Enhanced Biogas Production and Pathogen Reduction from Pig Manure Through Anaerobic Digestion: A Sustainable Approach for Urban Waste Management in Abidjan, Côte d’Ivoire
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites and Experimental Design
2.1.1. Site Selection and Characterization
2.1.2. Biodigester Setup and Operation
2.2. Sampling Strategy and Schedule
2.3. Biogas Production and Composition Analysis
2.3.1. Gas Volume Measurement
2.3.2. Gas Composition Analysis
2.3.3. Energy Potential Calculation
- EP: Energetic potential of biogas (in kWh/d, or in kJ/d with 1 kWh = 3600 kJ)
- Pbiogas: Daily production of biogas (in m3/d)
- % CH4: Percentage of methane
- LCVCH4: LCV of methane (in kWh/m3, or in kJ/m3 with 1 kWh = 3600 kJ)
2.4. Physicochemical Analysis
2.4.1. pH Measurement
2.4.2. Organic Load Parameters
2.4.3. Elemental Analysis
2.5. Microbiological Analysis
2.5.1. Microbial Enumeration
- N = Microbial load (CFU/g)
- ΣColonies = Sum of counted colonies
- V = Inoculum volume (mL)
- d = Lowest dilution considered
- n1, n2 = Number of plates at first and second dilutions considered
2.5.2. Molecular Identification
2.6. Statistical Analysis
3. Results
3.1. Biogas Production Performance
3.1.1. Temporal Production Patterns
3.1.2. Biogas Composition and Energy Potential
3.2. Process Chemistry and pH Dynamics
3.2.1. pH Evolution and Production Correlation
3.2.2. Organic Load Reduction
3.3. Mineral Element Dynamics
3.4. Pathogen Reduction and Microbial Dynamics
3.4.1. Complete Pathogen Elimination
3.4.2. Resistant Microbial Populations
3.5. Microbial Diversity and Ecophysiological Correlations
3.5.1. Phylogenetic Characterization of Bacterial Isolates
3.5.2. Relationships Between Microbial Load and Physicochemical Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Ab | Abobo Dokui |
BOD5 | 5-Day Biological Oxygen Demand |
Ca(OH)2 | Calcium Hydroxide |
CH4 | Methane |
CFU | Colony Forming Unit |
CO2 | Carbon Dioxide |
COD | Chemical Oxygen Demand |
EP | Energy Potential |
H2S | Hydrogen Sulfide |
HNO3 | Nitric Acid |
LCV | Lower Calorific Value |
MAB | Mesophilic Aerobic Bacteria |
PBk | Port Bouët Kamboukro |
References
- Hussain, F.; Ahmed, S.; Muhammad Zaigham Abbas Naqvi, S.; Awais, M.; Zhang, Y.; Zhang, H.; Raghavan, V.; Zang, Y.; Zhao, G.; Hu, J. Agricultural Non-Point Source Pollution: Comprehensive Analysis of Sources and Assessment Methods. Agriculture 2025, 15, 531. [Google Scholar] [CrossRef]
- Tadesse, S.T.; Oenema, O.; van Beek, C.; Ocho, F.L. Exploring the recycling of manure from urban livestock farms: A case study in Ethiopia. Front. Agric. Sci. Eng. 2021, 8, 159–174. [Google Scholar] [CrossRef]
- Asadu, A.N.; Chah, J.M.; Attamah, C.O.; Igbokwe, E.M. Knowledge of Hazards Associated With Urban Livestock Farming in Southeast Nigeria. Front. Vet. Sci. 2021, 8, 600299. [Google Scholar] [CrossRef]
- Abraham, A.; Mtewa, A.G.; Chiutula, C.; Mvula, R.L.S.; Maluwa, A.; Eregno, F.E.; Njalam’mano, J. Prevalence of Antibiotic Resistance Bacteria in Manure, Soil, and Vegetables in Urban Blantyre, Malawi, from a Farm-to-Fork Perspective. Int. J. Environ. Res. Public Health 2025, 22, 1273. [Google Scholar] [CrossRef] [PubMed]
- Gerba, C.P.; Smith, J.E., Jr. Sources of pathogenic microorganisms and their fate during land application of wastes. J. Environ. Qual. 2005, 34, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Hölzel, C.S.; Tetens, J.L.; Schwaiger, K. Unraveling the role of vegetables in spreading antimicrobial-resistant bacteria: A need for quantitative risk assessment. Foodborne Pathog. Dis. 2018, 15, 671–688. [Google Scholar] [CrossRef]
- Mahal, Z.; Yabar, H.; Mizunoya, T. Spatial Assessment of Greenhouse Gas Emissions and Eutrophication Potential from Livestock Manure in Bangladesh. Sustainability 2024, 16, 5479. [Google Scholar] [CrossRef]
- Delin, S.; Mårtensson, K.; Johnsson, H. Risk for nitrogen leaching after application of solid manure in autumn differs between manure types. Front. Environ. Sci. 2024, 12, 1488638. [Google Scholar] [CrossRef]
- Lan, W.; Yao, C.; Luo, F.; Jin, Z.; Lu, S.; Li, J.; Wang, X.; Hu, X. Effects of Application of Pig Manure on the Accumulation of Heavy Metals in Rice. Plants 2022, 11, 207. [Google Scholar] [CrossRef]
- Wan, Y.; Liu, J.; Zhuang, Z.; Wang, Q.; Li, H. Heavy Metals in Agricultural Soils: Sources, Influencing Factors, and Remediation Strategies. Toxics 2024, 12, 63. [Google Scholar] [CrossRef]
- Kabeyi, M.J.B.; Olanrewaju, O.A. Biogas Production and Applications in the Sustainable Energy Transition. J. Energy 2022, 2022, 8750221. [Google Scholar] [CrossRef]
- Romio, C.; Kofoed, M.V.W.; Møller, H.B. Digestate Post-Treatment Strategies for Additional Biogas Recovery: A Review. Sustainability 2021, 13, 9295. [Google Scholar] [CrossRef]
- Alengebawy, A.; Ran, Y.; Osman, A.I.; Jin, K.; Samer, M.; Ai, P. Anaerobic digestion of agricultural waste for biogas production and sustainable bioenergy recovery: A review. Environ. Chem. Lett. 2024, 22, 2641–2668. [Google Scholar] [CrossRef]
- Ma, G.; Chen, Y.; Ndegwa, P. Anaerobic digestion process deactivates major pathogens in biowaste: A meta-analysis. Renew. Sustain. Energy Rev. 2022, 153, 111752. [Google Scholar] [CrossRef]
- Angelidaki, I.; Treu, L.; Tsapekos, P.; Luo, G.; Campanaro, S.; Wenzel, H.; Kougias, P.G. Biogas upgrading and utilization: Current status and perspectives. Biotechnol. Adv. 2018, 36, 452–481. [Google Scholar] [CrossRef] [PubMed]
- Lansing, S.; Víquez, J.; Martínez, H.; Botero, R.; Martin, J. Quantifying electricity generation and waste transformations in a low-cost, plug-flow anaerobic digestion system. Ecol. Eng. 2008, 34, 332–348. [Google Scholar] [CrossRef]
- Trego, A.C.; Conall Holohan, B.; Keating, C.; Graham, A.; O’Connor, S.; Gerardo, M.; Hughes, D.; Ijaz, U.Z.; O’Flaherty, V. First proof of concept for full-scale, direct, low-temperature anaerobic treatment of municipal wastewater. Bioresour. Technol. 2021, 341, 125786. [Google Scholar] [CrossRef]
- Steiniger, B.; Hupfauf, S.; Insam, H.; Schaum, C. Exploring Anaerobic Digestion from Mesophilic to Thermophilic Temperatures—Operational and Microbial Aspects. Fermentation 2023, 9, 798. [Google Scholar] [CrossRef]
- Otto, P.; Puchol-Royo, R.; Ortega-Legarreta, A.; Tanner, K.; Tideman, J.; De Vries, S.J.; Pascual, J.; Porcar, M.; Latorre-Pérez, A.; Abendroth, C. Multivariate comparison of taxonomic, chemical and operational data from 80 different full-scale anaerobic digester-related systems. Biotechnol. Biofuels 2024, 17, 84. [Google Scholar] [CrossRef]
- Kadja, M.C.; Sourokou Sabi, S.; Dago, A.; Laleye, F.X.; Kane, Y. Assessment of Biosecurity in Confined Pig Farms in Urban and Peri-Urban Areas of Abidjan (Ivory Coast). Asian J. Adv. Agric. Res. 2021, 15, 45–55. [Google Scholar] [CrossRef]
- Babaei, A.; Shayegan, J. Effects of temperature and mixing modes on the performance of municipal solid waste anaerobic slurry digester. J. Environ. Health Sci. Eng. 2020, 17, 1077–1084. [Google Scholar] [CrossRef] [PubMed]
- Rajagopal, R.; Bele, V.; Saady, N.M.C.; Hickmann, F.M.W.; Goyette, B. Anaerobic Digestion of Pig-Manure Solids at Low Temperatures: Start-Up Strategies and Effects of Mode of Operation, Adapted Inoculum, and Bedding Material. Bioengineering 2022, 9, 435. [Google Scholar] [CrossRef]
- Lindmark, J.; Thorin, E.; Bel Fdhila, R.; Dahlquist, E. Effects of mixing on the result of anaerobic digestion: Review. Renew. Sustain. Energy Rev. 2014, 40, 1030–1047. [Google Scholar] [CrossRef]
- Pilarska, A.A.; Kulupa, T.; Kubiak, A.; Wolna-Maruwka, A.; Pilarski, K.; Niewiadomska, A. Anaerobic Digestion of Food Waste—A Short Review. Energies 2023, 16, 5742. [Google Scholar] [CrossRef]
- Lin, M.; Wang, A.; Ren, L.; Qiao, W.; Wandera, S.M.; Dong, R. Challenges of pathogen inactivation in animal manure through anaerobic digestion: A short review. Bioengineered 2022, 13, 1149–1161. [Google Scholar] [CrossRef]
- Tolessa, A. Current Status and Future Prospects of Small-Scale Household Biodigesters in Sub-Saharan Africa. J. Energy 2024, 2024, 5596028. [Google Scholar] [CrossRef]
- Gbadeyan, O.J.; Muthivhi, J.; Linganiso, L.Z.; Deenadayalu, N.; Alabi, O.O. Biogas production and techno-economic feasibility studies of setting up household biogas technology in Africa: A critical review. Energy Sci. Eng. 2024, 12, 4788–4806. [Google Scholar] [CrossRef]
- Robin, T.; Ehimen, E. Exploring the potential role of decentralised biogas plants in meeting energy needs in sub-Saharan African countries: A techno-economic systems analysis. Sustain. Energy Res. 2024, 11, 8. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef]
- International Energy Agency. World Energy Outlook 2021: From Poverty to Prosperity; OECD/IEA: Paris, France, 2021; Available online: https://iea.blob.core.windows.net/assets/4ed140c1-c3f3-4fd9-acae-789a4e14a23c/WorldEnergyOutlook2021.pdf (accessed on 5 May 2025).
- IRENA. Renewable Energy Capacity Statistics 2022; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2022; ISBN 978-92-9260-428-8. Available online: https://www.spr.pe/wp-content/uploads/2022/04/IRENA_RE_Capacity_Statistics_2022.pdf (accessed on 5 May 2025).
- Abatzoglou, N.; Boivin, S. A review of biogas purification processes. Biofuels Bioprod. Biorefin. 2009, 3, 42–71. [Google Scholar] [CrossRef]
- Petersson, A.; Wellinger, A. Biogas Upgrading Technologies–Developments and Innovations. IEA Bioenergy 2009, 20, 1–19. Available online: https://www.ieabioenergy.com/wp-content/uploads/2009/10/upgrading_rz_low_final.pdf (accessed on 5 May 2025).
- Bhatt, A.H.; Tao, L. Economic Perspectives of Biogas Production via Anaerobic Digestion. Bioengineering 2020, 7, 74. [Google Scholar] [CrossRef]
- UNFCCC. Small-Scale Methodology for Biogas/Biomass Thermal Applications for Households/Small Users. AMS-I.I. Version 2.0. United Nations Framework Convention on Climate Change. 2012. Available online: https://cdm.unfccc.int/UserManagement/FileStorage/62VXBWFC1O7QYMI0G98ZK3DEPTAUJS (accessed on 5 May 2025).
- World Health Organization. Food Safety. 4 October 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/food-safety (accessed on 20 August 2025).
- EPA. Environmental Regulations and Technology: Control of Pathogens and Vector Attraction in Sewage Sludge; EPA/625/R-92/013; U.S. Environmental Protection Agency: Washington, DC, USA, 2003. Available online: https://www.epa.gov/sites/default/files/2015-07/documents/epa-625-r-92-013.pdf (accessed on 5 May 2025).
- Grace, D.; Mutua, F.; Ochungo, P.; Kruska, R.; Jones, K.; Brierley, L.; Lapar, M.L.; Said, M.Y.; Herrero, M.; Phuc, P.M. Mapping of Poverty and Likely Zoonoses Hotspots. Zoonoses Project 4. Report to the UK Department for International Development; ILRI: Nairobi, Kenya, 2012; Available online: https://cgspace.cgiar.org/bitstreams/5166fc6a-b112-458a-bbbc-ec06f8a2be5d/download (accessed on 5 May 2025).
- World Health Organization. E. coli (STEC) [Fact Sheet]. 2018. Available online: https://www.who.int/news-room/fact-sheets/detail/e-coli (accessed on 5 May 2025).
- Ghosh, S.; Ramsden, S.J.; LaPara, T.M. The role of anaerobic digestion in controlling the release of tetracycline resistance genes and class 1 integrons from municipal wastewater treatment plants. Appl. Microbiol. Biotechnol. 2009, 84, 791–796. [Google Scholar] [CrossRef]
- Zou, Y.; Tu, W.; Wang, H.; Fang, T. Anaerobic digestion reduces extracellular antibiotic resistance genes in waste activated sludge: The effects of temperature and degradation mechanisms. Environ. Int. 2020, 143, 105980. [Google Scholar] [CrossRef]
- Flores-Orozco, D.; Tapia, D.R.; Apolo, E.J.; Cisneros, B.J. Meta-analysis reveals that operational parameters influence levels of antibiotic resistance genes during anaerobic digestion of animal manures. Sci. Total Environ. 2022, 814, 152711. [Google Scholar] [CrossRef]
- Bor, N.; Seguino, A.; Sentamu, D.N.; Chepyatich, D.; Akoko, J.M.; Muinde, P.; Thomas, L.F. Prevalence of Antibiotic Residues in Pork in Kenya and the Potential of Using Gross Pathological Lesions as a Risk-Based Approach to Predict Residues in Meat. Antibiotics 2023, 12, 492. [Google Scholar] [CrossRef]
- Kumar, D.J.P.; Mishra, R.K.; Chinnam, S.; Binnal, P.; Dwivedi, N. A comprehensive study on anaerobic digestion of organic solid waste: A review on configurations, operating parameters, techno-economic analysis and current trends. Biotechnol. Notes 2024, 5, 33–49. [Google Scholar] [CrossRef]
- Gonde, L.; Wickham, T.; Brink, H.G.; Nicol, W. pH-Based Control of Anaerobic Digestion to Maximise Ammonium Production in Liquid Digestate. Water 2023, 15, 417. [Google Scholar] [CrossRef]
- Elhabti, A.; Lalanne, M. La Biologie des Digesteurs: Guide Pédagogique à Destination des Exploitants D’unités de Méthanisation; ADEME: Bourgogne, French, 2014; Available online: https://aile.asso.fr/wp-content/uploads/2020/04/biologie-digesteurs-guide-2014.pdf (accessed on 20 August 2025).
- Chen, B.; Azman, S.; Crauwels, S.; Dewil, R.; Appels, L. Mild alkaline conditions affect digester performance and community dynamics during long-term exposure. Bioresour. Technol. 2024, 406, 131009. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Campuzano, S.; Guenne, A.; Mazéas, L.; Chapleur, O. Inhibition of anaerobic digestion by various ammonia sources resulted in subtle differences in metabolite dynamics. Chemosphere 2024, 351, 141157. [Google Scholar] [CrossRef] [PubMed]
- Rajagopal, R.; Massé, D.I.; Singh, G. A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresour. Technol. 2013, 143, 632–641. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; McAdam, E.; Zhang, Y.; Heaven, S.; Banks, C.; Longhurst, P. Ammonia inhibition and toxicity in anaerobic digestion: A critical review. J. Water Process Eng. 2019, 32, 100899. [Google Scholar] [CrossRef]
- Castro-Herrera, D.; Prost, K.; Schäfer, Y.; Kim, D.-G.; Yimer, F.; Tadesse, M.; Gebrehiwot, M.; Brüggemann, N. Nutrient dynamics during composting of human excreta, cattle manure, and organic waste affected by biochar. J. Environ. Qual. 2022, 51, 19–32. [Google Scholar] [CrossRef]
- Persson, T.; Rueda-Ayala, V.P. Phosphorus retention and agronomic efficiency of refined manure-based digestate—A review. Front. Sustain. Food Syst. 2022, 6, 993043. [Google Scholar] [CrossRef]
- Pranckietienė, I.; Navickas, K.; Venslauskas, K.; Jodaugienė, D.; Buivydas, E.; Žalys, B.; Vagusevičienė, I. The Effect of Digestate from Liquid Cow Manure on Spring Wheat Chlorophyll Content, Soil Properties, and Risk of Leaching. Agronomy 2023, 13, 626. [Google Scholar] [CrossRef]
- Tiquia, S.; Richard, T.; Honeyman, M. Carbon, nutrient, and mass loss during composting. Nutr. Cycl. Agroecosyst. 2002, 62, 15–24. [Google Scholar] [CrossRef]
- Nkoa, R. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: A review. Agron. Sustain. Dev. 2014, 34, 473–492. Available online: https://scispace.com/pdf/agricultural-benefits-and-environmental-risks-of-soil-tchjm9ygqa.pdf (accessed on 5 May 2025). [CrossRef]
- Weimers, K.; Bergstrand, K.-J.; Hultberg, M.; Asp, H. Liquid anaerobic digestate as sole nutrient source in soilless horticulture—Or spiked with mineral nutrients for improved plant growth. Front. Plant Sci. 2022, 13, 770179. [Google Scholar] [CrossRef]
- Häfner, F.; Hartung, J.; Möller, K. Digestate composition affecting N fertiliser value and C mineralisation. Waste Biomass Valorization 2022, 13, 3445–3462. [Google Scholar] [CrossRef]
- European Commission. Regulation (EU) 2019/1009 of the European Parliament and of the Council Laying Down Rules on the Making Available on the Market of EU Fertilising Products. Official Journal of the European Union, L 170/1. 2019. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02019R1009-20220716 (accessed on 5 May 2025).
- Gomez San Juan, M.; Harnett, S.; Albinelli, I. Sustainable and Circular Bioeconomy in the Climate Agenda: Opportunities to Transform Agrifood Systems; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Jurgutis, L.; Šlepetienė, A.; Šlepetys, J.; Cesevičienė, J. Towards a Full Circular Economy in Biogas Plants: Sustainable Management of Digestate for Growing Biomass Feedstocks and Use as Biofertilizer. Energies 2021, 14, 4272. [Google Scholar] [CrossRef]
- Martín-Sanz-Garrido, C.; Revuelta-Aramburu, M.; Morales-Polo, C.; Santos-Montes, A.M. Digestate from Spanish wholesale food markets: Valorization as biofertilizer and analysis of environmental impacts compared to synthetic fertilizers. Environ. Sci. Eur. 2025, 37, 134. [Google Scholar] [CrossRef]
- Ellen MacArthur Foundation. Cities and Circular Economy for Food; Ellen MacArthur Foundation: Isle of Wight, UK, 2019; Available online: https://content.ellenmacarthurfoundation.org/m/6136f12537e70e5b/original/Cities-and-circular-economy-for-food.pdf (accessed on 5 May 2025).
- Kesharwani, N.; Bajpai, S. Pilot scale anaerobic co-digestion at tropical ambient temperature of India: Digester performance and techno-economic assessment. Bioresour. Technol. Rep. 2021, 15, 100715. [Google Scholar] [CrossRef]
- Deago, E.; Ramírez, M.; Espino, K.; Nieto, D.; Barragán, M.; García, M.; Guevara-Cedeño, J. Optimizing Anaerobic Digestion at Ambient Temperatures: Energy Efficiency and Cost Reduction Potential in Panama. Water 2023, 15, 2653. [Google Scholar] [CrossRef]
- Ni, J.-Q. A review of household and industrial anaerobic digestion in Asia: Biogas development and safety incidents. Renew. Sustain. Energy Rev. 2024, 197, 114371. [Google Scholar] [CrossRef]
- Mapantsela, Y.; Mukumba, P.; Obileke, K.; Lethole, N. Portable Biogas Digester: A Review. Gases 2024, 4, 205–223. [Google Scholar] [CrossRef]
- Netherlands Ministry of Foreign Affairs SNV. Africa Biogas Partnership Programme (ABPP) Phase 2—Effect Evaluation (Final Report). Government of The Netherlands. 2019. Available online: https://www.government.nl/documents/reports/2019/05/13/africa-biogas-partnership-programme-abpp-phase-2---effect-evaluation (accessed on 20 August 2025).
- Partners for Innovation. Feasibility Study of Ghana Institutional Biogas Programme (WO46). Climate Support Facility. 2012. Available online: https://partnersforinnovation.com/wp-content/uploads/2022/02/Feasibility-study-of-Ghana-Institutional-Biogas-Programme1.pdf (accessed on 5 May 2025).
- Bajgain, S.; Shakya, I.; Mendis, M.S. The Nepal biogas support program: A successful model of public private partnership for rural household energy supply. Renew. Energy 2005, 30, 907–920. Available online: https://energypedia.info/images/9/91/The_Nepal_Biogas_Support_Program_-_A_Successful_Model_of_Public_Private_Partnerships_for_Rural_Household_Energy_Supply.pdf (accessed on 5 May 2025).
- Piadeh, F.; Offe, I.; Behzadian, K.; Rizzuto, J.P.; Bywater, A.; Córdoba-Pachón, J.-R.; Walker, M. A critical review for the impact of anaerobic digestion on the sustainable development goals. J. Environ. Manag. 2024, 349, 119458. [Google Scholar] [CrossRef]
Study Site | Total Production (m3) | Daily Production (m3) | Energy Potential (kWh/d) | |||
---|---|---|---|---|---|---|
65% CH4 | 76% CH4 | 80% CH4 | 82% CH4 | |||
Abobo | 16.31 | 0.29 | 1.88 | 2.20 | 2.32 | 2.37 |
Port-Bouët | 22.63 | 0.40 | 2.61 | 3.05 | 3.21 | 3.29 |
Studied Parameters | Localities | Concentration (mg/L) by Time (Days) | ||
---|---|---|---|---|
Day 0 | Day 28 | Day 56 | ||
Cd | Abobo | <10 | <10 | <10 |
Port-Bouët | <10 | <10 | <10 | |
Hg | Abobo | <10 | <10 | <10 |
Port-Bouët | <10 | <10 | <10 | |
Pb | Abobo | 23.5 ± 5.52 a | 22.1 ± 1.41 a | 22.9 ± 1.70 a |
Port-Bouët | <10 | <10 | <10 | |
Cr | Abobo | 42.65 ± 1.63 a | 39.8 ± 0.14 a | 38.3 ± 2.12 a |
Port-Bouët | 11.3 ± 0.99 a | <10 b | 13 ± 1.41 a | |
Cu | Abobo | 22.9 ± 2.54 b | 42.25 ± 1.06 a | 38.6 ± 2.12 a |
Port-Bouët | 45 ± 14.7 a | 49.95 ± 11.48 a | 65.7 ± 7.07 a | |
Zn | Abobo | 96.9 ± 2.40 b | 182.5 ± 14.84 a | 166 ± 5.65 a |
Port-Bouët | 413.5 ± 62.93 a | 392 ± 7.07 a | 500.5 ± 88.39 a | |
Fe | Abobo | 16,820 ± 1555.63 b | 25,400 ± 1357.64 b | 24,235 ± 162.63 a |
Port-Bouët | 3520 ± 212.13 a | 3295 ± 827.31 a | 4130 ± 848.53 a | |
K | Abobo | 4325 ± 134.35 a | 4960 ± 183.85 a | 3415 ± 162.63 b |
Port-Bouët | 17,395 ± 1562.71 a | 12,785 ± 1831.41 a | 16,185 ± 2807.21 a | |
P | Abobo | 8460 ± 721.25 b | 16,115 ± 1831.41 a | 18,650 ± 28.28 a |
Port-Bouët | 20,560 ± 3408.25 a | 25,335 ± 1166.73 a | 24,910 ± 5515.43 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
N’guessan, A.R.; Tra Bi, Y.C.; Yapo, E.G.-A.S.; Koffi, A.R.H.; Yebouet, F.O.; Campitelli, A.; Aka, B.; Djeni, N.T. Enhanced Biogas Production and Pathogen Reduction from Pig Manure Through Anaerobic Digestion: A Sustainable Approach for Urban Waste Management in Abidjan, Côte d’Ivoire. Clean Technol. 2025, 7, 89. https://doi.org/10.3390/cleantechnol7040089
N’guessan AR, Tra Bi YC, Yapo EG-AS, Koffi ARH, Yebouet FO, Campitelli A, Aka B, Djeni NT. Enhanced Biogas Production and Pathogen Reduction from Pig Manure Through Anaerobic Digestion: A Sustainable Approach for Urban Waste Management in Abidjan, Côte d’Ivoire. Clean Technologies. 2025; 7(4):89. https://doi.org/10.3390/cleantechnol7040089
Chicago/Turabian StyleN’guessan, Alane Romaric, Youan Charles Tra Bi, Edi Guy-Alain Serges Yapo, Akeyt Richmond Hervé Koffi, Franck Orlando Yebouet, Alessio Campitelli, Boko Aka, and N’Dédé Théodore Djeni. 2025. "Enhanced Biogas Production and Pathogen Reduction from Pig Manure Through Anaerobic Digestion: A Sustainable Approach for Urban Waste Management in Abidjan, Côte d’Ivoire" Clean Technologies 7, no. 4: 89. https://doi.org/10.3390/cleantechnol7040089
APA StyleN’guessan, A. R., Tra Bi, Y. C., Yapo, E. G.-A. S., Koffi, A. R. H., Yebouet, F. O., Campitelli, A., Aka, B., & Djeni, N. T. (2025). Enhanced Biogas Production and Pathogen Reduction from Pig Manure Through Anaerobic Digestion: A Sustainable Approach for Urban Waste Management in Abidjan, Côte d’Ivoire. Clean Technologies, 7(4), 89. https://doi.org/10.3390/cleantechnol7040089