Multivariate Techno-Economic Feasibility of Refuse-Derived Fuel Production in Ghana Using Response Surface Methodology: Insights from a Pilot-Scale System
Abstract
1. Introduction
2. Materials and Methods
2.1. Case Study, Assumptions and Economic Parameters
2.2. Economic Performance Analysis
2.3. Sensitivity Analysis
2.3.1. Experimental Design
2.3.2. Response Surface Regression Analysis
3. Results and Discussion
3.1. RDF Characteristics and Quantification
3.2. Economic Performance Analysis
3.3. Sensitivity Analysis
3.3.1. Model Fit and Adequacy (RSM)
3.3.2. Response Surface Outcomes and Interactions
3.3.3. Multi-Objective Response
3.4. Measures and Implications for Implementation
| Fuel Option | Reference | Price Basis | Energy Value (NCV) GJ/tonne | USD/GJ | GHC/GJ |
|---|---|---|---|---|---|
| RDF (SA-LPC) | Present study | USD 7.08/tonne | 16.95 GJ/tonne | 0.42 | 5.11 |
| RDF (nominal LPC) | Present study | USD 18.96/tonne | 16.95 GJ/tonne | 1.12 | 13.68 |
| Firewood (bulk) | [60,63] | GH₵ 113.00/tonne | 17.00 GJ/tonne | 0.54 | 6.65 |
| Charcoal (bulk) | [61,64] | GH₵ 2.47/kg | 24.00 GJ/tonne | 8.42 | 102.92 |
| Diesel (process heat) | [65] | GH₵ 13.67/L | 0.04 GJ/L | 31.22 | 381.84 |
| LPG (proxy: pump/kg) | [65] | GH₵ 13.90/kg | 0.05 GJ/kg | 24.70 | 302.13 |
| Coal (import ref.) | [66] | USD 120.00/tonne | 25.00 GJ/tonne | 4.80 | 58.70 |
4. Conclusions
- The study provides indicative insights into the feasibility of the RDF landscape. It therefore quantifies the individual and combined effects of predictor variables on economic performance.
- The findings contribute to broader discussions on WtE deployment in emerging economies. This emphasises adaptive financing mechanisms and phased implementation strategies.
- In addition, the study’s outcomes enhance collaboration among knowledge institutions, government/regulators, and municipalities. Benefits are not only directed at improved sanitation but also contribute to progress towards the SDGs, particularly 7, 8, 11, and 13: Affordable and Clean Energy, Decent Work and Economic Growth, Sustainable Cities and Communities, Climate Action.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| Abbreviation | Meaning |
| AF | Alternative fuel |
| CAPEX | Capital expenditure |
| CCD | Central composite design |
| DCF | Discounted cash flow |
| DoE | Design of experiment |
| DR | Discount rate |
| EU | European Union |
| GJ | Gigajoule |
| GHC | Ghanaian cedis |
| IRR | Internal rate of return |
| LPC | Levelised production cost |
| MSW | Municipal solid waste |
| NCV | Net calorific value |
| NPV | Net present value |
| OMC | Operating and maintenance cost |
| OPEX | Operating expenditure |
| PBP | Payback period |
| PI | Profitability index |
| PL | Project lifetime |
| PPP | Public–private partnership |
| RSM | Response surface methodology |
| RSP | RDF sale price |
| SDGs | Sustainable Development Goals |
| TEA | Techno-economic assessment |
| VIF | Variance inflation factor |
| WtE | Waste to energy |
| Symbol/Notation | Meaning |
| ANOVA | Analysis of variance |
| CFt | Total cash flow (in year t) |
| Cnet | Net cash flow (in year t) |
| Co | Initial capital cost |
| Ct | Annual operating cost (in year t) |
| It | Investment cost, (in year t) |
| n | Project lifetime (in years) |
| Ot | Operating cost (in year t) |
| Qt | Quantity of RDF produced (in year t) |
| r | Discount rate |
| t | Project time index |
| R2 | Coefficient of determination |
| R2adj | Adjusted coefficient of determination |
| R2pred | Predicted coefficient of determination |
| Coef | Estimated regression coefficient |
| SE Coef | Standard error of the estimated regression coefficient |
| S (RMSE) | Standard error of the regression |
| F-value | F-statistic |
| t-value | Student’s t-statistic |
| p-value | Probability value |
Appendix A
| Parameters | Base Case | Nominal Case |
|---|---|---|
| CAPEX (thousand USD) | 150.00 | 150.00 |
| OPEX Year 1 (thousand USD) | 17.79 | 17.79 |
| OPEX inflation rate/price escalation (%) | 0.00 | 17.23 |
| Revenue, year 1 (thousand USD) | 43.00 | 43.00 |
| Annual utility price growth rate (%) | 0.00 | 10.00 |
| Discount rate (%) | 10.00 | 10.00 |
| Project life (years) | 20.00 | 20.00 |
| Tax 1–7 years (%) | 1.00 | 1.00 |
| Tax 8–20 years (%) | 25.00 | 25.00 |
| RDF quantity per year (tonne) | 2875.00 | 2875.00 |
| Debt-to-equity ratio | 70:30 | 70:30 |
| Std Order | Run Order | Pt Type | Blocks | PL | DR | RSP | OMC | NPV | PBP | LPC |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 1 | 1 | 10 | 0.08 | 12 | 13,655.03 | 75,917.28 | 7.74 | 17.52 |
| 19 | 2 | −1 | 1 | 15 | 0.08 | 15 | 17,068.79 | 529,808.92 | 6.30 | 24.29 |
| 6 | 3 | 1 | 1 | 20 | 0.08 | 18 | 13,655.03 | 1,727,669.56 | 4.58 | 27.09 |
| 15 | 4 | 1 | 1 | 10 | 0.12 | 18 | 20,482.55 | 152,250.98 | 5.92 | 23.18 |
| 26 | 5 | 0 | 1 | 15 | 0.10 | 15 | 17,068.79 | 414,692.64 | 6.61 | 24.11 |
| 25 | 6 | 0 | 1 | 15 | 0.10 | 15 | 17,068.79 | 414,692.64 | 6.61 | 24.11 |
| 13 | 7 | 1 | 1 | 10 | 0.08 | 18 | 20,482.55 | 230,688.76 | 5.40 | 22.39 |
| 31 | 8 | 0 | 1 | 15 | 0.10 | 15 | 17,068.79 | 414,692.64 | 6.61 | 24.11 |
| 28 | 9 | 0 | 1 | 15 | 0.10 | 15 | 17,068.79 | 414,692.64 | 6.61 | 24.11 |
| 18 | 10 | −1 | 1 | 20 | 0.10 | 15 | 17,068.79 | 892,556.52 | 6.61 | 30.93 |
| 5 | 11 | 1 | 1 | 10 | 0.08 | 18 | 13,655.03 | 314,938.94 | 4.58 | 17.52 |
| 30 | 12 | 0 | 1 | 15 | 0.10 | 15 | 17,068.79 | 414,692.64 | 6.61 | 24.11 |
| 22 | 13 | −1 | 1 | 15 | 0.10 | 18 | 17,068.79 | 605,955.12 | 5.18 | 24.11 |
| 10 | 14 | 1 | 1 | 20 | 0.08 | 12 | 20,482.55 | 666,805.49 | 10.23 | 37.98 |
| 14 | 15 | 1 | 1 | 20 | 0.08 | 18 | 20,482.55 | 1,483,410.12 | 5.40 | 37.98 |
| 24 | 16 | −1 | 1 | 15 | 0.10 | 15 | 20,482.55 | 351,741.64 | 7.45 | 27.56 |
| 21 | 17 | −1 | 1 | 15 | 0.10 | 12 | 17,068.79 | 223,430.16 | 9.54 | 24.11 |
| 8 | 18 | 1 | 1 | 20 | 0.12 | 18 | 13,655.03 | 1,002,948.10 | 4.99 | 25.11 |
| 7 | 19 | 1 | 1 | 10 | 0.12 | 18 | 13,655.03 | 220,663.81 | 4.99 | 18.53 |
| 20 | 20 | −1 | 1 | 15 | 0.12 | 15 | 17,068.79 | 323,071.99 | 6.97 | 24.04 |
| 9 | 21 | 1 | 1 | 10 | 0.08 | 12 | 20,482.55 | −8332.89 | 22.39 | |
| 12 | 22 | 1 | 1 | 20 | 0.12 | 12 | 20,482.55 | 332,053.26 | 11.60 | 34.17 |
| 17 | 23 | −1 | 1 | 10 | 0.10 | 15 | 17,068.79 | 119,236.98 | 6.61 | 20.38 |
| 4 | 24 | 1 | 1 | 20 | 0.12 | 12 | 13,655.03 | 911,064.93 | 7.74 | 27.09 |
| 27 | 25 | 0 | 1 | 15 | 0.10 | 15 | 17,068.79 | 414,692.64 | 6.61 | 24.11 |
| 2 | 26 | 1 | 1 | 20 | 0.08 | 12 | 13,655.03 | 911,064.93 | 7.74 | 27.09 |
| 11 | 27 | 1 | 1 | 10 | 0.12 | 12 | 20,482.55 | −40,557.40 | 23.18 | |
| 29 | 28 | 0 | 1 | 15 | 0.10 | 15 | 17,068.79 | 414,692.64 | 6.61 | 24.11 |
| 23 | 29 | −1 | 1 | 15 | 0.10 | 15 | 13,655.03 | 477,643.64 | 6.02 | 20.66 |
| 3 | 30 | 1 | 1 | 10 | 0.12 | 12 | 13,655.03 | 27,855.42 | 8.91 | 18.53 |
| 16 | 31 | 1 | 1 | 20 | 0.12 | 18 | 20,482.55 | 845,187.93 | 5.92 | 34.17 |
| Source | DF | Adj SS | Adj MS | F-Value | p-Value |
|---|---|---|---|---|---|
| Model | 9 | 4.87303 × 1012 | 5.41448 × 1011 | 96.950 | 0.000 |
| Linear | 4 | 4.36242 × 1012 | 1.09061 × 1012 | 195.270 | 0.000 |
| PL | 1 | 3.27688 × 1012 | 3.27688 × 1012 | 586.720 | 0.000 |
| DR | 1 | 2.58584 × 1011 | 2.58584 × 1011 | 46.300 | 0.000 |
| RSP | 1 | 6.74507 × 1011 | 6.74507 × 1011 | 120.770 | 0.000 |
| OMC | 1 | 1.52447 × 1011 | 1.52447 × 1011 | 27.300 | 0.000 |
| Square | 1 | 1.30686 × 1011 | 1.30686 × 1011 | 23.400 | 0.000 |
| PL × PL | 1 | 1.30686 × 1011 | 1.30686 × 1011 | 23.400 | 0.000 |
| 2-way interaction | 4 | 3.79919 × 1011 | 94,979,725,164 | 17.010 | 0.000 |
| PL × DR | 1 | 1.30447 × 1011 | 1.30447 × 1011 | 23.360 | 0.000 |
| PL × RSP | 1 | 1.18090 × 1011 | 1.18090 × 1011 | 21.140 | 0.000 |
| PL × OMC | 1 | 52,895,942,560 | 52,895,942,560 | 9.470 | 0.006 |
| DR × RSP | 1 | 78,486,539,784 | 78,486,539,784 | 14.050 | 0.001 |
| Error | 21 | 1.17286 × 1011 | 5,585,063,982 | ||
| Lack of fit | 15 | 1.17286 × 1011 | 7,819,089,575 | ||
| Pure error | 6 | 0.0000 | 0.0000 | ||
| Total | 30 | 4.99031 × 1012 |
| Source | DF | Adj SS | Adj MS | F-Value | p-Value |
|---|---|---|---|---|---|
| Model | 14 | 74.9799 | 5.3557 | 137.700 | 0.000 |
| Linear | 4 | 61.4625 | 15.3656 | 395.070 | 0.000 |
| PL | 1 | 0.1023 | 0.1023 | 2.630 | 0.127 |
| DR | 1 | 1.8778 | 1.8778 | 48.280 | 0.000 |
| RSP | 1 | 50.8203 | 50.8203 | 1306.640 | 0.000 |
| OMC | 1 | 9.7289 | 9.7289 | 250.140 | 0.000 |
| Square | 4 | 3.3407 | 0.8352 | 21.470 | 0.000 |
| PL × PL | 1 | 0.0030 | 0.0030 | 0.080 | 0.785 |
| DR × DR | 1 | 0.0003 | 0.0003 | 0.010 | 0.932 |
| RSP × RSP | 1 | 1.3212 | 1.3212 | 33.970 | 0.000 |
| OMC × OMC | 1 | 0.0189 | 0.0189 | 0.490 | 0.498 |
| 2-way interaction | 6 | 3.8076 | 0.6346 | 16.320 | 0.000 |
| PL × DR | 1 | 0.0620 | 0.0620 | 1.600 | 0.227 |
| PL × RSP | 1 | 0.1097 | 0.1097 | 2.820 | 0.115 |
| PL × OMC | 1 | 0.0126 | 0.0126 | 0.320 | 0.579 |
| DR × RSP | 1 | 0.1979 | 0.1979 | 5.090 | 0.041 |
| DR × OMC | 1 | 0.1533 | 0.1533 | 3.940 | 0.067 |
| RSP × OMC | 1 | 2.6816 | 2.6816 | 68.950 | 0.000 |
| Error | 14 | 0.5445 | 0.0389 | ||
| Lack of fit | 8 | 0.5445 | 0.0681 | ||
| Pure error | 6 | 0.0000 | 0.0000 | ||
| Total | 28 | 75.5244 |
| Source | DF | Adj SS | Adj MS | F-Value | p-Value |
|---|---|---|---|---|---|
| Model | 14 | 821.236 | 58.660 | 325.000 | 0.000 |
| Linear | 4 | 762.497 | 190.624 | 1056.130 | 0.000 |
| PL | 1 | 533.543 | 533.543 | 2956.040 | 0.000 |
| DR | 1 | 2.164 | 2.164 | 11.990 | 0.003 |
| RSP | 1 | 0.217 | 0.217 | 1.200 | 0.289 |
| OMC | 1 | 226.573 | 226.573 | 1255.300 | 0.000 |
| Square | 4 | 22.557 | 5.639 | 31.240 | 0.000 |
| PL × PL | 1 | 6.555 | 6.555 | 36.320 | 0.000 |
| DR × DR | 1 | 0.025 | 0.025 | 0.140 | 0.717 |
| RSP × RSP | 1 | 0.005 | 0.005 | 0.030 | 0.869 |
| OMC × OMC | 1 | 0.005 | 0.005 | 0.030 | 0.869 |
| 2-way interaction | 6 | 36.182 | 6.030 | 33.410 | 0.000 |
| PL × DR | 1 | 10.851 | 10.851 | 60.120 | 0.000 |
| PL × RSP | 1 | 0.245 | 0.245 | 1.360 | 0.261 |
| PL × OMC | 1 | 22.290 | 22.290 | 123.490 | 0.000 |
| DR × RSP | 1 | 0.245 | 0.245 | 1.360 | 0.261 |
| DR × OMC | 1 | 2.307 | 2.307 | 12.780 | 0.003 |
| RSP × OMC | 1 | 0.245 | 0.245 | 1.360 | 0.261 |
| Error | 16 | 2.888 | 0.180 | ||
| Lack of fit | 10 | 2.888 | 0.289 | ||
| Pure error | 6 | 0.000 | 0.000 | ||
| Total | 30 | 824.124 |
| Term | Coef | SE Coef | t-Value | p-Value | VIF |
|---|---|---|---|---|---|
| Constant | 416,500.00 | 20,727.00 | 20.09 | 0.000 | |
| PL | 426,672.00 | 17,615.00 | 24.22 | 0.000 | 1.00 |
| DR | −119,857.00 | 17,615.00 | −6.80 | 0.000 | 1.00 |
| RSP | 193,578.00 | 17,615.00 | 10.99 | 0.000 | 1.00 |
| OMC | −92,029.00 | 17,615.00 | −5.22 | 0.000 | 1.00 |
| PL × PL | 131,579.00 | 27,201.00 | 4.84 | 0.000 | 1.00 |
| PL × DR | −90,294.00 | 18,683.00 | −4.83 | 0.000 | 1.00 |
| PL × RSP | 85,910.00 | 18,683.00 | 4.60 | 0.000 | 1.00 |
| PL × OMC | −57,498.00 | 18,683.00 | −3.08 | 0.006 | 1.00 |
| DR × RSP | −70,039.00 | 18,683.00 | −3.75 | 0.001 | 1.00 |
| Term | Coef | SE Coef | t-Value | p-Value | VIF |
|---|---|---|---|---|---|
| Constant | 6.6291 | 0.0588 | 112.83 | 0.000 | |
| PL | −0.0971 | 0.0598 | −1.62 | 0.127 | 1.46 |
| DR | 0.3562 | 0.0513 | 6.95 | 0.000 | 1.08 |
| RSP | −2.1632 | 0.0598 | −36.15 | 0.000 | 1.46 |
| OMC | 0.9465 | 0.0598 | 15.82 | 0.000 | 1.46 |
| PL × PL | −0.0340 | 0.1230 | −0.28 | 0.785 | 2.79 |
| DR × DR | −0.0110 | 0.1230 | −0.09 | 0.932 | 2.79 |
| RSP × RSP | 0.7170 | 0.1230 | 5.83 | 0.000 | 2.79 |
| OMC × OMC | 0.0860 | 0.1230 | 0.70 | 0.498 | 2.79 |
| PL × DR | −0.0694 | 0.0550 | −1.26 | 0.227 | 1.09 |
| PL × RSP | 0.1092 | 0.0650 | 1.68 | 0.115 | 1.51 |
| PL × OMC | 0.0370 | 0.0650 | 0.57 | 0.579 | 1.51 |
| DR × RSP | −0.1240 | 0.0550 | −2.26 | 0.041 | 1.09 |
| DR × OMC | 0.1091 | 0.0550 | 1.99 | 0.067 | 1.09 |
| RSP × OMC | −0.5400 | 0.0650 | −8.30 | 0.000 | 1.51 |
| Term | Coef | SE Coef | t-Value | p-Value | VIF |
|---|---|---|---|---|---|
| Constant | 24.091 | 0.126 | 191.16 | 0.000 | |
| PL | 5.444 | 0.100 | 54.37 | 0.000 | 1.00 |
| DR | −0.347 | 0.100 | −3.46 | 0.003 | 1.00 |
| RSP | −0.110 | 0.100 | −1.10 | 0.289 | 1.00 |
| OMC | 3.548 | 0.100 | 35.43 | 0.000 | 1.00 |
| PL × PL | 1.589 | 0.264 | 6.03 | 0.000 | 2.91 |
| DR × DR | 0.097 | 0.264 | 0.37 | 0.717 | 2.91 |
| RSP × RSP | 0.044 | 0.264 | 0.17 | 0.869 | 2.91 |
| OMC × OMC | 0.044 | 0.264 | 0.17 | 0.869 | 2.91 |
| PL × DR | −0.824 | 0.106 | −7.75 | 0.000 | 1.00 |
| PL × RSP | −0.124 | 0.106 | −1.16 | 0.261 | 1.00 |
| PL × OMC | 1.180 | 0.106 | 11.11 | 0.000 | 1.00 |
| DR × RSP | −0.124 | 0.106 | −1.16 | 0.261 | 1.00 |
| DR × OMC | −0.380 | 0.106 | −3.58 | 0.003 | 1.00 |
| RSP × OMC | 0.124 | 0.106 | 1.16 | 0.261 | 1.00 |






References
- CEWEP. Waste-to-Energy: Energising Your Waste. In Confederation of European Waste to Energy Plants. Waste to Energy Plants; CEWEP: Brussels, Belgium, 2018. [Google Scholar]
- International Finance Corporation. Increasing the Use of Alternative Fuels at Cement Plants: International Best Practice; International Finance Corporation: Washington, DC, USA, 2017. [Google Scholar]
- CEMBUREAU. The European Cement Association Key Facts and Figures; CEMBUREAU: Brussels, Belgium, 2023. [Google Scholar]
- EIB. Managing Refuse-Derived and Solid Recovered Fuels; European Investment Bank: Luxembourg, 2024. [Google Scholar]
- GIZ. Status Paper on Utilisation of Refuse Derived Fuel (RDF) in India; GIZ: Eschborn, Germany, 2013; p. 18. [Google Scholar]
- Ohorongo Cement. Ohorongo Cement Invest in Refuse Derived Fuel. Available online: https://ohorongo-cement.com/news/moving-towards-a-zero-waste-to-landfill-namibia/ (accessed on 21 April 2021).
- Sarquah, K.; Narra, S.; Beck, G.; Awafo, E.A. Bibliometric Analysis; Characteristics and Trends of Refuse Derived Fuel Research. Sustainability 2022, 14, 1994. [Google Scholar] [CrossRef]
- de Beer, J.; Cihlar, J.; Hensing, I.; Zabeti, M. Status and Prospects of Co- Processing of Waste in EU Cement Plants; The European Cement Association: Brussels, Belgium, 2017. [Google Scholar]
- UNEP. Beyond an Age—Global Waste Management Outlook 2024; United Nations Environment Programme: Nairobi, Kenya, 2024; ISBN 9789280741292. [Google Scholar]
- UNEP. Global Resources Outlook 2024: Bend the Trend—Pathways to a Liveable Planet as Resource Use Spikes; United Nations Environment Programme: Nairobi, Kenya, 2024; ISBN 9789280741285. [Google Scholar]
- Boadi, G.F. Presentation on Challenges and Opportunities for Governments in Waste Data Sources Ghana; United Nations Environment Programme: Geneva, Switzerland, 2024. [Google Scholar]
- Oduro-Appiah, K.; Scheinberg, A.; Afful, A.; de Vries, N. The Contribution of Participatory Engagement Strategies to Reliable Data Gathering and Inclusive Policies in Developing Countries: Municipal Solid Waste Management Data in the Greater Accra Metropolitan Area of Ghana. African J. Sci. Technol. Innov. Dev. 2021, 13, 735–746. [Google Scholar] [CrossRef]
- Sarquah, K.; Narra, S.; Beck, G.; Bassey, U.; Antwi, E.; Hartmann, M.; Derkyi, N.S.A.; Awafo, E.A.; Nelles, M. Characterization of Municipal Solid Waste and Assessment of Its Potential for Refuse-Derived Fuel (RDF) Valorization. Energies 2023, 16, 200. [Google Scholar] [CrossRef]
- Bowan, P.A.; Kayaga, S.; Cotton, A.; Fisher, J. Municipal Solid Waste Disposal Operational Performance in Wa Municipality, Ghana. J. Health Pollut. 2019, 9, 190903. [Google Scholar] [CrossRef]
- Arthur, E.; Dorfiah, P.; Hilbert, I.; Kyere, V.N.; Ocran, P.K. Waste Tyre Management Baseline Study for Ghana Turning Waste into Resources for Development SRI Builds Capacity for Sustainable Recycling in Developing Countries; Sustainable Recycling Initiative: Accra, Ghana, 2020; ISBN 978-3-906177-27-4. [Google Scholar]
- WASCAL. Hybrid Waste-to-Energy (W2E) Pilot Project in the Ashanti Region, Ghana. In West African Science Service Centre on Climate Change and Adapted Land Use; WASCAL: Accra, Ghana, 2023. [Google Scholar]
- Sarquah, K.; Narra, S.; Beck, G.; Sarfo, N.; Derkyi, A.; Awafo, E.; Hartmann, M.; Nelles, M. Evaluating Opportunities of Refuse Derived Fuel for Energy-Based Industrial Symbiosis towards a Circular Economy—A Case Study. J. Environ. Manag. 2025, 380, 125126. [Google Scholar] [CrossRef]
- EN 15359:2011; Solid Recovered Fuels—Specifications and Classes. European Committee for Standardization: Brussels, Belgium, 2011.
- Yahya, S.; Susanti, B.; Fitriani, H. Financial Feasibility Analysis of Urban Waste Processing as Refused Derived Fuel For Cement Company. Eduvest—J. Univers. Stud. 2024, 4, 5352–5366. [Google Scholar] [CrossRef]
- Azis, M.M.; Kristanto, J.; Purnomo, C.W. A Techno-economic Evaluation of Municipal Solid Waste (Msw) Conversion to Energy in Indonesia. Sustainability 2021, 13, 7232. [Google Scholar] [CrossRef]
- Yakah, N.; Kwarteng, A.A.; Addy, C.; Yirenkyi, M.; Martin, A.; Simons, A. Techno-Economic Assessment of Municipal Solid Waste (MSW) Incineration in Ghana. Processes 2024, 12, 1286. [Google Scholar] [CrossRef]
- Farooq, A.; Haputta, P.; Gheewala, S.H. Economic Feasibility Assessment of Waste to Energy Technologies for the Development of a Sustainable Municipal Solid Waste Management System in Thailand. Renew. Energy 2024, 233, 121155. [Google Scholar] [CrossRef]
- Ali, M.U. A Techno-Economic Analysis of Alternative Fuels in Cement Industry in Pakistan. Int. J. Eng. Work. 2021, 8, 191–196. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, B. Prediction and Feed-In Tariffs of Municipal Solid Waste Generation in Beijing: Based on a GRA-BiLSTM Model. Sustainability 2024, 16, 3579. [Google Scholar] [CrossRef]
- Osei-Appiah, N.A.; Dioha, M.O. Techno-Economic Assessment of Waste-To-Energy Technologies in Ghana. J. Sustain. Energy 2019, 10, 112–121. [Google Scholar]
- Afrane, S.; Ampah, J.D.; Jin, C.; Liu, H.; Aboagye, E.M. Techno-Economic Feasibility of Waste-to-Energy Technologies for Investment in Ghana: A Multicriteria Assessment Based on Fuzzy TOPSIS Approach. J. Clean. Prod. 2021, 318, 128515. [Google Scholar] [CrossRef]
- Mäkelä, M. Experimental Design and Response Surface Methodology in Energy Applications: A Tutorial Review. Energy Convers. Manag. 2017, 151, 630–640. [Google Scholar] [CrossRef]
- Djimtoingar, S.S.; Derkyi, N.S.A.; Kuranchie, F.A.; Yankyera, J.K. A Review of Response Surface Methodology for Biogas Process Optimization. Cogent Eng. 2022, 9, 2115283. [Google Scholar] [CrossRef]
- Atwima Nwabiagya District Health Directorate Atwima Nwabiagya District. Atwima Nwabiagya Dist. Health Dir. 2016, 1–83.
- Mariwah, S. The Sanitation and Waste Management Conundrum in Ghana: The Case for High Level Prioritization and Fiscal Incentives. In Proceedings of the IMANI and ESPA Webinar, CapeCoast, Ghana, 11 June 2020; Available online: https://imaniafrica.org/2020/06/the-waste-management-conundrum-in-ghana-the-case-for-high-level-prioritisation-and-fiscal-incentives-presentation-file/ (accessed on 15 October 2025).
- World Bank Group. Inflation, Consumer Prices (Annual %)—Ghana; World Bank Group: Washington, DC, USA.
- GSS. March 2025 Inflation. Indus J. Biosci. Res. 2025, 3, 1–11. [Google Scholar] [CrossRef]
- GBP. Reduced Corporate Income Tax (CIT) Rates for Waste Processing Businesses (Up to Seven Years); GBP: Accra, Ghana, 2015. [Google Scholar]
- GRA. Corporate Income Tax (CIT); Ghana Revenue Authority: Accra, Ghana, 2015. Available online: https://gra.gov.gh/domestic-tax/tax-types/tax-exemptions-for-businesses/ (accessed on 6 July 2025).
- Armoo, E.A.; Mohammed, M.; Narra, S.; Beguedou, E.; Agyenim, F.B.; Kemausuor, F. Achieving Techno-Economic Feasibility for Hybrid Renewable Energy Systems through the Production of Energy and Alternative Fuels. Energies 2024, 17, 735. [Google Scholar] [CrossRef]
- Beguedou, E.; Narra, S.; Afrakoma Armoo, E.; Agboka, K.; Damgou, M.K. Alternative Fuels Substitution in Cement Industries for Improved Energy Efficiency and Sustainability. Energies 2023, 16, 3533. [Google Scholar] [CrossRef]
- Our World in Data Coal Prices. Available online: https://ourworldindata.org/grapher/coal-prices (accessed on 9 July 2025).
- PURC. 2023 Second Quarter Natural Gas, Electricity & Water Tariff Decision; PURC: Accra, Ghana, 2023. [Google Scholar]
- Rajca, P.; Poskart, A.; Chrubasik, M.; Sajdak, M.; Zajemska, M.; Skibiński, A.; Korombel, A. Technological and Economic Aspect of Refuse Derived Fuel Pyrolysis. Renew. Energy 2020, 161, 482–494. [Google Scholar] [CrossRef]
- Friedl, G.; Reichelstein, S.; Bach, A. Applications of the Levelized Cost Concept. J. Bus. Econ. 2023, 93, 1125–1148. [Google Scholar] [CrossRef]
- Mohammed, I.Y.; Abakr, Y.A.; Yusup, S.; Kazi, F.K. Valorization of Napier Grass via Intermediate Pyrolysis: Optimization Using Response Surface Methodology and Pyrolysis Products Characterization. J. Clean. Prod. 2017, 142, 1848–1866. [Google Scholar] [CrossRef]
- Ozonoh, M.; Oboirien, B.O.; Daramola, M.O. Optimization of Process Variables during Torrefaction of Coal/Biomass/Waste Tyre Blends: Application of Artificial Neural Network & Response Surface Methodology. Biomass Bioenergy 2020, 143, 105808. [Google Scholar] [CrossRef]
- Kazemian, M.E.; Gandjalikhan Nassab, S.A.; Jahanshahi Javarana, E. Techno-Economic Optimization of Combined Cooling, Heat and Power System Based on Response Surface Methodology. Iran. J. Energy Environ. 2021, 12, 285–296. [Google Scholar] [CrossRef]
- Lee, H.V.; Yunus, R.; Juan, J.C.; Tau, Y.H. Process Optimization Design for Jatropha-Based Biodiesel Production Using Response Surface Methodology. Indus J. Biosci. Res. 2011, 92, 2420–2428. [Google Scholar] [CrossRef]
- Raj, R.; Tirkey, J.V. Techno-Economic Assessment of Sugarcane Bagasse Pith-Based Briquette Production and Performance Analysis of Briquette Feed Gasifier-Engine System. J. Environ. Manag. 2023, 345, 118828. [Google Scholar] [CrossRef] [PubMed]
- Prihandoko, D.; Purnomo, C.W.; Widyaputra, P.K. Nasirudin Application of Refuse-Derived Fuel (RDF) Plant in Piyungan Landfill Municipal Solid Waste Management. ASEAN J. Chem. Eng. 2022, 22, 296–305. [Google Scholar] [CrossRef]
- Vartiainen, T.; Kärri, T.; Afonso, P.; Happonen, A. Modeling and Assessing Economical Feasibilities for Waste to Energy Conversion/Incineration Process in Context of Municipal Solid Waste. Intell. Sustain. Manuf. 2025, 2, 10015. [Google Scholar] [CrossRef]
- Ministry of Finance. 2023 Annual Report on Public Private Partnership Projects; Ministry of Finance: Accra, Ghana, 2024.
- Oduro-Appiah, K.; Scheinberg, A.; Mensah, A.; Afful, A.; Boadu, H.K.; de Vries, N. Assessment of the Municipal Solid Waste Management System in Accra, Ghana: A ‘Wasteaware’ Benchmark Indicator Approach. Waste Manag. Res. 2017, 35, 1149–1158. [Google Scholar] [CrossRef]
- BMH Technology. Waste Refining Solutions; BMH Technology: Rauma, Finland, 2018. [Google Scholar]
- Buah, W.K.; Cunliffe, A.M.; Williams, P.T. Characterization of Products from the Pyrolysis of Municipal Solid Waste. Process Saf. Environ. Prot. 2007, 85, 450–457. [Google Scholar] [CrossRef]
- Danias, P.; Liodakis, S. Characterization of Refuse Derived Fuel Using Thermogravimetric Analysis and Chemometric Techniques. J. Anal. Chem. 2018, 73, 351–357. [Google Scholar] [CrossRef]
- Hemidat, S.; Saidan, M.; Al-Zu’bi, S.; Irshidat, M.; Nassour, A.; Nelles, M. Potential Utilization of RDF as an Alternative Fuel to Be Used in Cement Industry in Jordan. Sustainability 2019, 11, 5819. [Google Scholar] [CrossRef]
- Purwanto, H.; Nurhasana, R.; Rohimah, A. Assessing the Feasibility of Small-Scale RDF Technology in Urban Solid Waste Management Using Cost-Benefit. Adv. Sustain. Sci. Eng. Technol. 2025, 7, 02503016. [Google Scholar] [CrossRef]
- Aliaghaei, F.; Pazoki, M.; Farsad, F.; Tajfar, I. Evaluating of Refuse Derived Fuel (RDF) Production from Municipal Solid Waste (Case Study: Qazvin Province). Environ. Energy Econ. Res. 2020, 4, 97–109. [Google Scholar] [CrossRef]
- COCMAG. Price Controls on Cement in Ghana; COCMAG: Accra, Ghana, 2024. [Google Scholar]
- Paramita, W.; Hartono, D.M.; Soesilo, T.E.B. Sustainability of Refuse Derived Fuel Potential from Municipal Solid Waste for Cement’s Alternative Fuel in Indonesia (A Case at Jeruklegi Landfill, in Cilacap). In Proceedings of the IOP Conference Series: Earth and Environmental Science, Yogyakarta, Indonesia, 14 June 2018; Institute of Physics Publishing: Bristol, UK, 2018; Volume 159. [Google Scholar]
- Srisaeng, N.; Tippayawong, N.; Tippayawong, K.Y. Energetic and Economic Feasibility of RDF to Energy Plant for a Local Thai Municipality. In Proceedings of the Energy Procedia, Amsterdam, The Netherlands, 21 June 2017; Elsevier: Amsterdam, The Netherlands, 2017; Volume 110, pp. 115–120. [Google Scholar]
- Kusuma, M.A.; Nassour, A.; Nelles, M.; Ragossnig, A. Potential Utilization of Commercial Waste in Jakarta as Alternative Fuel by Cement Industry. Waste Manag. Res. 2020, 38, 1367–1378. [Google Scholar] [CrossRef]
- Ghana Green Growth. Analysis of the Woodfuels Sector in Ghana- with Options for Demand Reduction, Supply Enhancement, Fuel Switching and Governance Changes; Ghana Green Growth: Accra, Ghana, 2022. [Google Scholar]
- Energy Commission. Charcoal Price Tracking Report for 2024; Energy Commission: Accra, Ghana, 2024. [Google Scholar]
- Amoah, M.; Cremer, T.; Dadzie, P.K.; Ohene, M. PURC Public Utilities Regulatory Commission of Ghana (PURC) Publication of Electricity Tariffs; PURC: Accra, Ghana, 2025. [Google Scholar]
- Firewood Collection and Consumption Practices and Barriers to Uptake of Modern Fuels among Rural Households in Ghana. Int. For. Rev. 2019, 21, 149–166. [CrossRef]
- Korang, J.K.; Obiri, B.D.; Appiah, H.; Awuku, S. Calorific Value and Gravimetric Yield of Six Wood Fuel Species in Ghana. Ghana J. For. 2015, 31, 51–61. [Google Scholar]
- CBOD. Ghana Crude Oil and Refined Products Market Review and Outlook; CBOD: Accra, Ghana, 2020. [Google Scholar]
- International Energy Agency. Coal 2024: Analysis and Forecast to 2027; IEA: Paris, France, 2024. [Google Scholar]




| Factor Name | Factor ID | Unit | Min (−1) | Max (+1) |
|---|---|---|---|---|
| Project life (PL) | A | Years | 10.00 | 20.00 |
| Discount rate (DR) | B | % | 8.00 | 12.00 |
| RDF sale price (RSP) | C | USD/tonne | 12.00 | 18.00 |
| Operating cost (OMC) | D | Thousand USD/year | 13.66 | 20.48 |
| Parameter | Measure | RDF Class | RDF Applied to This Study | ||||
|---|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | |||
| NCV (MJ/kg) | Mean | ≥25.00 | ≥20.00 | ≥15.00 | ≥10.00 | ≥3.00 | 13.30–21.30 |
| Cl (%) | Mean | ≤0.20 | ≤0.60 | ≤1.00 | ≤1.50 | ≤3.00 | 0.44–1.00 |
| Hg (mg/MJ) | Median | ≤0.02 | ≤0.03 | ≤0.08 | ≤0.15 | ≤0.50 | 0.01–0.02 |
| 80th percentile | ≤0.04 | ≤0.06 | ≤0.16 | ≤0.30 | ≤1.00 | 0.02 | |
| Scenario Block | MSW Quantity (tonnes) | Avoided Waste Processed to RDF (tonnes) | Energy from RDF (GJ) | Fossil Fuel Savings (tonnes) |
|---|---|---|---|---|
| S1 | 11,500.00 | 2875.00 | 48,731.00 | 2054.00 |
| S2 | 11,500.00 | 2185.00 | 37,036.00 | 1561.00 |
| S3 | 17,250.00 | 4313.00 | 73,097.00 | 3080.00 |
| S4 | 5750.00 | 1438.00 | 24,366.00 | 1027.00 |
| Parameter | NPV | PI | IRR | PBP | LPC |
|---|---|---|---|---|---|
| Unit | Thousand USD | - | (%) | (years) | (USD/tonne) |
| Base case | 46.82 | 1.31 | 14.78 | 9.93 | 12.07 |
| Nominal case | 892.56 | 6.95 | 30.85 | 6.61 | 30.09 |
| Response | NPV | PBP | LPC |
|---|---|---|---|
| S (RMSE) | 74.73 (thousand USD) | 0.19 (years) | 0.42 (USD/tonne) |
| R2 (%) | 97.65 | 99.28 | 99.65 |
| R2adj (%) | 96.64 | 98.56 | 99.34 |
| R2pred (%) | 90.05 | 91.33 | 97.12 |
| Model p-value | <0.001 | <0.001 | <0.001 |
| Lack of fit | Pure error = 0 | Pure error = 0 | Pure error = 0 |
| Test Variable | Predicted | Observed | Error | Error % |
|---|---|---|---|---|
| NPV (thousand USD) | 571.99 | 534.24 | −37.76 | 0.07 |
| PBP (years) | 4.79 | 4.68 | −0.11 | 0.02 |
| LPC (USD/t) | 18.96 | 19.12 | 0.21 | 0.01 |
| Support (USD/tonnes) | 1 (USD 0) | 2 (USD 4.65) | 3 (USD 5.96) |
|---|---|---|---|
| NPV (thousand USD) | 8.93 | 28.85 | 34.47 |
| PBP (years) | 6.61 | 4.31 | 3.44 |
| Adj. LPC-RDF (USD/tonne) | 30.93 | 12.33 | 7.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Sarquah, K.; Narra, S.; Beck, G.; Derkyi, N.S.A. Multivariate Techno-Economic Feasibility of Refuse-Derived Fuel Production in Ghana Using Response Surface Methodology: Insights from a Pilot-Scale System. Clean Technol. 2026, 8, 17. https://doi.org/10.3390/cleantechnol8010017
Sarquah K, Narra S, Beck G, Derkyi NSA. Multivariate Techno-Economic Feasibility of Refuse-Derived Fuel Production in Ghana Using Response Surface Methodology: Insights from a Pilot-Scale System. Clean Technologies. 2026; 8(1):17. https://doi.org/10.3390/cleantechnol8010017
Chicago/Turabian StyleSarquah, Khadija, Satyanarayana Narra, Gesa Beck, and Nana Sarfo Agyemang Derkyi. 2026. "Multivariate Techno-Economic Feasibility of Refuse-Derived Fuel Production in Ghana Using Response Surface Methodology: Insights from a Pilot-Scale System" Clean Technologies 8, no. 1: 17. https://doi.org/10.3390/cleantechnol8010017
APA StyleSarquah, K., Narra, S., Beck, G., & Derkyi, N. S. A. (2026). Multivariate Techno-Economic Feasibility of Refuse-Derived Fuel Production in Ghana Using Response Surface Methodology: Insights from a Pilot-Scale System. Clean Technologies, 8(1), 17. https://doi.org/10.3390/cleantechnol8010017

