Effect of Borax-, KOH-, and NaOH-Treated Coal on Reducing Carbon Waste and Activated Carbon Production in Synthetic Rutile Production from Ilmenite
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Chemical Treatment of Coal with Borax, KOH, and NaOH
2.3. Ilmenite Reduction
2.4. Hydrochloric Acid Leaching of Reduced Ilmenites
2.5. Analytical Methods
2.5.1. Proximate and Ultimate Analyses
2.5.2. Chemical Analysis
2.5.3. Metallic Iron Determination
2.5.4. Iodine Number Determination
2.5.5. Mineralogical Analysis
2.6. Theory and Reactions
Reaction Number | Reaction | Description |
---|---|---|
(10) | KOH + -COOH → -COO-K+ + H2O(g) | Reaction with carboxyl groups on biomass carbon |
(11) | KOH + -OH → -O-K+ + H2O(g) | Reaction with hydroxyl groups on biomass carbon |
(12) | 2KOH → K2O + H2O(g) | Decomposition of KOH at 300–417 °C |
(13) | KOH + -COO-K+ → K2CO3 + ½H2 (g) | Reaction with carboxylate groups generating hydrogen |
(14) | 4KOH + -CH2- → K2CO3 + K2O + 3H2 (g) | Reaction with methylene groups forming gases and oxides |
(15) | CH2· + 2H → CH4(g) | Methane formation from surface radicals |
(16) | ½K2CO3 + -C- → K + 3/2CO(g) | High-temperature reaction at carbon defects producing K vapour |
(17) | K2O + -C- → 2K + CO(g) | K2O reacting with carbon defects to form metallic potassium |
(18) | H2O + -C- → CO(g) + H2(g) | Steam-carbon reaction contributing to pore formation |
3. Results and Discussion
3.1. Characterisation of Samples
3.1.1. Proximate and Ultimate Analyses of Coal Sample
3.1.2. Mineralogical Analysis of Coal and Ilmenite
3.2. Characterisation of Products
3.2.1. Metallisation Analysis of Reduced Ilmenite
3.2.2. Mineralogical Analysis of Reduced Ilmenite Samples
3.2.3. Chemical Analysis of Synthetic Rutile
3.2.4. Scanning Electron Microscopy Analysis of Synthetic Rutile Samples
3.3. Effect of Additives on Synthetic Rutile Quality
3.3.1. Effect of Borax
3.3.2. Effect of KOH
3.3.3. Effect of NaOH
3.4. Effect of Additives on Reducing Carbon Burn-Off in Synthetic Rutile Production
3.5. Effect of Additive on Activated Carbon in Synthetic Rutile Production
3.6. Environmental Impact of Additives
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Scanning Electron Microscopy Images of Reduced Ilmenite Samples
Appendix A.2. Scanning Electron Microscopy Images of Synthetic Rutile Samples
References
- Becher, R.; Canning, R.; Goodheart, B.; Uusna, S. A new process for upgrading ilmenitic mineral sands. Australas. Inst. Min. Met. Proc. 1965, 214, 21–44. [Google Scholar]
- Spencer, W.; Ibana, D.; Singh, P.; Nikoloski, A.N. Effect of ilmenite properties on synthetic rutile quality. Miner. Eng. 2022, 177, 107365. [Google Scholar] [CrossRef]
- Spencer, W.; Ibana, D.; Singh, P.; Nikoloski, A.N. Biofuels as renewable reductants for the processing of ilmenite to produce synthetic rutile. Miner. Eng. 2022, 187, 107808. [Google Scholar] [CrossRef]
- Spencer, W.; Ibana, D.; Singh, P.; Nikoloski, A.N. Producing green rutile from secondary ilmenite via hydrogen reduction. Miner. Eng. 2025, 221, 109113. [Google Scholar] [CrossRef]
- Critical Minerals at Geoscience Australia; 2024. Available online: https://www.ga.gov.au/scientific-topics/minerals/critical-minerals (accessed on 11 April 2025).
- Lidman Olsson, E.O.; Purnomo, V.; Glarborg, P.; Leion, H.; Dam-Johansen, K.; Wu, H. Thermal Conversion of Sodium Phytate Using the Oxygen Carrier Ilmenite Interaction with Na-Phosphate and Its Effect on Reactivity. Energy Fuels 2022, 36, 9423–9436. [Google Scholar] [CrossRef]
- Hildor, F.; Zevenhoven, M.; Brink, A.; Hupa, L.; Leion, H. Understanding the interaction of potassium salts with an ilmenite oxygen carrier under dry and wet conditions. ACS Omega 2020, 5, 22966–22977. [Google Scholar] [CrossRef]
- Yilmaz, D.; Leion, H. Interaction of iron oxygen carriers and alkaline salts present in biomass-derived ash. Energy Fuels 2020, 34, 11143–11153. [Google Scholar] [CrossRef]
- Zevenhoven, M.; Sevonius, C.; Salminen, P.; Lindberg, D.; Brink, A.; Yrjas, P.; Hupa, L. Defluidization of the oxygen carrier ilmenite–Laboratory experiments with potassium salts. Energy 2018, 148, 930–940. [Google Scholar] [CrossRef]
- Dobele, G.; Volperts, A.; Plavniece, A.; Zhurinsh, A.; Upskuviene, D.; Balciunaite, A.; Niaura, G.; Colmenares-Rausseo, L.C.; Tamasauskaite-Tamasiunaite, L.; Norkus, E. Thermochemical Activation of Wood with NaOH, KOH and H3PO4 for the Synthesis of Nitrogen-Doped Nanoporous Carbon for Oxygen Reduction Reaction. Molecules. 2024, 29, 2238. [Google Scholar] [CrossRef]
- Spencer, W.; Senanayake, G.; Altarawneh, M.; Ibana, D.; Nikoloski, A.N. Review of the effects of coal properties and activation parameters on activated carbon production and quality. Miner. Eng. 2024, 212, 108712. [Google Scholar] [CrossRef]
- Orhan, A.; Çek, N.; Sezer, S.; Demir, I. Characterization of Boron-Modified Activated Carbons. Inorganics 2025, 13, 54. [Google Scholar] [CrossRef]
- Lazzarini, A.; Marino, A.; Colaiezzi, R.; De Luca, O.; Conte, G.; Policicchio, A.; Aloise, A.; Crucianelli, M. Boronation of Biomass-Derived Materials for Hydrogen Storage. Compounds 2023, 3, 244–279. [Google Scholar] [CrossRef]
- Dubey, A.K.; Mei, D.; Lyngfelt, A.; Mattisson, T.; Leion, H. Interaction Between Alkali Chlorides and Ilmenite in Chemical Looping Combustion. Energy Fuels 2024, 38, 17978–17994. [Google Scholar] [CrossRef]
- Song, B.; Lv, X.; Miao, H.H.; Han, K.; Zhang, K.; Huang, R. Effect of Na2B4O7 addition on carbothermic reduction of ilmenite concentrate. ISIJ Int. 2016, 56, 2140–2146. [Google Scholar] [CrossRef]
- ASTM D4607-14; Standard Test Method for Determination of Iodine Number of Activated Carbon. ASTM International: West Conshohocken, PA, USA, 2021.
- Zhang, Y.; Song, X.; Zhang, P.; Gao, H.; Ou, C.; Kong, X. Production of activated carbons from four wastes via one-step activation and their applications in Pb2+ adsorption: Insight of ash content. Chemosphere 2020, 245, 125587. [Google Scholar] [CrossRef]
- Liu, P.; Sun, S.; Huang, S.; Wu, Y.; Li, X.; Wei, X.; Wu, S. KOH Activation Mechanism in the Preparation of Brewer’s Spent Grain-Based Activated Carbons. Catalysts 2024, 14, 814. [Google Scholar] [CrossRef]
- Ogasawara, T.; Veloso de Araújo, R.V. Hydrochloric acid leaching of a pre-reduced Brazilian ilmenite concentrate in an autoclave. Hydrometallurgy 2000, 56, 203–216. [Google Scholar] [CrossRef]
- HSC Chemistry, Version 10; Metso (formerly Outotec): Espoo, Finland, 2025. Available online: https://www.hsc-chemistry.com/ (accessed on 28 September 2025).
- Spencer, W.; Ibana, D.; Singh, P.; Nikoloski, A.N. Effect of Surface Area, Particle Size and Acid Washing on the Quality of Activated Carbon Derived from Lower Rank Coal by KOH Activation. Sustainability 2024, 16, 5876. [Google Scholar] [CrossRef]
- Zygarlicke, C.J.; Steadman, E.N. Advanced SEM techniques to characterize coal minerals. Scanning Microsc. 1990, 4, 8. [Google Scholar]
- Euro, C. The Electrolysis Process and Its Thermodynamic Limits. Available online: https://www.eurochlor.org/wp-content/uploads/2021/04/11-Electrolysis-thermodynamics.pdf (accessed on 12 September 2025).
- Eurochlor Electrolysis and Production Costs (Information Sheet 12, November 2023). Available online: https://www.eurochlor.org/wp-content/uploads/2018/06/12-Electrolysis-production-costs-November-2023.pdf (accessed on 15 September 2025).
- Türkbay, T.; Laratte, B.; Çolak, A.; Çoruh, S.; Elevli, B. Life Cycle Assessment of Boron Industry from Mining to Refined Products. Sustainability 2022, 14, 1787. [Google Scholar] [CrossRef]
- CarbonCloud. Sodium hydroxide (NaOH). E524—Verified by CarbonCloud. Available online: https://apps.carboncloud.com/climatehub/product-reports/id/183314951001 (accessed on 30 September 2025).
- CarbonCloud. Potassium hydroxide (KOH). E525—Verified by CarbonCloud. Available online: https://apps.carboncloud.com/climatehub/product-reports/id/1394351136979 (accessed on 30 September 2025).
- An, J.; Xue, X. Life cycle environmental impact assessment of borax and boric acid production in China. J. Clean. Prod. 2014, 66, 121–127. [Google Scholar] [CrossRef]
- Hadrup, N.; Frederiksen, M.; Sharma, A.K. Toxicity of boric acid, borax and other boron containing compounds: A review. Regul. Toxicol. Pharmacol. 2021, 121, 104873. [Google Scholar] [CrossRef] [PubMed]
- Saleem, J.; Khalid Baig Moghal, Z.; Tahir, F.; Al-Ansari, T.; Osman, A.I.; McKay, G. Life cycle assessment of high value activated carbon production based on mass and functional performance metrics. Sci. Rep. 2025, 15, 32797. [Google Scholar] [CrossRef] [PubMed]
Reaction Number | Reaction | Phase Formed | Comments |
---|---|---|---|
(25) | Na2O + B2O3 → 2NaBO2 | Sodium metaborate | Forms from sodium oxide + boron oxide; borax decomposition at high temperature |
(26) | Na2O + TiO2 + B2O3 → Na2TiB2O7 | Sodium titanium borate | Forms in presence of TiO2 and boron |
(27) | K2O + TiO2 → K2TiO3 | Potassium titanate | Forms a titanate compound; acts as a flux similar to sodium titanates |
(28) | K2O + B2O3 → KBO2 | Potassium metaborate | Analogous to NaBO2 formation |
(29) | K2O + TiO2 + B2O3 → K2TiB2O7 | Potassium titanium borate | Similar structure to sodium counterpart |
Parameter | Value (mass%) |
---|---|
Calorific Value (MJ/kg) | 23.7± 0.5 |
Proximate Analysis | - |
Moisture | 3.6 ± 0.2 |
Volatile Matter | 37.3 ± 0.8 |
Ash | 2.5 ± 0.3 |
Fixed Carbon | 56.5 ± 0.9 |
Ultimate Analysis | - |
Carbon (C) | 63.4 ± 0.4 |
Hydrogen (H) | 7.1 ± 0.2 |
Nitrogen (N) | 1.3 ± 0.1 |
Oxygen (O *) | 27.3 ± 0.2 |
Sulphur (S) | 0.9 ± 0.1 |
Oxides | Ilmenite | Coal Ash |
---|---|---|
%(w/w) | %(w/w) | |
TiO2 | 59.28 | 8.14 |
Fe2O3 | 34.16 | 19.60 |
MnO | 1.06 | 0.18 |
Al2O3 | 0.70 | 19.12 |
SiO2 | 0.60 | 43.01 |
MgO | 0.27 | 1.68 |
V2O5 | 0.25 | 0.04 |
Cr2O3 | 0.18 | 0.11 |
Nb2O5 | 0.15 | 0.02 |
P2O5 | 0.10 | 0.24 |
ZrO2 | 0.10 | 0.09 |
PbO2 | 0.04 | 0.01 |
CaO | 0.03 | 1.26 |
CeO2 | 0.02 | 0.06 |
La2O3 | 0.01 | 0.03 |
SO3 | 0.01 | 0.68 |
Others | 3.04 | 5.11 |
Oxide | Additive | NaOH | KOH | Borax | ||||||
---|---|---|---|---|---|---|---|---|---|---|
- | 0% | 1% | 3% | 5% | 1% | 3% | 5% | 1% | 3% | 5% |
TiO2 | 64.96 | 66.34 | 66.24 | 65.95 | 66.46 | 66.30 | 66.06 | 66.21 | 66.02 | 65.86 |
Fe2O3 | 6.84 | 1.78 | 2.22 | 3.59 | 1.23 | 1.98 | 3.04 | 2.36 | 3.25 | 4.00 |
Fe | 19.10 | 22.63 | 22.32 | 21.37 | 23.02 | 22.49 | 21.75 | 22.23 | 21.61 | 21.08 |
MnO | 1.16 | 1.18 | 1.18 | 1.17 | 1.18 | 1.18 | 1.17 | 1.17 | 1.17 | 1.17 |
Al2O3 | 0.76 | 0.78 | 0.80 | 0.82 | 0.78 | 0.79 | 0.81 | 0.78 | 0.85 | 0.92 |
SiO2 | 0.66 | 0.67 | 0.71 | 0.75 | 0.67 | 0.70 | 0.72 | 0.74 | 0.77 | 0.79 |
MgO | 0.29 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
V2O5 | 0.27 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 |
Cr2O3 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
Others | 3.74 | 3.80 | 3.83 | 3.86 | 3.79 | 3.81 | 3.83 | 3.80 | 3.86 | 3.92 |
Property | NaOH | KOH | Borax |
---|---|---|---|
Electricity requirement (kWh/kg product) | 2.2 | 3.0 | 1.2 (mining/refining equivalent) |
Carbon footprint (current, kg CO2 e/kg) * | 1.1 | 1.5 | 0.6 |
Carbon footprint (green electricity, kg CO2 e/kg) * | ~0.05–0.10 | ~0.05–0.12 | 0.20–0.40 |
Energy demand | High; energy-intensive electrolysis process | High; similar to NaOH | High; mining and refining processes |
Recycle for activated carbon production | No | Yes | No |
Toxicity: Corrosivity/Acute hazard | 10 | 10 | 2 |
Toxicity: Acute oral | 4 | 3 | 2 |
Toxicity: Chronic | 2 | 2 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spencer, W.; Ibana, D.; Singh, P.; Nikoloski, A.N. Effect of Borax-, KOH-, and NaOH-Treated Coal on Reducing Carbon Waste and Activated Carbon Production in Synthetic Rutile Production from Ilmenite. Clean Technol. 2025, 7, 92. https://doi.org/10.3390/cleantechnol7040092
Spencer W, Ibana D, Singh P, Nikoloski AN. Effect of Borax-, KOH-, and NaOH-Treated Coal on Reducing Carbon Waste and Activated Carbon Production in Synthetic Rutile Production from Ilmenite. Clean Technologies. 2025; 7(4):92. https://doi.org/10.3390/cleantechnol7040092
Chicago/Turabian StyleSpencer, William, Don Ibana, Pritam Singh, and Aleksandar N. Nikoloski. 2025. "Effect of Borax-, KOH-, and NaOH-Treated Coal on Reducing Carbon Waste and Activated Carbon Production in Synthetic Rutile Production from Ilmenite" Clean Technologies 7, no. 4: 92. https://doi.org/10.3390/cleantechnol7040092
APA StyleSpencer, W., Ibana, D., Singh, P., & Nikoloski, A. N. (2025). Effect of Borax-, KOH-, and NaOH-Treated Coal on Reducing Carbon Waste and Activated Carbon Production in Synthetic Rutile Production from Ilmenite. Clean Technologies, 7(4), 92. https://doi.org/10.3390/cleantechnol7040092