Impact of Mining on River Water Quality in Roșia Montană Area, Romania, and the Use of Zeolites for Acid Mine Drainage Remediation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and the Sampling Points
2.2. River Water Sampling
2.3. Mine Water Sampling
2.4. Zeolite Characterization and Preparation
2.5. Analysis of the Physico-Chemical Parameters of River and Mine Water
2.5.1. Chemicals and Reagents
2.5.2. pH Value
2.5.3. Total Suspended Solids (TSS) [29]
2.5.4. Solids, Filterable Residue (FR) at 105 °C [30]
2.5.5. Dissolved Oxygen (DO) [31]
2.5.6. Biochemical Oxygen Demand (BOD5) [32]
2.5.7. Chemical Oxygen Demand (CODMn) [33]
2.5.8. Sulfate Content [34]
2.5.9. Metal Content [35]
2.6. Zeolite Composition
3. Results
3.1. Analysis of River Water in the Roșia Montană Area
3.2. Mine Water Analysis
3.3. Zeolite Analysis
3.4. Removal of Heavy Metal from Acid Mine Water Using Natural Zeolite
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Worlanyo, A.S.; Li, J. Evaluating the environmental and economic impact of mining for post-mined land restoration and land-use: A review. J. Environ. Manag. 2021, 279, 111623. [Google Scholar] [CrossRef] [PubMed]
- Rambabu, K.; Banat, F.; Pham, Q.M.; Ho, S.H.; Ren, N.Q.; Show, P.L. Biological remediation of acid mine drainage: Review of past trends and current outlook. Environ. Sci. Ecotechnol. 2020, 2, 100024. [Google Scholar] [CrossRef]
- Pollard, S. The Central European Mining Regions in the Early Modern Period. In Marginal Europe: The Contribution of Marginal Lands Since the Middle Ages; Oxford Academic: Oxford, UK, 1997. [Google Scholar] [CrossRef]
- Radebe, N.; Chipangamate, N. Mining industry risks, and future critical minerals and metals supply chain resilience in emerging markets. Resour. Policy 2024, 91, 104887. [Google Scholar] [CrossRef]
- Northey, S.A.; Mudd, G.M.; Saarivuori, E.; Wessman-Jääskeläinen, H.; Haque, N. Water footprinting and mining: Where are the limitations and opportunities? J. Clean. Prod. 2016, 135, 1098–1116. [Google Scholar] [CrossRef]
- Popa, M.; Glevitzky, M.; Popa, D.; Varvara, S.; Dumitrel, G.-A. Study on soil pollution with heavy metals near the river Ampoi, the Alba County. J. Environ. Prot. Ecol. 2012, 13, 2123–2129. [Google Scholar]
- Sharifi, S.A.; Zaeimdar, M.; Jozi, S.A.; Hejazi, R. Effects of Soil, Water and Air Pollution with Heavy Metal Ions Around Lead and Zinc Mining and Processing Factories. Water Air Soil Pollut. 2023, 234, 760. [Google Scholar] [CrossRef]
- Matebese, F.; Mosai, A.K.; Tutu, H.; Tshentu, Z.R. Mining wastewater treatment technologies and resource recovery techniques: A review. Heliyon 2024, 10, e24730. [Google Scholar] [CrossRef]
- Popa, M.; Dumitrel, G.-A.; Glevitzky, M.; Popa, D.-V. Anthropogenic Contamination of Water From Galda River—Alba County, Romania. Agric. Agric. Sci. Procedia 2015, 6, 446–452. [Google Scholar] [CrossRef]
- Masindi, V.; Foteinis, S.; Renforth, P.; Ndiritu, J.; Maree, J.P.; Tekere, M.; Chatzisymeon, E. Challenges and avenues for acid mine drainage treatment, beneficiation, and valorisation in circular economy: A review. Ecol. Eng. 2022, 183, 106740. [Google Scholar] [CrossRef]
- Neamtiu, I.A.; Al-Abed, S.R.; McKernan, J.L.; Baciu, C.L.; Gurzau, E.S.; Pogacean, A.O.; Bessler, S.M. Metal contamination in environmental media in residential areas around Romanian mining sites. Rev. Environ. Health 2017, 32, 215–220. [Google Scholar] [CrossRef]
- Dumitrel, G.A.; Glevitzky, M.; Popa, M.; Vica, M.L. Studies regarding the heavy metals pollution of streams and rivers in Rosia Montana Area, Romania. J. Environ. Prot. Ecol. 2015, 16, 850–860. [Google Scholar]
- Wolkersdorfer, C.; Mugova, E. Effects of Mining on Surface Water. In Encyclopedia of Inland Waters, 2nd ed.; Mehner, T., Tockner, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 170–188. [Google Scholar] [CrossRef]
- Mustafa, S.A.; Al-Rudainy, A.J.; Salman, N.M. Effect of environmental pollutants on fish health: An overview. Egypt. J. Aquat. Res. 2024, 50, 225–233. [Google Scholar] [CrossRef]
- Nyquist, J.; Greger, M. A field study of constructed wetlands for preventing and treating acid mine drainage. Ecol. Eng. 2009, 35, 630–642. [Google Scholar] [CrossRef]
- Grifasi, N.; Ziantoni, B.; Fino, D.; Piumetti, M. Fundamental properties and sustainable applications of the natural zeolite clinoptilolite. Environ. Sci. Pollut. Res. 2024. [Google Scholar] [CrossRef]
- Souza, I.M.S.; García-Villén, F.; Viseras, C.; Perger, S.B.C. Zeolites as Ingredients of Medicinal Products. Pharmaceutics 2023, 15, 1352. [Google Scholar] [CrossRef]
- Senila, M.; Cadar, O. Modification of natural zeolites and their applications for heavy metal removal from polluted environments: Challenges, recent advances, and perspectives. Heliyon 2024, 10, e25303. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Botella, E.; Valencia, S.; Rey, F. Zeolites in Adsorption Processes: State of the Art and Future Prospects. Chem. Rev. 2022, 122, 17647–17695. [Google Scholar] [CrossRef]
- Buzukashvili, S.; Sommerville, R.; Rowson, N.A.; Waters, K.E. An overview of zeolites synthesised from coal fly ash and their potential for extracting heavy metals from industrial wastewater. Can. Metall. Q. 2023, 63, 130–152. [Google Scholar] [CrossRef]
- Coman, M.; Oros, V.; Miloiu, E.; Taro, G.; Pop, R. Phytoremediation Possibilities for Contaminated Mining Areas from Romania. ProEnvironment 2009, 2, 203–207. [Google Scholar]
- Vințan, P.D. Theoretical and Experimental Research on Treatment and Monitoring Installations for Polluted Water Discharged from Closed and Rehabilitated Mining Waste Sites and Deposits. Ph.D. Thesis, University of Petroșani, Petroșani, Romania, 23 November 2019. (In Romanian). [Google Scholar]
- Zanin, E.; Scapinello, J.; de Oliveira, M.; Lazarotto Rambo, C.; Franscescon, F.; Freitas, L.; Muneron de Mello, J.M.; Fiori, M.A.; Oliveira, J.V.; Dal Magro, J. Adsorption of heavy metals from wastewater graphic industry using clinoptilolite zeolite as adsorbent. Process Saf. Environ. Prot. 2017, 105, 194–200. [Google Scholar] [CrossRef]
- Rakhym, A.B.; Seilkhanova, G.A.; Kurmanbayeva, T.S. Adsorption of lead (II) ions from water solutions with natural zeolite and chamotte clay. Mater. Today Proc. 2020, 31, 482–485. [Google Scholar] [CrossRef]
- Baciu, C.; Goossens, M.; Reusen, I.; Tote, C.; Delalieux, S.; Raymaekers, D.; Dobrota, C.; Pop, C.; Varga, I.; Roba, C.; et al. Report on Rosia Montana Case Study Investigations—Version 2. 2012. Available online: https://impactmin.geonardo.com/downloads/impactmin_d73.pdf (accessed on 3 March 2025).
- UNESCO World Heritage Centre—Decision 44 COM 8B.26 Roșia Montană Mining Landscape (Romania). Available online: https://whc.unesco.org/en/decisions/7945/accesed15.12.2024 (accessed on 15 December 2024).
- The Cadastral Atlas of Waters in Romania. Part 1—Hydro-Morphological Data on the Surface Hydrographic Network (In Romanian); National Water Council, Institute of Meteorology and Hydrology: Bucharest, Romania, 1992; Available online: http://www.geomorphologyonline.com/students_materials/GFR/books/1992_Atlasul-Cadastrului-Apelor-Din-Romania.zip (accessed on 12 May 2025).
- About Zeolite. Available online: https://zeolitesproduction.com/despre-zeolit/ (accessed on 10 December 2024).
- SR EN 872:2005; Water quality—Determination of Suspended Solids—Method by Filtration Through Glass Fibre Filters. BSI: London, UK, 2005. Available online: https://e-standard.eu/Search?q=872%3A2005+ (accessed on 1 May 2024).
- STAS 9187:1984; Surface, Underground and Waste Waters. Residuum Determination. ASRO: Bucharest, Romania, 1984; (In Romanian). Available online: https://e-standard.eu/en/standard/16815 (accessed on 3 May 2024).
- SR EN 25813:2000; Water Quality. Determination of Dissolved Oxygen. Iodometric Method. ASRO: Bucharest, Romania, 2000; (In Romanian). Available online: https://e-standard.eu/en/standard/25490 (accessed on 3 May 2024).
- SR EN 1899-2:2002; Water Quality—Determination of Biochemical Oxygen Demand After n Days (BODn)—Part 2: Method for Undiluted Samples (ISO 5815:1989, Modified). ASRO: Bucharest, Romania, 2002; (In Romanian). Available online: https://e-standard.eu/en/standard/27527 (accessed on 3 May 2024).
- SR EN ISO 8467:2001; Water Quality. Determination of Permanganate Index. International Organization for Standardization: Geneva, Switzerland, 2001. Available online: https://e-standard.eu/en/standard/26286 (accessed on 3 May 2024).
- APHA Method 4500-SO42−: Standard Methods for the Examination of Water and Wastewater. Available online: https://law.resource.org/pub/us/cfr/ibr/002/apha.method.4500-so42.1992.pdf (accessed on 6 May 2024).
- Glevitzky, M.; Bostan, R.; Vică, M.L.; Dumitrel, G.-A.; Corcheş, M.-T.; Popa, M.; Glevitzky, I.; Matei, H.-V. Environmental Contamination and Mining Impact: Physico-Chemical and Biological Characterization of Propolis as an Indicator of Pollution in the Roșia Montană Area, Romania. Plants 2025, 14, 866. [Google Scholar] [CrossRef] [PubMed]
- Order No. 161/2006—The Norm Regarding the Classification of Surface Water Quality in Order to Establish the Ecological Status of Water Bodies. (In Romanian). Available online: https://legislatie.just.ro/Public/DetaliiDocumentAfis/72574 (accessed on 4 October 2023).
- European Parliament; Council of the European Union. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy; Official Journal of the European Communities: Brussels, Belgium, 2000; Volume L327, pp. 1–72. [Google Scholar]
- NTPA-001/28.02.2002; Norms Concerning the Limits for Pollutant Loads in Industrial and Municipal Wastewater Discharged into Natural Receiving Bodies (In Romanian), Official Gazette of Romania, No. 187 of 20 March 2002. Available online: https://novainstal.ro/legislatie-mediu/normativ-ntpa-001-2002/ (accessed on 12 May 2025).
- Varvara, S.; Popa, M.; Bostan, R.; Damian, G. Preliminary Considerations on the Adsorption of Heavy Metals from Acidic Mine Drainage Using Natural Zeolite. J. Environ. Prot. Ecol. 2013, 14, 1506–1514. [Google Scholar]
- Radu, V.M.; Vîjdea, A.M.; Ivanov, A.A.; Alexe, V.E.; Dincă, G.; Cetean, V.M.; Filiuță, A.E. Research on the Closure and Remediation Processes of Mining Areas in Romania and Approaches to the Strategy for Heavy Metal Pollution Remediation. Sustainability 2023, 15, 15293. [Google Scholar] [CrossRef]
- Mining Law No. 85 of 18 March 2003, The Parliament of Romania, Published in: The Official Gazette No. 197 of 27 March 2003. Available online: https://legislatie.just.ro/Public/DetaliiDocument/42627 (accessed on 11 October 2024).
- Apostol, O.; Mäkelä, H.; Vinnari, E. Cultural sustainability and the construction of (in)commensurability: Cultural heritage at the Roşia Montană mining site. Crit. Perspect. Account. 2023, 97, 102577. [Google Scholar] [CrossRef]
- Anekwe, I.M.S.; Isa, Y.M. Bioremediation of acid mine drainage—Review. Alex. Eng. J. 2023, 65, 1047–1075. [Google Scholar] [CrossRef]
- Bănăduc, D.; Curtean-Bănăduc, A.; Cianfaglione, K.; Akeroyd, J.R.; Cioca, L.-I. Proposed Environmental Risk Management Elements in a Carpathian Valley Basin, within the Roşia Montană European Historical Mining Area. Int. J. Environ. Res. Public Health 2021, 18, 4565. [Google Scholar] [CrossRef] [PubMed]
- Viktorovich Larionov, M.; Haykaram Galstyan, M.; Garnik Ghukasyan, A.; Gagik Matevosyan, L.; Lendrush Hakobjanyan, I.; Arayik Gharibyan, P.; Yakhsibek Sayadyan, H.; Shahen Sargsyan, K. The ecological and sanitary-hygienic assessment of the river systems located in the technogenic polluted zone of the Caucasus. Egypt. J. Aquat. Res. 2024, 50, 189–199. [Google Scholar] [CrossRef]
- Friedel, M.J.; Tindall, J.A.; Sardan, D.; Fey, D.; Poptua, G.L. Reconnaissance Study of Water Quality in the Mining-Affected Aries River Basin, Romania. In U.S. Geological Survey Open-File Report; U.S. Geological Survey: Reston, VA, USA, 2008; p. 40. [Google Scholar]
- Bird, G.; Brewer, P.A.; Macklin, M.G.; Serban, M.; Balteanu, D.; Driga, B. Heavy metal contamination in the Arieş river catchment, western Romania: Implications for development of the Roşia Montană gold deposit. J. Geochem. Explor. 2005, 86, 26–48. [Google Scholar] [CrossRef]
- Levei, E.A.; Șenilă, M.; Miclean, M.; Abraham, B.; Roman, C.; Ștefănescu, L.; Moldovan, O.T. Influence of Rosia Poieni and Rosia Montana Mining Areas on the Water Quality of the Aries River. Environ. Eng. Manag. J. 2011, 10, 23–29. [Google Scholar] [CrossRef]
- Yang, Y.; Li, B.; Li, T.; Liu, P.; Zhang, B.; Che, L. A review of treatment technologies for acid mine drainage and sustainability assessment. J. Water Process Eng. 2023, 55, 104213. [Google Scholar] [CrossRef]
- Mosai, A.K.; Ndlovu, G.; Tutu, H. Improving acid mine drainage treatment by combining treatment technologies: A review. Sci. Total Environ. 2024, 919, 170806. [Google Scholar] [CrossRef]
- Decision No. 188 of 28 February 2002—Regulation on Establishing Pollutant Load Limits for Industrial and Urban Wastewater Discharged into Natural Receptors—NTPA 001/2002. Available online: https://legislatie.just.ro/Public/DetaliiDocument/98308 (accessed on 10 October 2024).
- Bálintová, M.; Singovszká, E.; Holub, M.; Demčák, Š. Influence of Acid Mine Drainage on Surface Water Quality. Water Resources in Slovakia: Part I. The Handbook of Environmental Chemistry; Negm, A., Zeleňáková, M., Eds.; Springer: Cham, Switzerland, 2018; Volume 69. [Google Scholar] [CrossRef]
- Hudson-Edwards, K.A.; Macklin, M.G.; Brewer, P.A.; Dennis, I.A. Science Report—Assessment of Metal Mining—Contaminated River Sediments in England and Wales. Available online: https://assets.publishing.service.gov.uk/media/5a7ba7dae5274a7318b90115/scho1108bozd-e-e.pdf (accessed on 2 April 2025).
- Sur, I.M.; Moldovan, A.; Micle, V.; Polyak, E.T. Assessment of Surface Water Quality in the Baia Mare Area, Romania. Water 2022, 14, 3118. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhang, C.; Su, P.; Tang, Y.; Huang, Z.; Ma, T. A review of acid mine drainage: Formation mechanism, treatment technology, typical engineering cases and resource utilization. Process Saf. Environ. Prot. 2023, 170, 1240–1260. [Google Scholar] [CrossRef]
- Brăhaița, I.-D. Passive Remedy Techniques for Acid Mining Waters Using Limestone and Plant. Ph.D. Thesis, “BABEŞ-BOLYAI” University Cluj-Napoca, Cluj-Napoca, Romania, 2020. (In Romanian). [Google Scholar]
- Motsi, T. Remediation of Acid Mine Drainage Using Natural Zeolite. Ph.D. Thesis, University of Birmingham, Birmingham, UK, March 2010. [Google Scholar]
- Xu, W.; Yang, H.; Mao, Q.; Luo, L.; Deng, Y. Removal of Heavy Metals from Acid Mine Drainage by Red Mud–Based Geopolymer Pervious Concrete: Batch and Long–Term Column Studies. Polymers 2022, 14, 5355. [Google Scholar] [CrossRef]
- Damian, G.; Varvara, S.; Bostan, R. Preliminary Investigations on the Use of Different Natural Sorbents for Removal of Heavy Metal from Acid Mine Drainage (Case Study: “Larga de Sus” Mine). Young Sci. J. 2013, 1, 95–104. [Google Scholar]
- Motsi, T.; Rowson, N.A.; Simmons, M.J.H. Adsorption of heavy metals from acid mine drainage by natural zeolite. Int. J. Miner. Process 2009, 92, 42–48. [Google Scholar] [CrossRef]
- Popa, M.; Glevitzky, I.; Dumitrel, G.-A.; Popa, D.; Virsta, A.; Glevitzky, M. Qualitative analysis and statistical models between spring water quality indicators in Alba County, Romania. Sci. Papers. Ser. E. Land Reclam. Earth Obs. Surv. Environ. Eng. 2022, 11, 358–366. [Google Scholar]
- Gluck, A. Mathematical Methods in the Chemical Industry; Tehnică Publishing House: Bucureşti, Romania, 1971; pp. 58–61. (In Romanian) [Google Scholar]
River | General Information About the Watercourse [27] | Detailed Data for the Sampling Points | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Length, km | Altitude, m | Average Slope, ‰ | Catchment Area, km² | Width, m | Depth, m | ||||||||
Upstream | Downstream | ||||||||||||
Roșia Montană | 8 | 1120 | 575 | 33 | 44 | 1A | 1B | 1C | 1A | 1B | 1C | ||
1 | 1.5 | 3 | 0.1 | 0.3 | 0.3 | ||||||||
Săliște (unsurveyed) | No data | No data | No data | No data | No data | 2A | 2B | 2A | 2B | ||||
0.5 | 1 | 0.1 | 0.2 | ||||||||||
Corna | 5 | 800 | 612 | 68 | 10 | 3A | 3B | 3C | 3A | 3B | 3C | ||
0.5 | 1 | 2 | 0.1 | 0.2 | 0.3 | ||||||||
Abrud | 24 | 1142 | 537 | 25 | 223 | 4A | 4B | 4C | 4D | 4A | 4B | 4C | 4D |
5 | 8 | 8 | 9 | 0.4 | 0.3 | 0.6 | 0.7 | ||||||
Arieș | 166 | 1108 | 264 | 5 | 3005 | 5A | 5B | 5A | 5B | ||||
24 | 30 | 0.8 | 0.7 |
River | Samples Code | Sampling Sites | Sampling Point Details |
---|---|---|---|
Roșia Montană | 1A | Upstream of the Tăul Mare Lake dam. | Upstream of Roșia Montană village, in an area unaffected by anthropogenic activities. |
1B | ~3.8 km upstream of its confluence with the Abrud River. | Upstream of the discharge site of acid mine drainage from the Gura Minei Gallery area. | |
1C | ~100 m upstream of its confluence with the Abrud River. | At the confluence area of the Roșia Montană River with the Abrud River, downstream of the discharge site of acid mine drainage from the Gura Minei Gallery area. | |
Săliște | 2A | Downstream of the Valea Seliștei tailings pond. | Downstream of the Valea Seliștei tailings pond, which is currently undergoing ecological restoration. |
2B | Upstream of its confluence with the Abrud River. | At the confluence area of the Valea Săliștei River with the Abrud River. | |
Corna | 3A | ~4.5 km upstream of its confluence with the Abrud River. | In the Corna village area, close to the site of the Roșia Montană quarry. |
3B | ~2.7 km upstream of its confluence with the Abrud River. | In the Bunta village area. | |
3C | ~0.4 km upstream of its confluence with the Abrud River. | In the Gura Cornei village area. | |
Abrud | 4A | ~0.15 km upstream of its confluence with the Corna River. | Upstream of the Abrud town. |
4B | ~0.48 km upstream of its confluence with the Valea Săliștei River. | In the Abrud Sat town area. | |
4C | ~0.58 km upstream of its confluence with the Roșia Montană River. | Upstream of the Gura Roșiei village. | |
4D | ~0.8 km upstream of its confluence with the Arieș River. | Upstream of the Vârși village. | |
Arieș | 5A | ~0.6 km upstream of its confluence with the Abrud River. | In the Boncești village area, near Câmpeni town. |
5B | ~0.7 km downstream of its confluence with the Abrud River. | In the town of Câmpeni, downstream of its confluence with the Abrud River. |
Sampling Sites | Month of Sampling | pH | DO, mg O2/L | BOD5, mg/L | CODMn, mg KMnO4/L | Sulfate, mg/L |
---|---|---|---|---|---|---|
River 1A at the source | February | 7.80 ± 0.11 | 9.05 ± 0.40 | 0.48 ± 0.10 | 25.06 ± 5.13 | 48.22 ± 2.05 |
May | 7,42 ± 0.08 | 9.47 ± 0.66 | 1.04 ± 0.24 | 17.95 ± 3.04 | 21.01 ± 1.18 | |
August | 6.34 ± 0.07 | 9.80 ± 0.50 | 0.19 ± 0.08 | 21.25 ± 3.85 | 33.85 ± 3.06 | |
November | 7.05 ± 0.09 | 9.53 ± 0.23 | 0.57 ± 0.10 | 17.49 ± 2.64 | 29.70 ± 1.93 | |
River 1B in the middle | February | 3.87 ± 0.04 | 9.66 ± 0.11 | 3.12 ± 0.32 | 20.11 ± 1.90 | 307.1 ± 6.64 |
May | 3,59 ± 0.08 | 8.40 ± 0.18 | 2.03 ± 0.14 | 18.20 ± 1.51 | 239.2 ± 5.27 | |
August | 2.80 ± 0.03 | 10.5 ± 0.89 | 2.62 ± 0.25 | 22.74 ± 2.23 | 197.7 ± 8.41 | |
November | 3.76 ± 0.05 | 9.32 ± 0.34 | 2.67 ± 0.21 | 16.63 ± 1.28 | 76.4 ± 5.23 | |
River 1C at the river mouth | February | 3.95 ± 0.07 | 8.61 ± 0.49 | 7.42 ± 0.87 | 20.43 ± 3.39 | 2185.1 ± 16.39 |
May | 2.69 ± 0.03 | 7.94 ± 0.10 | 9.45 ± 0.63 | 18.57 ± 4.17 | 3632.9 ± 28.20 | |
August | 3.03 ± 0.02 | 7.53 ± 0.59 | 6.54 ± 0.70 | 21.79 ± 2.73 | 2594.0 ± 21.17 | |
November | 3.81 ± 0.06 | 8.07 ± 0.78 | 5.16 ± 0.42 | 16.36 ± 3.40 | 1816.5 ± 15.44 | |
Water quality classes [36,37] | I | 6.5–8.5 | 8 | 3 | 5 | 60 |
II | 7 | 5 | 10 | 120 | ||
III | 5 | 7 | 20 | 250 | ||
IV | 4 | 20 | 50 | 300 | ||
V | <4 | >20 | >50 | >300 |
Sampling Sites | Month of Sampling | Cu, µg/L | Fe, mg/L | Zn, µg/L | Pb, µg/L | Cd, µg/L | As, µg/L | Mn, mg/L |
---|---|---|---|---|---|---|---|---|
River 1A at the source | February | <0.010 | 0.150 | 0.048 | <0.01 | 0.027 | <0.01 | 0.38 |
May | <0.010 | 0.104 | 0.065 | <0.01 | 0.020 | <0.01 | 0.64 | |
August | <0.010 | 0.230 | 0.051 | <0.01 | 0.055 | <0.01 | 0.75 | |
November | <0.010 | 0.167 | 0.530 | <0.01 | 0.041 | <0.01 | 0.45 | |
River 1B at the middle | February | 0.374 | 23.79 | 1.070 | <0.01 | 0.05 | 0.117 | 15.23 |
May | 0.820 | 38.90 | 1.632 | 0.01 | 0.02 | 0.134 | 14.78 | |
August | 0.903 | 44.02 | 1.890 | 0.01 | 0.06 | 0.148 | 21.36 | |
November | 0.210 | 29.16 | 1.903 | <0.01 | 0.04 | 0.075 | 16.41 | |
River 1C at the river mouth | February | 0.366 | 187.55 | 36.440 | 0.031 | 0.074 | 11.230 | 16.37 |
May | 0.147 | 346.09 | 55.324 | 0.039 | 0.020 | 27.60 | 17.14 | |
August | 0.595 | 207.01 | 51.190 | 0.035 | 0.034 | 13.12 | 22.81 | |
November | 0.281 | 195.47 | 46.526 | 0.030 | 0.026 | 10.553 | 18.07 | |
Water quality classes [36,37] | I | 0.005 | 0.020 | 0.0005 | 0.1 | 0.01 | 0.3 | 0.05 |
II | 0.010 | 0.030 | 0.001 | 0.2 | 0.02 | 0.5 | 0.10 | |
III | 0.025 | 0.050 | 0.002 | 0.5 | 0.05 | 1.0 | 0.30 | |
IV | 0.050 | 0.100 | 0.005 | 1.0 | 0.10 | 2.0 | 1 | |
V | >0.05 | >0.1 | >0.005 | >1.0 | >0.1 | >2.0 | >1.0 |
Sampling Sites | Month of Sampling | pH | DO, mg O2/L | BOD5, mg/L | CODMn, mg KMnO4/L | Sulfate, mg/L |
---|---|---|---|---|---|---|
River 2A at the source | February | 8.08 ± 0.13 | 10.34 ± 0.49 | 0.74 ± 0.20 | 8.73 ± 2.23 | 57.1 ± 1.7 |
May | 8.10 ± 0.06 | 9.42 ± 0.34 | 0.95 ± 0.23 | 5.52 ± 1.14 | 64.4 ± 0.9 | |
August | 7.51 ± 0.09 | 11.07 ± 0.53 | 1.48 ± 0.15 | 7.99 ± 1.62 | 71.4 ± 1.8 | |
November | 7.87 ± 0.10 | 9.35 ± 0.23 | 1.03 ± 0.23 | 6.38 ± 1.35 | 76.8 ± 1.30 | |
River 2B at the middle | February | 6.99 ± 0.07 | 8.11 ± 0.19 | 2.66 ± 0.31 | 10.80 ± 2.59 | 80.3 ± 1.07 |
May | 6.68 ± 0.05 | 10.01 ± 0.38 | 4.97 ± 0.47 | 6.99 ± 2.04 | 102.2 ± 2.19 | |
August | 6.52 ± 0.08 | 9.53 ± 0.21 | 2.10 ± 0.11 | 8.85 ± 1.73 | 79.6 ± 1.54 | |
November | 6.80 ± 0.02 | 9.46 ± 0.23 | 3.52 ± 0.29 | 7.07 ± 1.95 | 147.0 ± 2.03 |
Sampling Sites | Month of Sampling | Cu, µg/L | Fe, mg/L | Zn, µg/L | Pb, µg/L | Cd, µg/L | As, µg/L | Mn, mg/L |
River 2A at the source | February | 0.597 | 0.206 | 0.905 | 0.036 | 0.035 | 0.015 | 0.372 |
May | 0.420 | 0.318 | 1.402 | 0.028 | 0.026 | 0.022 | 0.414 | |
August | 0.738 | 0.248 | 1.517 | 0.034 | 0.038 | 0.024 | 0.815 | |
November | 0.651 | 0.145 | 2.060 | 0.025 | 0.021 | 0.019 | 0.649 | |
River 2B at the middle | February | 0.455 | 0.188 | 0.875 | 0.034 | 0.029 | 0.011 | 0.420 |
May | 0.391 | 0.305 | 1.365 | 0.023 | 0.025 | 0.018 | 0.491 | |
August | 0.712 | 0.223 | 1.324 | 0.031 | 0.033 | 0.021 | 0.688 | |
November | 0.624 | 0.132 | 1.984 | 0.022 | 0.015 | 0.017 | 0.722 |
Sampling Sites | Month of Sampling | pH | DO, mg O2/L | BOD5, mg/L | CODMn, mg KMnO4/L | Sulfate, mg/L |
---|---|---|---|---|---|---|
River 3A at the source | February | 4.21 ± 0.06 | 11.14 ± 0.34 | 5.56 ± 0.36 | 30.51 ± 4.54 | 106.4 ± 1.65 |
May | 3.46 ± 0.05 | 10.20 ± 0.27 | 7.00 ± 0.82 | 21.18 ± 2.19 | 158.6 ± 1.04 | |
August | 4.63 ± 0.03 | 10.83 ± 0.26 | 5.81 ± 0.61 | 19.59 ± 3.21 | 176.3 ± 1.27 | |
November | 4.70 ± 0.09 | 12.00 ± 0.38 | 6.08 ± 0.43 | 20.34 ± 4.83 | 182.8 ± 2.33 | |
River 3B at the middle | February | 6.18 ± 0.02 | 9.51 ± 0.41 | 6.37 ± 0.72 | 37.17 ± 5.57 | 631.0 ± 4.20 |
May | 5.90 ± 0.03 | 10.49 ± 0.52 | 7.49 ± 0.50 | 56.33 ± 8.16 | 2205.1 ± 17.28 | |
August | 6.29 ± 0.04 | 11.17 ± 0.60 | 7.24 ± 0.46 | 28.96 ± 3.76 | 1093.2 ± 8.59 | |
November | 6.47 ± 0.03 | 10.18 ± 0.33 | 8.05 ± 0.67 | 44.60 ± 7.00 | 820.5 ± 6.37 | |
River 3C at the river mouth | February | 7.51 ± 0.07 | 8.84 ± 0.19 | 4.03 ± 0.29 | 9.47 ± 2.41 | 185.9 ± 2.02 |
May | 7.04 ± 0.06 | 10.50 ± 0.24 | 3.95 ± 0.63 | 5.62 ± 1.58 | 265.4 ± 3.36 | |
August | 7.09 ± 0.08 | 9.11 ± 0.27 | 3.02 ± 0.54 | 7.58 ± 2.05 | 155.7 ± 1.68 | |
November | 7.22 ± 0.10 | 8.86 ± 0.18 | 3.69 ± 0.19 | 6.26 ± 2.60 | 154.8 ± 1.85 |
Sampling Sites | Month of Sampling | Cu, µg/L | Fe, mg/L | Zn, µg/L | Pb, µg/L | Cd, µg/L | As, µg/L | Mn, mg/L |
---|---|---|---|---|---|---|---|---|
River 3A at the source | February | <0.01 | 58.07 | 0.055 | <0.01 | <0.01 | 0.020 | 0.31 |
May | 0.012 | 70.19 | 0.080 | <0.01 | 0.02 | 0.028 | 0.43 | |
August | 0.020 | 46.40 | 0.092 | <0.01 | 0.02 | 0.029 | 0.69 | |
November | 0.018 | 32.18 | 0.107 | <0.01 | <0.01 | 0.022 | 0.24 | |
River 3B at the middle | February | 0.015 | 10.94 | 0.273 | <0.01 | <0.01 | 0.018 | 0.21 |
May | 0.057 | 36.10 | 0.281 | <0.01 | <0.01 | 0.020 | 0.68 | |
August | 0.024 | 17.89 | 0.284 | <0.01 | <0.01 | 0.024 | 0.94 | |
November | 0.300 | 10.23 | 0.336 | <0.01 | <0.01 | 0.027 | 0.67 | |
River 3C at the river mouth | February | <0.01 | 2.506 | 2.878 | <0.01 | <0.01 | 0.023 | 0.58 |
May | <0.01 | 0.851 | 5.189 | 0.013 | <0.01 | 0.015 | 0.91 | |
August | 0.013 | 4.162 | 3.402 | 0.029 | <0.01 | 0.021 | 1.36 | |
November | 0.011 | 2.803 | 2.910 | 0.022 | <0.01 | 0.016 | 0.42 |
Sampling Sites | Month of Sampling | pH | DO, mg O2/L | BOD5, mg/L | CODMn, mg KMnO4/L | Sulfate, mg/L |
---|---|---|---|---|---|---|
River 4A at the source—before the confluence with Corna River | February | 6.71 ± 0.13 | 11.04 ± 0.21 | 3.43 ± 0.35 | 0.65 ± 0.19 | 3.20 ± 0.43 |
May | 6.39 ± 0.06 | 10.90 ± 0.61 | 7.08 ± 0.71 | 8.22 ± 2.13 | 8.12 ± 0.93 | |
August | 6.52 ± 0.09 | 10.32 ± 0.23 | 5.16 ± 0.48 | 3.74 ± 0.90 | 6.26 ± 0.79 | |
November | 6.63 ± 0.10 | 10.08 ± 0.32 | 3.02 ± 0.22 | 0.92 ± 0.24 | 15.02 ± 1.06 | |
River 4B—before the confluence with Săliște River | February | 6.37 ± 0.04 | 8.94 ± 0.26 | 4.98 ± 0.30 | 1.83 ± 0.65 | 42.93 ± 1.64 |
May | 5.80 ± 0.05 | 9.55 ± 0.27 | 6.63 ± 0.49 | 9.77 ± 2.74 | 36.88 ± 1.81 | |
August | 5.65 ± 0.08 | 8.51 ± 0.14 | 5.11 ± 0.72 | 4.80 ± 1.49 | 71.44 ± 2.59 | |
November | 6.06 ± 0.07 | 9.26 ± 0.57 | 4.17 ± 0.55 | 2.21 ± 0.87 | 29.45 ± 1.31 | |
River 4C—before the confluence with Roșia Montană River | February | 5.14 ± 0.04 | 7.62 ± 0.33 | 6.09 ± 0.44 | 3.12 ± 0.70 | 77.53 ± 2.10 |
May | 4.78 ± 0.03 | 8.71 ± 0.36 | 7.15 ± 0.83 | 5.01 ± 1.35 | 68.15 ± 1.14 | |
August | 4.43 ± 0.05 | 6.98 ± 0.19 | 5.98 ± 0.76 | 6.16 ± 2.09 | 87.19 ± 2.25 | |
November | 4.92 ± 0.04 | 7.72 ± 0.26 | 6.16 ± 0.29 | 5.19 ± 1.16 | 184.56 ± 3.88 | |
River 4D—after the confluence with Roșia Montană River | February | 6.36 ± 0.06 | 5.46 ± 0.15 | 6.64 ± 0.41 | 0. 56 ± 0.10 | 191.34 ± 4.60 |
May | 6.21 ± 0.07 | 6.76 ± 0.23 | 7.52 ± 0.70 | 0.95 ± 0.34 | 243.93 ± 5.86 | |
August | 6.18 ± 0.05 | 4.19 ± 0.07 | 6.47 ± 0.35 | 3.88 ± 0.63 | 142.69 ± 3.42 | |
November | 6.44 ± 0.08 | 4.92 ± 0.12 | 5.59 ± 0.56 | 2.73 ± 0.42 | 97.34 ± 1.91 | |
February | 6.71 ± 0.13 | 11.04 ± 0.21 | 3.43 ± 0.35 | 0.65 ± 0.19 | 3.20 ± 0.43 |
Sampling Sites | Month of Sampling | Cu, µg/L | Fe, mg/L | Zn, µg/L | Pb, µg/L | Cd, µg/L | As, µg/L | Mn, mg/L |
---|---|---|---|---|---|---|---|---|
River 4A at the source—before the confluence with Corna River | February | 0.016 | 0.49 | 0.18 | <0.01 | <0.01 | <0.01 | 0.08 |
May | 0.010 | 0.95 | 0.32 | <0.01 | <0.01 | <0.01 | 0.07 | |
August | 0.027 | 0.42 | 0.12 | <0.01 | <0.01 | <0.01 | 0.27 | |
November | 0.035 | 057 | 0.10 | <0.01 | <0.01 | <0.01 | 0.16 | |
River 4B—before the confluence with Săliște River | February | 0.452 | 0.18 | 0.09 | <0.01 | <0.01 | <0.01 | 1.24 |
May | 0.058 | 0.15 | 0.19 | <0.01 | <0.01 | <0.01 | 1.06 | |
August | 0.054 | 0.17 | 0.27 | <0.01 | <0.01 | <0.01 | 1.54 | |
November | 0.410 | 0.14 | 0.12 | <0.01 | <0.01 | <0.01 | 1.29 | |
River 4C—before the confluence with Roșia Montană River | February | 0. 012 | 0.32 | 0.10 | <0.01 | <0.01 | <0.01 | 1.38 |
May | 0.075 | 1.09 | 0.12 | <0.01 | <0.01 | <0.01 | 1.65 | |
August | 0.043 | 0.33 | 0.08 | <0.01 | <0.01 | <0.01 | 1.84 | |
November | 0.014 | 0.21 | 0.11 | <0.01 | <0.01 | <0.01 | 1.42 | |
River 4D—after the confluence with Roșia Montană River | February | 0.071 | 1.89 | 0.51 | <0.01 | <0.01 | <0.01 | 4.57 |
May | 0.085 | 2.35 | 0.63 | <0.01 | <0.01 | <0.01 | 5.31 | |
August | 0.069 | 1.69 | 0.55 | <0.01 | <0.01 | <0.01 | 7.43 | |
November | 0.078 | 1.68 | 0.46 | <0.01 | <0.01 | <0.01 | 3.18 | |
February | 0.016 | 0.49 | 0.18 | <0.01 | <0.01 | <0.01 | 0.08 |
Sampling Sites | Month of Sampling | pH | DO, mg O2/L | BOD5, mg/L | CODMn, mg KMnO4/L | Sulfate, mg/L |
---|---|---|---|---|---|---|
River 5A before the confluence with the Abrud River. | February | 7.61 ± 0.08 | 12.13 ± 0.56 | 5.87 ± 0.41 | 17.9 ± 2.82 | 12.5 ± 1.55 |
May | 7.59 ± 0.06 | 12.44 ± 0.39 | 5.45 ± 0.42 | 18.20 ± 3.54 | 19.76 ± 1.79 | |
August | 7.48 ± 0.07 | 11.86 ± 0.21 | 5.60 ± 0.65 | 15.6 ± 3.24 | 36.14 ± 1.30 | |
November | 7.52 ± 0.09 | 11.76 ± 0.20 | 6.13 ± 0.70 | 19.7 ± 4.31 | 20.68 ± 1.85 | |
River 5B after the confluence with the Abrud River. | February | 5.90 ± 0.03 | 9.02 ± 0.15 | 6.09 ± 0.52 | 19.3 ± 4.42 | 80.49 ± 2.76 |
May | 6.83 ± 0.11 | 10,30 ± 0.22 | 7.02 ± 0.84 | 12.8 ± 2.79 | 93.12 ± 2.46 | |
August | 6.04 ± 0.07 | 8.11 ± 0.14 | 6.33 ± 0.31 | 24.1 ± 5.64 | 125.6 ± 4.69 | |
November | 5.52 ± 0.04 | 7.67 ± 0.17 | 6.71 ± 0.69 | 18.2 ± 3.18 | 74.24 ± 2.78 |
Sampling Sites | Month of Sampling | Cu, µg/L | Fe, mg/L | Zn, µg/L | Pb, µg/L | Cd, µg/L | As, µg/L | Mn, mg/L |
---|---|---|---|---|---|---|---|---|
River 5A at the source | February | 1.20 | 0.54 | 58.07 | 0.44 | 0.25 | 0.03 | 0.04 |
May | 0.9 | 0.96 | 162.6 | 0.49 | 0.44 | 0.06 | 0.08 | |
August | 1.1 | 1.08 | 154.2 | 0.45 | 0.37 | 0.10 | 0.12 | |
November | 1.4 | 0.72 | 71.1 | 0.63 | 0.51 | 0.07 | 0.03 | |
River 5B at the middle | February | 2.2 | 2.274 | 130.5 | 0.85 | 1.08 | 0.08 | 1.38 |
May | 4.4 | 3.099 | 172.1 | 1.04 | 2.20 | 0.05 | 2.06 | |
August | 2.7 | 2.43 | 124.7 | 1.12 | 1.10 | 0.11 | 2.37 | |
November | 3.0 | 1.59 | 143.0 | 0.78 | 0.97 | 0.07 | 1.61 |
Parameter | Value | Maximum Allowable Limit ** | UM |
---|---|---|---|
pH | 2.90 ± 0.02 | 6.5–8.8 | - |
Total Suspended Solids (TSS) | 38.0 ± 1.0 | 35 | mg/L |
Filtrable Residue at 105 °C (FR) | 1970.5 ± 15.4 | - | mg/L |
CODMn | 74.0 ± 4.3 | - | mgO2/L |
Fe | 510.2 ± 4.8 | 5 | mg/L |
Mn | 424.5 ± 6.4 | 1 | mg/L |
Zn | 19.0 ± 2.0 | 0.5 | mg/L |
Metal Ion | Equations of Statistical Models |
---|---|
Zinc | z = 20.0141 − 0.0072∙x − 0.1789·y − 4.2472·10−4·x·y + 5.0886·10−6·x2 − 0.0025·y2 |
Manganese | z = 386.8426 − 0.1086∙x + 6.3960·y − 0.0070·x·y + 9.0567·10−5·x2 − 0.4117·y2 |
Iron | z = 456.008 − 0.7841∙x − 34.0242·y + 0.0038·x·y + 4.1231 ·10−4·x2 + 1.0919·y2 |
Variable | σ2 | σ | R2 | R | |
---|---|---|---|---|---|
Metal Ion | |||||
Zinc | 1.808 | 1.345 | 0.862 | 0.928 | |
Manganese | 648.266 | 25.461 | 0.811 | 0.901 | |
Iron | 12,684 | 112.624 | 0.460 | 0.678 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glevitzky, M.; Bostan, R.; Varvara, S.; Corcheş, M.-T.; Dumitrel, G.-A.; Popa, M. Impact of Mining on River Water Quality in Roșia Montană Area, Romania, and the Use of Zeolites for Acid Mine Drainage Remediation. Clean Technol. 2025, 7, 41. https://doi.org/10.3390/cleantechnol7020041
Glevitzky M, Bostan R, Varvara S, Corcheş M-T, Dumitrel G-A, Popa M. Impact of Mining on River Water Quality in Roșia Montană Area, Romania, and the Use of Zeolites for Acid Mine Drainage Remediation. Clean Technologies. 2025; 7(2):41. https://doi.org/10.3390/cleantechnol7020041
Chicago/Turabian StyleGlevitzky, Mirel, Roxana Bostan, Simona Varvara, Mihai-Teopent Corcheş, Gabriela-Alina Dumitrel, and Maria Popa. 2025. "Impact of Mining on River Water Quality in Roșia Montană Area, Romania, and the Use of Zeolites for Acid Mine Drainage Remediation" Clean Technologies 7, no. 2: 41. https://doi.org/10.3390/cleantechnol7020041
APA StyleGlevitzky, M., Bostan, R., Varvara, S., Corcheş, M.-T., Dumitrel, G.-A., & Popa, M. (2025). Impact of Mining on River Water Quality in Roșia Montană Area, Romania, and the Use of Zeolites for Acid Mine Drainage Remediation. Clean Technologies, 7(2), 41. https://doi.org/10.3390/cleantechnol7020041