey Weights
3.6.2. Data Analysis
4. Results
4.1. Descriptive Statistics
4.2. Multivariable Models
5. Discussion
5.1. Results in Context
5.2. Policy Implications
5.3. Limitations
6. Conclusions
Author Contributions
Conflicts of Interest
Ethics
References
- Assari, S. Health Disparities Due to Diminished Return among Black Americans: Public Policy Solutions. Soc. Issues Policy Rev. 2018. [Google Scholar] [CrossRef]
- Assari, S. Unequal Gain of Equal Resources across Racial Groups. Int. J. Health Policy Manag. 2018, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Assari, S.; Lankarani, M.M. Education and Alcohol Consumption among Older Americans; Black–White Differences. Front. Public Health 2016, 4. [Google Scholar] [CrossRef] [PubMed]
- Assari, S.; Lankarani, M.M. Race and Urbanity Alter the Protective Effect of Education but not Income on Mortality. Front. Public Health 2016, 4, 100. [Google Scholar] [CrossRef] [PubMed]
- Assari, S.; Barnett, T. Education attainment promotes healthy diet among Whites but not Blacks. J. Racial Ethn. Health Dispar. 2018, in press. [Google Scholar]
- Assari, S. Life Expectancy Gain Due to Employment Status Depends on Race, Gender, Education, and Their Intersections. J. Racial Ethn. Health Dispar. 2018, 5, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Assari, S. Perceived Neighborhood Safety Better Predicts Risk of Mortality for Whites than Blacks. J. Racial Ethn. Health Dispar. 2016. [Google Scholar] [CrossRef] [PubMed]
- Assari, S. Whites but Not Blacks Gain Life Expectancy from Social Contacts. Behav. Sci. 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Assari, S. Socioeconomic Status and Self-Rated Oral Health; Diminished Return among Hispanic Whites. Dent. J. 2018, 6, 11. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, T.; Oliver, M.L. Black Wealth/White Wealth: A New Perspective on Racial Inequality; Routledge: New York, NY, USA, 1995. [Google Scholar]
- Shapiro, T. The Hidden Cost of Being African American: How Wealth Perpetuates Inequality; Oxford University Press: New York, NY, USA, 2004. [Google Scholar]
- Assari, S.; Thomas, A.; Caldwell, C.H.; Mincy, R.B. Blacks’ Diminished Health Return of Family Structure and Socioeconomic Status; 15 Years of Follow-up of a National Urban Sample of Youth. J. Urban Health Bull. N. Y. Acad. Med. 2018, 95, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Assari, S.; Caldwell, C.H.; Mincy, R.B. Maternal Education at Birth Only Promotes the Self-rated Health of White but not Black Youth; A 15-Year Cohort of a National Urban Sample in the United States. J. Clin. Med. 2018, 7, 93. [Google Scholar] [CrossRef] [PubMed]
- Farmer, M.M.; Ferraro, K.F. Are racial disparities in health conditional on socioeconomic status? Soc. Sci. Med. 2005, 60, 191–204. [Google Scholar] [CrossRef] [PubMed]
- Assari, S.; Nikahd, A.; Malekahmadi, M.R.; Lankarani, M.M.; Zamanian, H. Race by Gender Group Differences in the Protective Effects of Socioeconomic Factors Against Sustained Health Problems Across Five Domains. J. Racial Ethn. Health Dispar. 2017, 4, 884–894. [Google Scholar] [CrossRef] [PubMed]
- Assari, S.; Begmans, R. The effects of socioeconomic resources on hunger and breastfeeding are smaller for Black than White mothers. J. Health Soc. Behav. 2018, in press. [Google Scholar]
- Satia, J.A. Diet-related disparities: Understanding the problem and accelerating solutions. J Am Diet Assoc. 2009, 109, 610–615. [Google Scholar] [CrossRef] [PubMed]
- Drewnowski, A.; Kawachi, I. Diets and Health: How Food Decisions Are Shaped by Biology, Economics, Geography, and Social Interactions. Big Data 2015, 3, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Dubowitz, T.; Heron, M.; Bird, C.E.; Lurie, N.; Finch, B.K.; Basurto-Dávila, R.; Hale, L.; Escarce, J.J. Neighborhood socioeconomic status and fruits and vegetables intake among whites, blacks, and Mexican Americans in the United States. Am. J. Clin. Nutr. 2008, 87, 1883–1891. [Google Scholar] [CrossRef] [PubMed]
- Lutfiyya, M.N.; Chang, L.F.; Lipsky, M.S. A cross-sectional study of US rural adults’ consumption of fruits and vegetables: Do they consume at least five servings daily? BMC Public Health 2012, 12, 280. [Google Scholar] [CrossRef] [PubMed]
- Prättälä, R.; Hakala, S.; Roskam, A.J.; Roos, E.; Helmert, U.; Klumbiene, J.; Van Oyen, H.; Regidor, E.; Kunst, A.E. Association between educational level and vegetables use in nine European countries. Public Health Nutr. 2009, 12, 2174–2182. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.R.; Sternthal, M. Understanding racial-ethnic disparities in health: Sociological contributions. J. Health Soc. Behav. 2010, 51, S15–S27. [Google Scholar] [CrossRef] [PubMed]
- Bahr, P.R. Race and nutrition: An investigation of Black-White differences in health-related nutritional behaviours. Sociol. Health Illn. 2007, 29, 831–856. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, X. Between-group differences in nutrition- and health-related psychosocial factors among US adults and their associations with diet, exercise, and weight status. J. Acad. Nutr. Diet. 2012, 112, 486.e3–498.e3. [Google Scholar] [CrossRef] [PubMed]
- Watters, J.L.; Satia, J.A.; Kupper, L.L. Correlates of antioxidant nutrients and oxidative DNA damage differ by race in a cross-sectional study of healthy African American and white adults. Nutr. Res. 2008, 28, 565–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assari, S. Combined Racial and Gender Differences in the Long-Term Predictive Role of Education on Depressive Symptoms and Chronic Medical Conditions. J. Racial Ethn. Health Dispar. 2017, 4, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Assari, S. Social Determinants of Depression: The Intersections of Race, Gender, and Socioeconomic Status. Brain Sci. 2017, 7, 156. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.; Kreps, G.; Hesse, B.; Croyle, R.; Willis, G.; Arora, N.; Rimer, B.; Vish Viswanath, K.; Weinstein, N.; Alden, S. The health information national trends survey (HINTS): Development, design, and dissemination. J. Health Commun. 2004, 9, 443–460. [Google Scholar] [CrossRef] [PubMed]
- Rutten, L.J.; Squiers, L.; Hesse, B. Cancer-related information seeking: Hints from the 2003 Health Information National Trends Survey (HINTS). J. Health Commun. 2006, 11, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Hesse, B.W.; Moser, R.P.; Rutten, L.J.; Kreps, G.L. The health information national trends survey: Research from the baseline. J. Health Commun. 2006, 11, vii–xvi. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Institute. Health Information National Trends Survey 5 (HINTS 5) Cycle 1 Methodology Report. 2017. Available online: https://hints.cancer.gov/docs/methodologyreports/HINTS5_Cycle_1_Methodology_Rpt.pdf (accessed on 1 June 2018).
- Pem, D.; Jeewon, R. Fruits and vegetables Intake: Benefits and Progress of Nutrition Education Interventions- Narrative Review Article. Iran J. Public Health 2015, 44, 1309–1321. [Google Scholar] [PubMed]
- Msambichaka, B.; Eze, I.C.; Abdul, R.; Abdulla, S.; Klatser, P.; Tanner, M.; Kaushik, R.; Geubbels, E.; Probst-Hensch, N. Insufficient Fruits and vegetables Intake in a Low- and Middle-Income Setting: A Population-Based Survey in Semi-Urban Tanzania. Nutrients 2018, 16, 222. [Google Scholar] [CrossRef] [PubMed]
- Odum, M.; Housman, J.M.; Williams, R.D., Jr. Intrapersonal Factors of Male and Female Adolescent Fruits and vegetables Intake. Am. J. Health Behav. 2018, 42, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, A.R.; Terhorst, L.; Skidmore, E.R.; Bendixen, R.M. Is frequency of family meals associated with fruits and vegetables intake among preschoolers? A logistic regression analysis. J. Hum. Nutr. Diet. 2018. [Google Scholar] [CrossRef] [PubMed]
- Colón-Ramos, U.; Finney Rutten, L.J.; Moser, R.; Colón-Lopez, V.; Ortiz, A.; Yaroch, A.L. The association between fruit and vegetable intake, knowledge of the recommendations, and health information seeking within adults in the U.S. mainland and in Puerto Rico. J. Health Commun. 2015, 20, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Idler, E.L.; Benyamini, Y. Self-rated health and mortality: A review of twenty-seven community studies. J. Health Soc. Behav. 1997, 38, 21–37. [Google Scholar] [CrossRef] [PubMed]
- IOM. State of the USA Health Indicators: Letter Report. 2009. Available online: http://www.nap.edu/catalog/12534/state-of-the-usa-healthindicators-letter-report (accessed on 1 June 2018).
- Holmes, C.J.; Zajacova, A. Education as “the great equalizer”: Health benefits for black and white adults. Soc. Sci. Q. 2014, 95, 1064–1085. [Google Scholar] [CrossRef]
- Assari, S.; Mistry, R. Educational Attainment and Smoking Status in a National Sample of American Adults; Evidence for the Blacks’ Diminished Return. Int. J. Environ. Res. Public Health 2018, 15, 763. [Google Scholar] [CrossRef] [PubMed]
- Assari, S.; Caldwell, C.H. High Risk of Depression in High-Income African American Boys. J. Racial Ethn. Health Dispar. 2017. [Google Scholar] [CrossRef] [PubMed]
- Hayward, M.D.; Hummer, R.A.; Sasson, I. Trends and group differences in the association between educational attainment and U.S. adult mortality: Implications for understanding education’s causal influence. Soc. Sci. Med. 2015, 127, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Backlund, E.; Sorlie, P.D.; Johnson, N.J. A comparison of the relationships of education and income with mortality: The National Longitudinal Mortality Study. Soc. Sci. Med. 1999, 49, 1373–1384. [Google Scholar] [CrossRef]
- Lewis, L.B.; Sloane, D.C.; Nascimento, L.M.; Diamant, A.L.; Guinyard, J.J.; Yancey, A.K.; Flynn, G. African Americans’ Access to Healthy Food Options in South Los Angeles Restaurants. Am. J. Public Health 2005, 95, 668–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roelfs, D.J.; Shor, E.; Davidson, K.W.; Schwartz, J.E. Losing life and livelihood: A systematic review and meta-analysis of unemployment and all-cause mortality. Soc. Sci. Med. 2011, 72, 840–854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Everett, B.G.; Rehkopf, D.H.; Rogers, R.G. The Nonlinear Relationship between Education and Mortality: An Examination of Cohort, Race/Ethnic, and Gender Differences. Popul. Res. Policy Rev. 2013, 32. [Google Scholar] [CrossRef] [PubMed]
- Grogger, J. Does School Quality Explain the Recent Black/White Wage Trend? J. Labor Econ. 1996, 14, 231–253. [Google Scholar] [CrossRef]
- Zajacova, A.; Hummer, R.A. Gender Differences in Education Effects on All-Cause Mortality for White and Black Adults in the United States. Soc. Sci. Med. 2009, 69, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Montez, J.K.; Hayward, M.D.; Brown, D.C.; Hummer, R.A. Why Is the Educational Gradient of Mortality Steeper for Men? J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2009, 64, 625–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, N.B.; Bulatao, R.A.; Cohen, B. National Research Council (US) Panel on Race, E. Race/Ethnicity, Socioeconomic Status, and Health. National Academies Press (US), 2004. Available online: https://www.ncbi.nlm.nih.gov/books/NBK25526/ (accessed on 1 June 2018).
- Mackenbach, J.D.; Tiemeier, H.; Ende, J.; van der Nijs, I.M.T.; Jaddoe, V.W.V.; Hofman, A.; Verhulst, F.C.; Jansen, P.W. Relation of Emotional and Behavioral Problems with Body Mass Index in Preschool Children: The Generation R Study. J. Dev. Behav. Pediatr. 2012, 33, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Annie E. Casey Foundation. Race Matters: Unequal Opportunities In education (Race Matters Edition). 2006. Available online: http://www.aecf.org/resources/race-matters-1/ (accessed on 1 June 2018).
- Reimers, C.W. Labor Market Discrimination against Hispanic and Black Men. Rev. Econ. Stat. 1983, 65, 570–579. [Google Scholar] [CrossRef]
- King, E.B.; Mendoza, S.A.; Madera, J.M.; Hebl, M.R.; Knight, J.L. What’s in a name? A multiracial investigation of the role of occupational stereotypes in selection decisions. J. Appl. Soc. Psychol. 2006, 36, 1145–1159. [Google Scholar] [CrossRef]
- Watson, S.; Appiah, O.; Thornton, C.G. The Effect of Name on Pre-Interview Impressions and Occupational Stereotypes: The Case of Black Sales Job Applicants. J. Appl. Soc. Psychol. 2011, 41, 2405–2420. [Google Scholar] [CrossRef]
- Smith, S.S. “Don’t put my name on it”: Social Capital Activation and Job-Finding Assistance among the Black Urban Poor. Am. J. Sociol. 2005, 111, 1–57. [Google Scholar] [CrossRef]
- Institute for Women’s Policy Research. Importance of Social Security by Gender, Race/Ethnicity, and Marital Status, 2010 (Quick Figures No. IWPR #Q011). 2012. Available online: https://iwpr.org/wp-content/uploads/wpallimport/files/iwpr-export/publications/Q011%20Social%20Security.pdf (accessed on 1 June 2018).
- Doeringer, P.B.; Piore, M.J. Internal Labor Markets and Manpower Analysis, 1st ed.; Routledge: Armonk, NY, USA, 1985. [Google Scholar]
- Dickens, W.T.; Lang, K. A Test of Dual Labor Market Theory. Am. Econ. Rev. 1985, 75, 792–805. [Google Scholar]
- Rosenfeld, J.; Kleykamp, M. Organized Labor and Racial Wage Inequality in the United States. AJS Am. J. Sociol. 2012, 117, 1460–1502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navarro, V. Race or class versus race and class: Mortality differentials in the United States. Lancet 1990, 336, 1238–1240. [Google Scholar] [CrossRef]
- Williams, D.R.; Mohammed, S.A.; Leavell, J.; Collins, C. Race, socioeconomic status, and health: Complexities, ongoing challenges, and research opportunities. Ann. N. Y. Acad. Sci. 2010, 1186, 69–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehta, N.; Preston, S. Are major behavioral and sociodemographic risk factors for mortality additive or multiplicative in their effects? Soc. Sci. Med. 2016, 154, 93–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bower, K.M.; Thorpe, R.J., Jr.; Rohde, C.; Gaskin, D.J. The intersection of neighborhood racial segregation, poverty, and urbanicity and its impact on food store availability in the United States. Prev. Med. 2014, 58, 33–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilmers, A.; Hilmers, D.C.; Dave, J. Neighborhood disparities in access to healthy foods and their effects on environmental justice. Am. J. Public Health 2012, 102, 1644–1654. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Youssef, G.; Procter-Gray, E.; Olendzki, B.; Cornish, T.; Hayes, R.; Churchill, L.; Kane, K.; Brown, K.; Magee, M.F. Racial Differences in Eating Patterns and Food Purchasing Behaviors among Urban Older Women. J. Nutr. Health Aging 2017, 21, 1190–1199. [Google Scholar] [CrossRef] [PubMed]
- DiSantis, K.I.; Grier, S.A.; Odoms-Young, A.; Baskin, M.L.; Carter-Edwards, L.; Young, D.R.; Lassiter, V.; Kumanyika, S.K. What “price” means when buying food: Insights from a multisite qualitative study with Black Americans. Am. J. Public Health 2013, 103, 516–522. [Google Scholar] [CrossRef] [PubMed]
- DiSantis, K.I.; Hillier, A.; Holaday, R.; Kumanyika, S. Why do you shop there? A mixed methods study mapping household food shopping patterns onto weekly routines of black women. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 11. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ouyang, Y.; Liu, J.; Zhu, M.; Zhao, G.; Bao, W.; Hu, F.B. Fruits and vegetables consumption and mortality from all causes, cardiovascular disease, and cancer: Systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 2014, 349, g4490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bower, K.M.; Thorpe, R.J., Jr.; Yenokyan, G.; McGinty, E.E.; Dubay, L.; Gaskin, D.J. Racial Residential Segregation and Disparities in Obesity among Women. J. Urban Health 2015, 92, 843–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaskin, D.J.; Thorpe, R.J., Jr.; McGinty, E.E.; Bower, K.; Rohde, C.; Young, J.H.; LaVeist, T.A.; Dubay, L. Disparities in diabetes: The nexus of race, poverty, and place. Am. J. Public Health 2014, 104, 2147–2155. [Google Scholar] [CrossRef] [PubMed]
- Usher, T.; Gaskin, D.J.; Bower, K.; Rohde, C.; Thorpe, R.J., Jr. Residential Segregation and Hypertension Prevalence in Black and White Older Adults. J. Appl. Gerontol. 2018, 37, 177–202. [Google Scholar] [CrossRef] [PubMed]
- LaVeist, T.A.; Thorpe, R.J., Jr.; Galarraga, J.E.; Bower, K.M.; Gary-Webb, T.L. Environmental and socio-economic factors as contributors to racial disparities in diabetes prevalence. J. Gen. Intern. Med. 2009, 24, 1144–1148. [Google Scholar] [CrossRef] [PubMed]
- Drewnowski, A. Obesity, diets, and social inequalities. Nutr. Rev. 2009, 67, S36–S39. [Google Scholar] [CrossRef] [PubMed]
- Cockerham, W.C.; Bauldry, S.; Hamby, B.W.; Shikany, J.M.; Bae, S. A Comparison of Black and White Racial Differences in Health Lifestyles and Cardiovascular Disease. Am. J. Prev. Med. 2017, 52, S56–S62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adler, N.E.; Rehkopf, D.H. U.S. disparities in health: Descriptions, causes, and mechanisms. Annu. Rev. Public Health 2008, 29, 235–252. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, J.M.; Budtz-Jørgensen, E.; De Roos, A.; Garcia, L.; Lund, R.; Rod, N.H.; Kroenke, C.; Chan, K.H.K.; Liu, S.; Michael, Y. Understanding the relation between socioeconomic position and inflammation in post-menopausal women: Education, income and occupational prestige. Eur. J. Public Health 2017, 27, 1074–1079. [Google Scholar] [CrossRef] [PubMed]
- Winkleby, M.A.; Jatulis, D.E.; Frank, E.; Fortmann, S.P. Socioeconomic status and health: How education, income, and occupation contribute to risk factors for cardiovascular disease. Am. J. Public Health 1992, 82, 816–820. [Google Scholar] [CrossRef] [PubMed]
- Barringer, H.R.; Takeuchi, D.T.; Xenos, P. Education, occupational prestige, and income of Asian Americans. Sociol. Educ. 1990, 663, 27–43. [Google Scholar] [CrossRef]
- Leung, C.W.; Willett, W.C.; Ding, E.L. Low-income Supplemental Nutrition Assistance Program participation is related to adiposity and metabolic risk factors. Am. J. Clin. Nutr. 2012, 95, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Ondersma, S.J.; Svikis, D.S.; Thacker, C.; Resnicow, K.; Beatty, J.R.; Janisse, J.; Puder, K. Computer-delivered indirect screening and brief intervention for drug use in the perinatal period: A randomized trial. Drug Alcohol Depend. 2018, 185, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Resnicow, K.; Davis, R.; Zhang, N.; Strecher, V.; Tolsma, D.; Calvi, J.; Alexander, G.; Anderson, J.P.; Wiese, C.; Cross, W.E. Tailoring a fruits and vegetables intervention on ethnic identity: Results of a randomized study. Health Psychol. 2009, 28, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.R. Race, socioeconomic status, and health. The added effects of racism and discrimination. Ann. N. Y. Acad. Sci. 1999, 896, 173–188. [Google Scholar] [CrossRef] [PubMed]
- Dowd, J.B.; Zajacova, A. Does the predictive power of self-rated health for subsequent mortality risk vary by socioeconomic status in the US? Int. J. Epidemiol. 2007, 36, 1214–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dowd, J.B.; Zajacova, A.; Aiello, A. Early origins of health disparities: Burden of infection, health, and socioeconomic status in U.S. children. Soc. Sci. Med. 2009, 68, 699–707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferraro, K.F.; Kelley-Moore, J.A. Self-rated health and mortality among black and white adults: Examining the dynamic evaluation thesis. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2001, 56, S195–S205. [Google Scholar] [CrossRef]
- Flegal, K.M.; Kit, B.K.; Orpana, H.; Graubard, B.I. Association of All-Cause Mortality with Overweight and Obesity Using Standard Body Mass Index Categories: A Systematic Review and Meta-analysis. JAMA 2013, 309, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Moody-Ayers, S.Y.; Landefeld, C.S.; Walter, L.C.; Lindquist, K.; Segal, M.R.; Covinsky, K.E. The relationship between self-rated health and mortality in older black and white Americans. J. Am. Geriatr. Soc. 2007, 55, 1624–1629. [Google Scholar] [CrossRef] [PubMed]
- Dowd, J.J.; Bengtson, V.L. Aging in minority populations. An examination of the double jeopardy hypothesis. J. Gerontol. 1978, 33, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Kochhar, R.; Fry, R.; Taylor, P. Wealth Gaps Rise to Record Highs Between Whites, Blacks, Hispanics. 2011. Available online: http://www.pewsocialtrends.org/2011/07/26/wealth-gaps-rise-to-record-highs-between-whites-blacks-hispanics/ (accessed on 20 December 2017).
- Shapiro, T.; Meschede, T.; Osoro, S. The Roots of the Widening Racial Wealth Gap: Explaining the Black-White Economic Divide. Research and Policy Brief. 2013. Available online: http://health-equity.lib.umd.edu/4120/ (accessed on 1 June 2018).
- Tomaskovic-Devey, D. The gender and race composition of jobs and the male/female, white/black pay gaps. Soc. Forces 1993, 72, 45–76. [Google Scholar] [CrossRef]
- Jencks, C.; Mayer, S. Chapter 5: Residential segregation, job proximity, and black job opportunities. In Inner-City Poverty in the United States; Lynn, L., Jr., McGeary, M., Committee on National Urban Policy, Commission on Behavioral and Social Sciences Education, National Research Council, Eds.; National Academies Press: Washington, DC, USA, 1990; pp. 187–222. [Google Scholar] [CrossRef]
- Rosenbloom, S.R.; Way, N. Experiences of discrimination among African American, Asian American, and Latino adolescents in an urban high school. Youth Soc. 2004, 35, 420–451. [Google Scholar] [CrossRef]
- Heitzeg, N.A. Education or Incarceration: Zero Tolerance Policies and the School to Prison Pipeline. Forum on Public Policy Online; 2009. Available online: https://eric.ed.gov/?id=EJ870076 (accessed on 1 June 2018).
- Wald, J.; Losen, D.J. Defining and redirecting a school-to-prison pipeline. New Dir. Stud. Leadersh. 2003, 99, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.P.; Chung, H.J.; Kim, H.J.; Hong, S.T. Paradoxical Effects of Fruit on Obesity. Nutrients 2016, 8, 633. [Google Scholar] [CrossRef] [PubMed]
All (n = 2277) | Non-Hispanic Whites (n = 1868) | Non-Hispanic Blacks (n = 409) | |||||
---|---|---|---|---|---|---|---|
Mean | SE | Mean | SE | Mean | SE | ||
Age | 48.80 | 0.34 | 50.10 | 0.46 | 47.72 | 1.22 | |
Education * | 3.12 | 0.02 | 3.17 | 0.02 | 3.08 | 0.10 | |
Income (household) * | 5.60 | 0.05 | 5.87 | 0.07 | 4.68 | 0.22 | |
Consumption of Fruits and Vegetables | 4.99 | 0.06 | 4.99 | 0.07 | 5.26 | 0.18 | |
% | SE | % | SE | % | SE | ||
Gender | Female | 50.63 | 0.00 | 50.84 | 0.00 | 60.86 | 0.04 |
Male | 49.37 | 0.00 | 49.16 | 0.00 | 39.14 | 0.04 | |
Education | Less than High School | 8.37 | 0.01 | 5.54 | 0.01 | 13.69 | 0.03 |
High School Graduate | 22.67 | 0.01 | 20.16 | 0.01 | 24.01 | 0.03 | |
Some College | 32.98 | 0.01 | 41.03 | 0.01 | 19.36 | 0.03 | |
Bachelor’s Degree | 22.38 | 0.01 | 20.37 | 0.01 | 26.04 | 0.04 | |
Post-Baccalaureate Degree | 13.60 | 0.01 | 12.91 | 0.01 | 16.91 | 0.04 | |
Obese * | No | 66.80 | 0.01 | 67.79 | 0.02 | 58.24 | 0.04 |
Yes | 33.20 | 0.01 | 32.21 | 0.02 | 41.76 | 0.04 | |
Self-rated Health (SRH) * | Excellent-Good | 83.07 | 0.01 | 85.15 | 0.02 | 80.41 | 0.02 |
Fair/poor | 16.93 | 0.01 | 14.85 | 0.02 | 19.59 | 0.02 |
All (n = 2277) | All (n = 2277) | |||
---|---|---|---|---|
Model 1 | Model 2 | |||
b | 95% CI. | b | 95% CI. | |
Race (Non-Hispanic Blacks) | 0.58 * | 0.14–1.03 | 2.20 ** | 0.83–3.56 |
Gender (Male) | −0.28 * | −0.55–0.00 | −0.29 * | −0.57–0.02 |
Age | −0.01 * | −0.02–0.00 | −0.01 * | −0.02–0.00 |
Obese | −0.31 * | −0.62–0.01 | −0.32 * | −0.62–0.01 |
SRH (Poor) | −0.31 | −0.72–0.11 | −0.25 | −0.66–0.16 |
Education | 0.25 *** | 0.10–0.39 | 0.35 *** | 0.20–0.51 |
Income | 0.13 ** | 0.04–0.23 | 0.13 * | 0.03–0.24 |
Race × Education | - | - | −0.60 ** | −-0.99–0.20 |
Race × Income | - | - | 0.05 | −0.15–0.25 |
Intercept | 4.23 *** | 3.31–5.15 | 3.89 *** | 2.89–4.89 |
Adjusted R-square | 0.10 | 0.11 |
Non-Hispanic Whites (n = 1868) | Non-Hispanic Blacks (n = 409) | |||
---|---|---|---|---|
b | 95% CI. | b | 95% CI. | |
Model 3 | Model 4 | |||
Gender (Male) | −0.34 * | −0.64–0.03 | 0.02 | −0.69–0.74 |
Age | −0.01 * | −0.02–0.00 | 0.00 | −0.03–0.02 |
Obese | −0.30 # | −0.65–0.06 | −0.35 | −1.08–0.39 |
SRH (Poor) | −0.29 | −0.75–0.17 | −0.02 | −1.00–0.96 |
Education | 0.35 *** | 0.20–0.50 | −0.22 | −0.62–0.19 |
Income | 0.13 * | 0.02–0.24 | 0.18 # | −0.01–0.37 |
Intercept | 3.95 *** | 2.90–5.01 | 5.59 *** | 3.80–7.37 |
Adjusted R-square | 0.10 | 0.05 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assari, S.; Lankarani, M.M. Educational Attainment Promotes Fruit and Vegetable Intake for Whites but Not Blacks. J 2018, 1, 29-41. https://doi.org/10.3390/j1010005
Assari S, Lankarani MM. Educational Attainment Promotes Fruit and Vegetable Intake for Whites but Not Blacks. J. 2018; 1(1):29-41. https://doi.org/10.3390/j1010005
Chicago/Turabian StyleAssari, Shervin, and Maryam Moghani Lankarani. 2018. "Educational Attainment Promotes Fruit and Vegetable Intake for Whites but Not Blacks" J 1, no. 1: 29-41. https://doi.org/10.3390/j1010005
APA StyleAssari, S., & Lankarani, M. M. (2018). Educational Attainment Promotes Fruit and Vegetable Intake for Whites but Not Blacks. J, 1(1), 29-41. https://doi.org/10.3390/j1010005