Floating Photovoltaics: A Review
Abstract
:1. Introduction
2. Methods
3. Technology Overview
3.1. Floating Structure
3.2. PV Module
3.3. Mooring
3.4. Cables
3.5. Installation
3.6. Location
4. Results and Discussion
4.1. Cooling Effect
4.2. Humidity
4.3. Water Evaporation
4.4. Impact on Water Quality
4.5. Land Use
4.6. Shading and Soiling
4.7. FPV Hybrid with (HPP)
4.8. Irrigation Ponds
4.9. Fresh Water vs. Marine Water
4.10. High Altitude
4.11. Desalination
4.12. Electric Vessels
4.13. Electrical Cabling
4.14. Submerged Photovoltaic (SPV)
5. Perspective
6. Conclusions
7. Future Scope
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FPV | floating photovoltaic |
GPV | ground-mounted photovoltaic |
HPP | hydroelectric power plant |
IEA | International Energy Agency |
PV | photovoltaic |
SPV | submerged photovoltaic |
References
- Olabi, A.G.; Abdelkareem, M.A. Renewable energy and climate change. Renew. Sustain. Energy Rev. 2022, 158, 112111. [Google Scholar] [CrossRef]
- Nundy, S.; Ghosh, A.; Mesloub, A.; Albaqawy, G.A.; Alnaim, M.M. Impact of COVID-19 pandemic on socio-economic, energy-environment and transport sector globally and sustainable development goal (SDG). J. Clean. Prod. 2021, 312, 127705. [Google Scholar] [CrossRef]
- Ghosh, A. Possibilities and Challenges for the Inclusion of the Electric Vehicle (EV) to Reduce the Carbon Footprint in the Transport Sector: A Review. Energies 2020, 13, 2602. [Google Scholar] [CrossRef]
- IEA; Solar, P.V. Technical Report; IEA: Paris, France, 2021. [Google Scholar]
- IRENA. Smart Electrification with Renewables: Driving the Transformation of Energy Services; Technical Report; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2022. [Google Scholar]
- Ghosh, A. Fenestration integrated BIPV (FIPV): A review. Solar Energy 2022, 237, 213–230. [Google Scholar] [CrossRef]
- Crago, C.L. Economics of Solar Power. In Oxford Research Encyclopedia of Environmental Science; Oxford University Press: Oxford, UK, 2021. [Google Scholar] [CrossRef]
- Chen, Y.k.; Kirkerud, J.G.; Bolkesjø, T.F. Balancing GHG mitigation and land-use conflicts: Alternative Northern European energy system scenarios. Appl. Energy 2022, 310, 118557. [Google Scholar] [CrossRef]
- Cuce, E.; Cuce, P.M.; Saboor, S.; Ghosh, A.; Sheikhnejad, Y. Floating PVs in Terms of Power Generation, Environmental Aspects, Market Potential, and Challenges. Sustainability 2022, 14, 2626. [Google Scholar] [CrossRef]
- Goswami, A.; Sadhu, P.; Goswami, U.; Sadhu, P.K. Floating solar power plant for sustainable development: A techno-economic analysis. Environ. Prog. Sustain. Energy 2019, 38. [Google Scholar] [CrossRef]
- Dwivedi, P.; Sudhakar, K.; Soni, A.; Solomin, E.; Kirpichnikova, I. Advanced cooling techniques of P.V. modules: A state of art. Case Stud. Therm. Eng. 2020, 21, 100674. [Google Scholar] [CrossRef]
- Sahu, A.; Yadav, N.; Sudhakar, K. Floating photovoltaic power plant: A review. Renew. Sustain. Energy Rev. 2016, 66, 815–824. [Google Scholar] [CrossRef]
- Liu, H.; Krishna, V.; Lun Leung, J.; Reindl, T.; Zhao, L. Field experience and performance analysis of floating PV technologies in the tropics. Prog. Photovoltaics Res. Appl. 2018, 26, 957–967. [Google Scholar] [CrossRef]
- Solar Energy Institute of Singapore. Where Sun Meets Water: Floating Solar Market Report; Technical report; World Bank: Washington, DC, USA, 2019. [Google Scholar]
- Cazzaniga, R.; Rosa-Clot, M. The booming of floating PV. Sol. Energy 2021, 219, 3–10. [Google Scholar] [CrossRef]
- Almeida, R.M.; Schmitt, R.; Grodsky, S.M.; Flecker, A.S.; Gomes, C.P.; Zhao, L.; Liu, H.; Barros, N.; Kelman, R.; McIntyre, P.B. Floating solar power could help fight climate change—Let us get it right. Nature 2022, 606, 246–249. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Wu, R.; Su, H. Design of floating photovoltaic power plant and its environmental effects in different stages: A review. J. Renew. Sustain. Energy 2021, 13, 062701. [Google Scholar] [CrossRef]
- Oliveira-Pinto, S.; Stokkermans, J. Assessment of the potential of different floating solar technologies—Overview and analysis of different case studies. Energy Convers. Manag. 2020, 211, 112747. [Google Scholar] [CrossRef]
- Rosa-Clot, P. FPV and Environmental Compatibility. In Floating PV Plants; Academic Press: Cambridge, MA, USA, 2020; pp. 101–118. [Google Scholar] [CrossRef]
- Alrashidi, H.; Issa, W.; Sellami, N.; Ghosh, A.; Mallick, T.K.; Sundaram, S. Performance assessment of cadmium telluride-based semi-transparent glazing for power saving in façade buildings. Energy Build. 2020, 215, 109585. [Google Scholar] [CrossRef]
- Alrashidi, H.; Ghosh, A.; Issa, W.; Sellami, N.; Mallick, T.K.; Sundaram, S. Thermal performance of semitransparent CdTe BIPV window at temperate climate. Sol. Energy 2020, 195, 536–543. [Google Scholar] [CrossRef]
- Alrashidi, H.; Ghosh, A.; Issa, W.; Sellami, N.; Mallick, T.K.; Sundaram, S. Evaluation of solar factor using spectral analysis for CdTe photovoltaic glazing. Mater. Lett. 2019, 237, 332–335. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A. Potential of building integrated and attached/applied photovoltaic (BIPV/BAPV) for adaptive less energy-hungry building’s skin: A comprehensive review. J. Clean. Prod. 2020, 276, 123343. [Google Scholar] [CrossRef]
- Ghosh, A.; Bhandari, S.; Sundaram, S.; Mallick, T.K. Carbon counter electrode mesoscopic ambient processed & characterised perovskite for adaptive BIPV fenestration. Renew. Energy 2020, 145, 2151–2158. [Google Scholar] [CrossRef]
- Selvaraj, P.; Ghosh, A.; Mallick, T.K.; Sundaram, S. Investigation of semi-transparent dye-sensitized solar cells for fenestration integration. Renew. Energy 2019, 141, 516–525. [Google Scholar] [CrossRef]
- Ghosh, A.; Selvaraj, P.; Sundaram, S.; Mallick, T.K. The colour rendering index and correlated colour temperature of dye-sensitized solar cell for adaptive glazing application. Sol. Energy 2018, 163, 537–544. [Google Scholar] [CrossRef]
- Bhandari, S.; Ghosh, A.; Roy, A.; Mallick, T.K.; Sundaram, S. Compelling temperature behaviour of carbon-perovskite solar cell for fenestration at various climates. Chem. Eng. J. Adv. 2022, 10, 100267. [Google Scholar] [CrossRef]
- Sharma, P.; Muni, B.; Sen, D. Design parameters of 10kw floating solar power plant. In Proceedings of the National Conference on Renewable Energy and Environment (NCREE-2015), Ghaziabad, India, 1 May 2015; Volume 2. [Google Scholar]
- Bellini, E. Financial Close for 181 MW Floating PV Plant in Taiwan-pv Magazine InternationalMagazine International. Available online: https://www.pv-magazine.com/2020/04/22/financial-close-for-181-mw-floating-pv-plant-in-taiwan/ (accessed on 14 March 2022).
- Lightsource. Lightsource’s First Floating Solar Project. Available online: https://www.lightsourcebp.com/uk/2016/03/lightsources-first-floating-solar-project-nears-completion/ (accessed on 15 March 2022).
- Charles Lawrence Kamuyu, W.; Lim, J.; Won, C.; Ahn, H. Prediction Model of Photovoltaic Module Temperature for Power Performance of Floating PVs. Energies 2018, 11, 447. [Google Scholar] [CrossRef] [Green Version]
- Bayrak, F.; Oztop, H.F.; Selimefendigil, F. Experimental study for the application of different cooling techniques in photovoltaic (PV) panels. Energy Convers. Manag. 2020, 212, 112789. [Google Scholar] [CrossRef]
- Cazzaniga, R.; Cicu, M.; Rosa-Clot, M.; Rosa-Clot, P.; Tina, G.; Ventura, C. Floating photovoltaic plants: Performance analysis and design solutions. Renew. Sustain. Energy Rev. 2018, 81, 1730–1741. [Google Scholar] [CrossRef]
- Dörenkämper, M.; Wahed, A.; Kumar, A.; de Jong, M.; Kroon, J.; Reindl, T. The cooling effect of floating PV in two different climate zones: A comparison of field test data from the Netherlands and Singapore. Sol. Energy 2021, 219, 15–23. [Google Scholar] [CrossRef]
- Pakyala, H.B.S. Floating Solar Potential Assessment. In Proceedings of the 2021 13th IEEE PES Asia Pacific Power & Energy Engineering Conference (APPEEC), Kerela, India, 23 November 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Gurfude, S.S.; Bhavitha, C.; Tanusha, D.; Mounika, D.; Gouda Kake, S.P.; SaiSudha, M.; Kulkarni, P.S. Techno-economic Analysis of 1 MWp Floating Solar PV Plant. In Proceedings of the 2020 IEEE First International Conference on Smart Technologies for Power, Energy and Control (STPEC), Nagpur, India, 25–26 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Sacramento, E.M.d.; Carvalho, P.C.; Araújo, J.C.; Riffel, D.B.; Corrêa, R.M.D.C.; Pinheiro Neto, J.S. Scenarios for use of floating photovoltaic plants in Brazilian reservoirs. IET Renew. Power Gener. 2015, 9, 1019–1024. [Google Scholar] [CrossRef]
- Choi, J.h.; Hyun, J.; Lee, W.; Bhang, B.G.; Min, Y.K.; Ahn, H.K. Power performance of high density photovoltaic module using energy balance model under high humidity environment. Sol. Energy 2021, 219, 50–57. [Google Scholar] [CrossRef]
- Abdelal, Q. Floating PV; an assessment of water quality and evaporation reduction in semi-arid regions. Int. J. Low-Carbon Technol. 2021, 16, 732–739. [Google Scholar] [CrossRef]
- Farrar, L.W.; Bahaj, A.B.S.; James, P.; Anwar, A.; Amdar, N. Floating solar PV to reduce water evaporation in water stressed regions and powering water pumping: Case study Jordan. Energy Convers. Manag. 2022, 260, 115598. [Google Scholar] [CrossRef]
- Abid, M.; Abid, Z.; Sagin, J.; Murtaza, R.; Sarbassov, D.; Shabbir, M. Prospects of floating photovoltaic technology and its implementation in Central and South Asian Countries. Int. J. Environ. Sci. Technol. 2019, 16, 1755–1762. [Google Scholar] [CrossRef]
- Agrawal, K.K.; Jha, S.K.; Mittal, R.K.; Vashishtha, S. Assessment of floating solar PV (FSPV) potential and water conservation: Case study on Rajghat Dam in Uttar Pradesh, India. Energy Sustain. Dev. 2022, 66, 287–295. [Google Scholar] [CrossRef]
- Fereshtehpour, M.; Javidi Sabbaghian, R.; Farrokhi, A.; Jovein, E.B.; Ebrahimi Sarindizaj, E. Evaluation of factors governing the use of floating solar system: A study on Iran’s important water infrastructures. Renew. Energy 2021, 171, 1171–1187. [Google Scholar] [CrossRef]
- Exley, G.; Hernandez, R.; Page, T.; Chipps, M.; Gambro, S.; Hersey, M.; Lake, R.; Zoannou, K.S.; Armstrong, A. Scientific and stakeholder evidence-based assessment: Ecosystem response to floating solar photovoltaics and implications for sustainability. Renew. Sustain. Energy Rev. 2021, 152, 111639. [Google Scholar] [CrossRef]
- Nagananthini, R.; Nagavinothini, R.; Balamurugan, P. Floating Photovoltaic Thin Film Technology—A Review. In Intelligent Manufacturing and Energy Sustainability; Springer: Singapore, 2020; pp. 329–338. [Google Scholar] [CrossRef]
- Haas, J.; Khalighi, J.; de la Fuente, A.; Gerbersdorf, S.; Nowak, W.; Chen, P.J. Floating photovoltaic plants: Ecological impacts versus hydropower operation flexibility. Energy Convers. Manag. 2020, 206, 112414. [Google Scholar] [CrossRef]
- Kumar, N.; Kanchikere, J.; Mallikarjun, P. Floatovoltaics: Towards Improved Energy Efficiency, Land and Water Management. Int. J. Civ. Eng. Technol. 2018, 9, 1089–1096. [Google Scholar]
- Trapani, K.; Millar, D.L.; Smith, H.C. Novel offshore application of photovoltaics in comparison to conventional marine renewable energy technologies. Renew. Energy 2013, 50, 879–888. [Google Scholar] [CrossRef]
- Hafeez, H.; Kashif Janjua, A.; Nisar, H.; Shakir, S.; Shahzad, N.; Waqas, A. Techno-economic perspective of a floating solar PV deployment over urban lakes: A case study of NUST lake Islamabad. Sol. Energy 2022, 231, 355–364. [Google Scholar] [CrossRef]
- Chowdhury, R.; Aowal, M.A.; Mostafa, S.M.G.; Rahman, M.A. Floating Solar Photovoltaic System: An Overview and their Feasibility at Kaptai in Rangamati. In Proceedings of the 2020 IEEE International Power and Renewable Energy Conference, Karunagappally, India, 30 October–1 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Ghosh, A. Soiling Losses: A Barrier for India’s Energy Security Dependency from Photovoltaic Power. Challenges 2020, 11, 9. [Google Scholar] [CrossRef]
- Chanchangi, Y.N.; Ghosh, A.; Sundaram, S.; Mallick, T.K. Angular dependencies of soiling loss on photovoltaic performance in Nigeria. Sol. Energy 2021, 225, 108–121. [Google Scholar] [CrossRef]
- Sengupta, S.; Ghosh, A.; Mallick, T.K.; Chanda, C.K.; Saha, H.; Bose, I.; Jana, J.; Sengupta, S. Model Based Generation Prediction of SPV Power Plant Due to Weather Stressed Soiling. Energies 2021, 14, 5305. [Google Scholar] [CrossRef]
- Chanchangi, Y.N.; Ghosh, A.; Baig, H.; Sundaram, S.; Mallick, T.K. Soiling on PV performance influenced by weather parameters in Northern Nigeria. Renew. Energy 2021, 180, 874–892. [Google Scholar] [CrossRef]
- Enaganti, P.K.; Bhattacharjee, A.; Ghosh, A.; Chanchangi, Y.N.; Chakraborty, C.; Mallick, T.K.; Goel, S. Experimental investigations for dust build-up on low-iron glass exterior and its effects on the performance of solar PV systems. Energy 2022, 239, 122213. [Google Scholar] [CrossRef]
- Nundy, S.; Ghosh, A.; Mallick, T.K. Hydrophilic and Superhydrophilic Self-Cleaning Coatings by Morphologically Varying ZnO Microstructures for Photovoltaic and Glazing Applications. ACS Omega 2020, 5, 1033–1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nundy, S.; Ghosh, A.; Tahir, A.; Mallick, T.K. Role of Hafnium Doping on Wetting Transition Tuning the Wettability Properties of ZnO and Doped Thin Films: Self-Cleaning Coating for Solar Application. ACS Appl. Mater. Interfaces 2021, 13. [Google Scholar] [CrossRef]
- IEA. Hydropower; Technical Report; IEA: Paris, France, 2021. [Google Scholar]
- ICOLD. World Register of Dams General Synthesis. 2019. Available online: https://www.icold-cigb.org/GB/world_register/general_synthesis.asp (accessed on 22 March 2022).
- Farfan, J.; Breyer, C. Combining Floating Solar Photovoltaic Power Plants and Hydropower Reservoirs: A Virtual Battery of Great Global Potential. Energy Procedia 2018, 155, 403–411. [Google Scholar] [CrossRef]
- Cazzaniga, R.; Rosa-Clot, M.; Rosa-Clot, P.; Tina, G.M. Integration of PV floating with hydroelectric power plants. Heliyon 2019, 5, e01918. [Google Scholar] [CrossRef] [Green Version]
- Lee, N.; Grunwald, U.; Rosenlieb, E.; Mirletz, H.; Aznar, A.; Spencer, R.; Cox, S. Hybrid floating solar photovoltaics-hydropower systems: Benefits and global assessment of technical potential. Renew. Energy 2020, 162, 1415–1427. [Google Scholar] [CrossRef]
- Quaranta, E.; Rosa-Clot, M.; Pistocchi, A. The Role of Floating PV in the Retrofitting of Existing Hydropower Plants and Evaporation Reduction. 2021. Available online: https://www.researchgate.net/profile/Emanuele-Quaranta/publication/353043174_The_role_of_floating_PV_in_the_retrofitting_of_existing_hydropower_plants_and_evaporation_reduction/links/60e6d6d41c28af345851e5f7/The-role-of-floating-PV-in-the-retrofitting-of-existing-hydropower-plants-and-evaporation-reduction.pdf (accessed on 18 May 2022).
- Asiaban, S.; Kayedpour, N.; Samani, A.E.; Bozalakov, D.; De Kooning, J.D.M.; Crevecoeur, G.; Vandevelde, L. Wind and Solar Intermittency and the Associated Integration Challenges: A Comprehensive Review Including the Status in the Belgian Power System. Energies 2021, 14, 2630. [Google Scholar] [CrossRef]
- Zhou, Y.; Chang, F.J.; Chang, L.C.; Lee, W.D.; Huang, A.; Xu, C.Y.; Guo, S. An advanced complementary scheme of floating photovoltaic and hydropower generation flourishing water-food-energy nexus synergies. Appl. Energy 2020, 275, 115389. [Google Scholar] [CrossRef]
- Gonzalez Sanchez, R.; Kougias, I.; Moner-Girona, M.; Fahl, F.; Jäger-Waldau, A. Assessment of floating solar photovoltaics potential in existing hydropower reservoirs in Africa. Renew. Energy 2021, 169, 687–699. [Google Scholar] [CrossRef]
- Mahmood, S.; Deilami, S.; Taghizadeh, S. Floating Solar PV and Hydropower in Australia: Feasibility, Future Investigations and Challenges. In Proceedings of the 2021 31st Australasian Universities Power Engineering Conference (AUPEC), Perth, WA, USA, 26–30 September 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Miah, M.A.R.; Rahman, S.R.; Kabir, R. Techno-Economic Analysis of Floating Solar PV Integrating with Hydropower Plant in Bangladesh. In Proceedings of the 2021 IEEE Green Technologies Conference (GreenTech), Denver, CO, USA, 7–9 April 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 30–36. [Google Scholar] [CrossRef]
- Rasool, M.; Khan, M.A.; Tahir, S.; Khan, S.A.; Saeed, T.B.; Shahid, E. Integration of Floating Solar PV (FSPV) with Proposed Hydroelectric Project: Technical Analysis of Taunsa Barrage for FSPV in South Punjab, Pakistan. In Proceedings of the 2020 IEEE 23rd International Multitopic Conference (INMIC), Bahawalpur, Pakistan, 5–7 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Silvério, N.M.; Barros, R.M.; Tiago Filho, G.L.; Redón-Santafé, M.; dos Santos, I.F.S.; de Mello Valerio, V.E. Use of floating PV plants for coordinated operation with hydropower plants: Case study of the hydroelectric plants of the São Francisco River basin. Energy Convers. Manag. 2018, 171, 339–349. [Google Scholar] [CrossRef]
- Ciel and Terre. Available online: https://dev.ciel-et-terre.net/ (accessed on 18 March 2022).
- Hooper, T.; Armstrong, A.; Vlaswinkel, B. Environmental impacts and benefits of marine floating solar. Sol. Energy 2021, 219, 11–14. [Google Scholar] [CrossRef]
- Swimsol. 2016. Available online: https://swimsol.com/solar-projects/floating-photovoltaic-offshore-solar-sea-power-pv-modular-96kwp/ (accessed on 18 March 2022).
- Bellini, E. Norwegian Floating PV Specialist Ocean Sun Plans IPO-pv Magazine International. Available online: https://www.pv-magazine.com/2020/10/12/norwegian-floating-pv-specialist-ocean-sun-plans-ipo/ (accessed on 18 March 2022).
- Oceans of Energy. A World’s First: Offshore Floating Solar Farm Installed at the Dutch North Sea-Oceans of Energy. Available online: https://oceansofenergy.blue/a-worlds-first-offshore-floating-solar-farm-installed-at-the-dutch-north-sea/ (accessed on 18 March 2022).
- Oceans Sun. Available online: https://oceansun.no/ (accessed on 18 March 2022).
- Piana, V.; Kahl, A.; Saviozzi, C.; Schumann, R. Floating PV in mountain artificial lakes: A checklist for site assessment. Renew. Energy Environ. Sustain. 2021, 6, 4. [Google Scholar] [CrossRef]
- Romande Energie. Available online: https://www.romande-energie.ch/images/files/communiques_archives/210107_communique_en.pdf (accessed on 20 March 2022).
- Kahl, A.; Dujardin, J.; Lehning, M. The bright side of PV production in snow-covered mountains. Proc. Natl. Acad. Sci. USA 2019, 116, 1162–1167. [Google Scholar] [CrossRef] [Green Version]
- Eyring, N.; Kittner, N. High-resolution electricity generation model demonstrates suitability of high-altitude floating solar power. iScience 2022, 25, 104394. [Google Scholar] [CrossRef]
- Skumanich, A.; Mints, P.; Ghiassi, M. Considerations for the use of PV and PT for sea water desalination: The viability of floating solar for this application. In Proceedings of the 2020 47th IEEE Photovoltaic Specialists Conference (PVSC), Calgary, ON, Canada, 15 June–21 August 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 633–635. [Google Scholar] [CrossRef]
- Tiwari, M.; Sruthy, V.; Preetha, P.K. Foldable Floating Solar Array for Electric Vessel. In Proceedings of the 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 20–22 August 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 586–593. [Google Scholar] [CrossRef]
- Klimley, A.P.; Putman, N.F.; Keller, B.A.; Noakes, D. A call to assess the impacts of electromagnetic fields from subsea cables on the movement ecology of marine migrants. Conserv. Sci. Pract. 2021, 3, e436. [Google Scholar] [CrossRef]
- Enaganti, P.K.; Dwivedi, P.K.; Sudha, R.; Srivastava, A.K.; Goel, S. Underwater Characterization and Monitoring of Amorphous and Monocrystalline Solar Cells in Diverse Water Settings. IEEE Sens. J. 2020, 20, 2730–2737. [Google Scholar] [CrossRef]
- Jamal, M.A.; Muaddi, J.A. Solar energy at various depths below a water surface. Int. J. Energy Res. 1990, 14, 859–867. [Google Scholar] [CrossRef]
- Jenkins, P.; Messenger, S.; Trautz, K.; Maximenko, S.; Goldstein, D.; Scheiman, D.; Walters, R. High band gap solar cells for underwater Photovoltaic applications. In Proceedings of the 2012 38th IEEE Photovoltaic Specialists Conference, Austin, TX, USA, 3–8 June 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 2061–2064. [Google Scholar] [CrossRef]
- Enaganti, P.K.; Soman, S.; Devan, S.S.; Pradhan, S.C.; Srivastava, A.K.; Pearce, J.M.; Goel, S. Dye-sensitized solar cells as promising candidates for underwater photovoltaic applications. Prog. Photovoltaics Res. Appl. 2022, 30, 632–639. [Google Scholar] [CrossRef]
- Clot, M.R.; Rosa-Clot, P.; Tina, G.M. Submerged PV Solar Panel for Swimming Pools: SP3. Energy Procedia 2017, 134, 567–576. [Google Scholar] [CrossRef]
- Spencer, R.S.; Macknick, J.; Aznar, A.; Warren, A.; Reese, M.O. Floating Photovoltaic Systems: Assessing the Technical Potential of Photovoltaic Systems on Man-Made Water Bodies in the Continental United States. Environ. Sci. Technol. 2019, 53, 1680–1689. [Google Scholar] [CrossRef] [PubMed]
- O’neil, C. Small City Sets Example for Floating Solar, Empowered by NREL Data Set. Available online: https://www.nrel.gov/news/program/2022/small-city-sets-example-for-floating-solar-empowered-by-nrel-data-set.html (accessed on 22 March 2022).
- Det Norske Veritas (DNV). Design, Development and Operation of Floating Solar Photovoltaic Systems. Technical Report. Available online: https://www.dnv.com/energy/standards-guidelines/dnv-rp-0584-design-development-and-operation-of-floating-solar-photovoltaic-systems.html (accessed on 18 May 2022).
Milestone | Year | Location | Size (kWp) |
---|---|---|---|
First FPV installation | 2007 | Aichi Province, Japan | 20 |
First FPV installation (nonresearched) | 2008 | Far Niente Winery, USA | 175 |
First tracking FPV installation | 2010 | Petra Winery, Italy | 200 |
First MW size FPV installation | 2013 | Saitama Prefecture, Japan | 1180 |
First FPV hybrid system with a hydroelectric power plant (HPP) | 2017 | Alto Rabagao Dam, Portugal | 220 |
Feature | Criteria |
---|---|
Weather | High irradiance |
Limited rain or fog | |
Wind speeds below 30 m/s | |
Location | No shadowing from mountains or surrounding buildings |
Convenient transportation | |
Convenient installation and maintenance | |
Close to electrical connection | |
Ground conditions | Consistent terrain |
Compact soil for anchoring | |
Water conditions | Limited waves |
Fresh water | |
Low hardness | |
Low salinity |
System | Opportunities | Threats |
---|---|---|
Physical | Reduced Evaporation | |
Reduced Water Temperature | ||
Reduced Sedimentation | ||
Continued Horizontal Mixing | ||
Chemical | Reduced Salinity | Anoxia |
Nitrification | ||
Release of Methane | ||
Release of Hydrogen Sulfide | ||
Release of Ammonia | ||
Release of Heavy Metals from Bed Sediments | ||
Biological | Reduced Algae Growth | Algal Biomass Peaks Delayed |
Reduced Faecal Coliforms E. Coli Concentrations | Algal Composition Modified | |
Reduced Predator Vigilance for Fish | Large Algal Blooms | |
Increased Zooplankton | Success of Blue-Green Algae Improved | |
Reduced Mixing and Turbidity | ||
Fish Die | ||
Shading Affects Fish Feeding |
Continent | Total Available Surface Area (km2) | Number of Bodies of Water Examined | Potential FPV Capacity with 1% Coverage (GWp) | Potential FPV Capacity with 5% Coverage (GWp) | Potential FPV Capacity with 10% Coverage (GWp) |
---|---|---|---|---|---|
Africa | 101,130 | 724 | 101 | 506 | 1011 |
Asia | 115,621 | 2941 | 116 | 578 | 1156 |
Europe | 20,424 | 1082 | 20 | 102 | 204 |
North America | 126,017 | 2248 | 126 | 630 | 1260 |
Oceania | 4991 | 254 | 5 | 25 | 50 |
South America | 36,271 | 299 | 36 | 181 | 363 |
Total | 404,454 | 6648 | 404 | 2022 | 4044 |
Topic | GPV | FPV |
---|---|---|
Cost | High land costs | Increased cost because of need for floats, anchoring, mooring, and plant design |
Dropping costs | Higher perceived risk because of technology maturity | |
Efficiency | Increased efficiency due to cooling | |
Soiling | Amount of soiling depends on the surrounding land | Lowered soiling compared to GPV |
Shading | Amount of shading depends on the surrounding landscape | Limited shading |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Essak, L.; Ghosh, A. Floating Photovoltaics: A Review. Clean Technol. 2022, 4, 752-769. https://doi.org/10.3390/cleantechnol4030046
Essak L, Ghosh A. Floating Photovoltaics: A Review. Clean Technologies. 2022; 4(3):752-769. https://doi.org/10.3390/cleantechnol4030046
Chicago/Turabian StyleEssak, Laura, and Aritra Ghosh. 2022. "Floating Photovoltaics: A Review" Clean Technologies 4, no. 3: 752-769. https://doi.org/10.3390/cleantechnol4030046
APA StyleEssak, L., & Ghosh, A. (2022). Floating Photovoltaics: A Review. Clean Technologies, 4(3), 752-769. https://doi.org/10.3390/cleantechnol4030046