A Simplified Model for Estimating Household Air Pollution in Challenging Contexts: A Case Study from Ghana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Design
- People, mainly women, who cooked for 3 h per meal, and 2 meals per day, were considered;
- Measurements taken far from smoke were considered to define PM2.5, PM10, and CO concentrations during non-cooking times.
- PMav, 24 = PM concentration as an average in 24 h;
- PMav, meas = average PM concentration measured in a given time (60 or 30 min for the case study);
- hcook = time of cooking per day, equal to 6 or 12, if 60 or 30 min are considered for the calculation of the average PM concentration, respectively;
- PMclean = PM concentration measured far away from smoke or during non-cooking times;
- hno cook = time without cooking per day, equal to 18 or 36 h, if 60 or 30 min are considered for the calculation of the average PM concentration, respectively;
- t = 24 or 48, if 60 or 30 min are considered for calculating the average PM concentration, respectively.
3. Results and Discussion
3.1. PM2.5, PM10, and CO Results
3.2. Comparison with International Guidelines
3.3. Health Outcome Considerations
3.4. Relevance of the Equation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. Special Edition: Progress towards the Sustainable Development Goals; United Nations: New York, NY, USA, 2019. [Google Scholar]
- World Health Organization. Household Air Pollution and Health. Available online: https://www.who.int/news-room/fact-sheets/detail/household-air-pollution-and-health (accessed on 11 January 2022).
- Liao, J.; McCracken, J.; Piedrahita, R.; Thompson, L.; Mollinedo, E.; Canuz, E.; De Léon, O.; Díaz-Artiga, A.; Johnson, M.; Clark, M.; et al. The Use of Bluetooth Low Energy Beacon Systems to Estimate Indirect Personal Exposure to Household Air Pollution. J. Expo. Sci. Environ. Epidemiol. 2020, 30, 990–1000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Ambient (Outdoor) Air Pollution. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 11 January 2022).
- World Health Organization. WHO Guidelines for Indoor Air Quality: Selected Pollutants; WHO Regional Office for Europe: Copenhagen, Denmark, 2010; ISBN 9789289002134. [Google Scholar]
- World Health Organization. Ambient (Outdoor) Air Quality and Health. Fact Sheet N°313; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Lee, K.; Spath, N.; Miller, M.; Mills, N.; Shah, A. Short-Term Exposure to Carbon Monoxide and Myocardial Infarction: A Systematic Review and Meta-Analysis. Environ. Int. 2020, 143, 105901. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Oh, J.; Lim, Y.; Kim, S.; Hong, Y. Long-Term Exposure to Fine Particulate Matter and Development of Chronic Obstructive Pulmonary Disease in the Elderly. Environ. Int. 2020, 143, 105895. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Bing, R.; Kiang, J.; Bashir, S.; Spath, N.; Stelzle, D.; Mortimer, K.; Bularga, A.; Doudesis, D.; Joshi, S.; et al. Adverse Health Effects Associated with Household Air Pollution: A Systematic Review, Meta-Analysis, and Burden Estimation Study. Lancet Glob. Health 2020, 8, e1427–e1434. [Google Scholar] [CrossRef]
- Wu, X.; Nethery, R.; Sabath, M.; Braun, D.; Dominici, F. Air Pollution and COVID-19 Mortality in the United States: Strengths and Limitations of an Ecological Regression Analysis. Sci. Adv. 2020, 6, eabd4049. [Google Scholar] [CrossRef]
- De Angelis, E.; Renzetti, S.; Volta, M.; Donato, F.; Calza, S.; Placidi, D.; Lucchini, R.; Rota, M. COVID-19 Incidence and Mortality in Lombardy, Italy: An Ecological Study on the Role of Air Pollution, Meteorological Factors, Demographic and Socioeconomic Variables. Environ. Res. 2021, 195, 110777. [Google Scholar] [CrossRef]
- Marquès, M.; Correig, E.; Ibarretxe, D.; Anoro, E.; Antonio Arroyo, J.; Jericó, C.; Borrallo, R.M.; la Miret, M.; Näf, S.; Pardo, A.; et al. Long-Term Exposure to PM10 above WHO Guidelines Exacerbates COVID-19 Severity and Mortality. Environ. Int. 2022, 158, 106930. [Google Scholar] [CrossRef]
- Piedrahita, R.; Coffey, E.; Hagar, Y.; Kanyomse, E.; Wiedinmyer, C.; Dickinson, K.; Oduro, A.; Hannigan, M. Exposures to Carbon Monoxide in a Cookstove Intervention in Northern Ghana. Atmosphere 2019, 10, 402. [Google Scholar] [CrossRef] [Green Version]
- Van Vliet, E.; Asante, K.; Jack, D.; Kinney, P.; Whyatt, R.; Chillrud, S.; Abokyi, L.; Zandoh, C.; Owusu-Agyei, S. Personal Exposures to Fine Particulate Matter and Black Carbon in Households Cooking with Biomass Fuels in Rural Ghana. Environ. Res. 2013, 127, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Wiedinmyer, C.; Dickinson, K.; Piedrahita, R.; Kanyomse, E.; Coffey, E.; Hannigan, M.; Alirigia, R.; Oduro, A. Rural–Urban Differences in Cooking Practices and Exposures in Northern Ghana. Environ. Res. Lett. 2017, 12, 065009. [Google Scholar] [CrossRef]
- Asante, K.; Kinney, P.; Zandoh, C.; Van Vliet, E.; Nettey, E.; Abokyi, L.; Owusu-Agyei, S.; Jack, D. Childhood Respiratory Morbidity and Cooking Practices among Households in a Predominantly Rural Area of Ghana. Afr. J. Infect. Dis. 2016, 10, 102–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vakalopoulos, A.; Dharmage, S.; Dharmaratne, S.; Jayasinghe, P.; Lall, O.; Ambrose, I.; Weerasooriya, R.; Buli, D.S.; Yasaratne, D.; Heyworth, J.; et al. Household Air Pollution from Biomass Fuel for Cooking and Adverse Fetal Growth Outcomes in Rural Sri Lanka. Int. J. Environ. Res. Public Health 2021, 18, 1878. [Google Scholar] [CrossRef]
- Arlington, L.; Patel, A.; Simmons, E.; Kurhe, K.; Prakash, A.; Rao, S.; Hibberd, P.L. Duration of Solid Fuel Cookstove Use Is Associated with Increased Risk of Acute Lower Respiratory Infec-Tion among Children under Six Months in Rural Central India. PLoS ONE 2019, 14, e0224374. [Google Scholar] [CrossRef]
- Lewis, J.; Pattanayak, S. Who Adopts Improved Fuels and Cookstoves? A Systematic Review. Environ. Health Perspect. 2012, 120, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Parmigiani, S.; Vitali, F.; Lezzi, A.; Vaccari, M. Sign and Performance Assessment of a Rice Husk Fueled Stove for Household Cooking in a Typical Sub-Saharan Setting. Energy Sustain. Dev. 2014, 23, 15–24. [Google Scholar] [CrossRef]
- Lehmann, U.; Dieleman, M.; Martineau, T. Staffing Remote Rural Areas in Middle- and Low-Income Countries: A Literature Review of Attraction and Retention. BMC Health Serv. Res. 2008, 8, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grajeda, L.; Thompson, L.; Arriaga, W.; Canuz, E.; Omer, S.; Sage, M.; Azziz-Baumgartner, E.; Bryan, J.; McCracken, J. Effectiveness of Gas and Chimney Biomass Stoves for Reducing Household Air Pollution Pregnancy Exposure in Guatemala: Sociodemographic Effect Modifiers. Int. J. Environ. Res. Public Health 2020, 17, 7723. [Google Scholar] [CrossRef] [PubMed]
- van Gemert, F.; de Jong, C.; Kirenga, B.; Musinguzi, P.; Buteme, S.; Sooronbaev, T.; Tabyshova, A.; Emilov, B.; Mademilov, M.; Le An, P.; et al. Effects and Acceptability of Implementing Improved Cookstoves and Heaters to Reduce Household Air Pollution: A FRESH AIR Study. NPJ Prim. Care Respir. Med. 2019, 29, 32. [Google Scholar] [CrossRef]
- de la Sota, C.; Lumbreras, J.; Pérez, N.; Ealo, M.; Kane, M.; Youm, I.; Viana, M. Indoor Air Pollution from Biomass Cookstoves in Rural Senegal. Energy Sustain. Dev. 2018, 43, 224–234. [Google Scholar] [CrossRef]
- Shaddick, G.; Thomas, M.; Green, A.; Brauer, M.; van Donkelaar, A.; Burnett, R.; Chang, H.H.; Cohen, A.; Van Dingenen, R.; Dora, C.; et al. Data Integration Model for Air Quality: A Hierarchical Approach to the Global Estimation of Exposures to Ambient Air Pollution. J. R. Stat. Soc. Ser. C Appl. Stat. 2018, 67, 231–253. [Google Scholar] [CrossRef]
- Steenland, K.; Pillarisetti, A.; Kirby, M.; Peel, J.; Clark, M.; Checkley, W.; Chang, H.; Clasen, T. Modeling the Potential Health Benefits of Lower Household Air Pollution after a Hypothetical Liquified Petroleum Gas (LPG) Cookstove Intervention. Environ. Int. 2018, 111, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Vinti, G.; Vaccari, M.; Tudor, T. Reducing Health Risks and Environmental Issues Using Solid Waste Best Practice and Improved Cookstoves among Rural Communities in Ghana; CeTAmb (University of Brescia): Brescia, Italy, 2020; ISBN 978-88-97307-17-4. [Google Scholar]
- Vinti, G.; Vaccari, M. PM10, PM2.5 and CO Concentrations in Smokes from Inefficient Cooking Systems in Rural Communities of Ghana and Health Implications. In Proceedings of the Venice 2020 8th International Symposium on Energy from Biomass and Waste, Venice, Italy, 16–19 November 2020. [Google Scholar]
- United Nations. World Population Prospects 2019. Data Booklet; United Nations: New York, NY, USA, 2019. [Google Scholar]
- World Bank. World Bank Country Classifications by Income Level: 2019–2020. Available online: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups (accessed on 2 May 2022).
- Miezah, K.; Obiri-Danso, K.; Kádár, Z.; Fei-Baffoe, B.; Mensah, M.Y. Municipal Solid Waste Characterization and Quantification as a Measure towards Effective Waste Management in Ghana. Waste Manag. 2015, 46, 15–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickinson, K.L.; Monaghan, A.J.; Rivera, I.J.; Al, E. Changing Weather and Climate in Northern Ghana: Comparison of Local Perceptions with Meteorological and Land Cover Data. Reg. Environ. Chang. 2017, 17, 915–928. [Google Scholar] [CrossRef]
- Evgenieva, T.; Kolev, N.; Savov, P.; Gurdev, L.; Grigorov, I.; Dreischuh, T. Characterization of the Aerosol Field over Sofia, Bulgaria, Using Contact and Passive-Remote-Sensing Methods and Instruments. J. Phys. Conf. Ser. 2022, 2240, 012028. [Google Scholar] [CrossRef]
- Popova, I.; Leonteva, L.; Danilov, I.; Marusin, A.; Marusin, A.; Makarova, I. Impact of Vehicular Pollution on the Arctic. Transp. Res. Procedia 2021, 57, 479–488. [Google Scholar] [CrossRef]
- The Environmental Protection Agency. Review of National Ambient Air Quality Standards for Carbon Monoxide: Final Rule; The Environmental Protection Agency: Washington, DC, USA, 2011.
- East Mamprusi District Assembly. District Medium Term Development Plan (2018–2021); East Mamprusi Municipal Assembly: Gambaga, Ghana, 2018. [Google Scholar]
- Zabzugu District Assembly. Medium Term-Development Plan (2018–2021); Draft Version; Zabzugu District Assembly: Zabzugu, Ghana, 2018.
- Lei, X.; Chen, R.; Wang, C.; Shi, J.; Zhao, Z.; Li, W.; Bachwenkizi, J.; Ge, W.; Sun, L.; Li, S.; et al. Necessity of Personal Sampling for Exposure Assessment on Specific Constituents of PM2.5: Results of a Panel Study in Shanghai, China. Environ. Int. 2020, 141, 105786. [Google Scholar] [CrossRef] [PubMed]
- Riveron, J.; Osae, M.; Egyir-Yawson, A.; Irving, H.; Ibrahim, S.; Wondji, C. Multiple Insecticide Resistance in the Major Malaria Vector Anopheles Funestus in Southern Ghana: Implications for Malaria Control. Parasites Vectors 2016, 9, 504. [Google Scholar] [CrossRef] [Green Version]
- Reyna-Bensusan, N.; Wilson, D.C.; Smith, S.R. Uncontrolled Burning of Solid Waste by Households in Mexico Is a Significant Contributor to Climate Change in the Country. Environ. Res. 2018, 163, 280–288. [Google Scholar] [CrossRef]
- Po, J.; Fitzgerald, J.; Carlsten, C. Respiratory Disease Associated with Solid Biomass Fuel Exposure in Rural Women and Children: Systematic Review and Meta-Analysis. Thorax 2011, 66, 232–239. [Google Scholar] [CrossRef] [Green Version]
- Martin, W.; Glass, R.; Araj, H.; Balbus, J.; Collins, F.; Curtis, S.; Diette, G.; Elwood, W.; Falk, H.; Hibberd, P.; et al. Household Air Pollution in Low- and Middle-Income Countries: Health Risks and Research Priorities. PLoS Med. 2013, 10, e1001455. [Google Scholar] [CrossRef] [Green Version]
- Smith, K.; McCracken, J.; Weber, M.; Hubbard, A.; Jenny, A.; Thompson, L.; Balmes, J.; Diaz, A.; Arana, B.; Bruce, N. Effect of Reduction in Household Air Pollution on Childhood Pneumonia in Guatemala (RESPIRE): A Randomised Controlled Trial. Lancet 2011, 378, 1717–1726. [Google Scholar] [CrossRef]
- Fullerton, D.; Semple, S.; Kalambo, F.; Suseno, A.; Malamba, R.; Henderson, G.; Ayres, J.; Gordon, S. Biomass Fuel Use and Indoor Air Pollution in Homes in Malawi. Occup. Environ. Med. 2009, 66, 777–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ni, K.; Carter, E.; Schauer, J.; Ezzati, M.; Zhang, Y.; Niu, H.; Lai, A.; Shan, M.; Wang, Y.; Yang, X.; et al. Seasonal Variation in Outdoor, Indoor, and Personal Air Pollution Exposures of Women Using Wood Stoves in the Tibetan Plateau: Baseline Assessment for an Energy Intervention Study. Environ. Int. 2016, 9, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Clasen, T.; Smith, K. Let the “A” in WASH Stand for Air: Integrating Research and Interventions to Improve Household Air Pollution (HAP) and Water, Sanitation and Hygiene (WaSH) in Low-Income Settings. Environ. Health Perspect. 2019, 127, 025001. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Coronavirus Disease (COVID-19). Latest Update 13 May 2021. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub/q-a-detail/coronavirus-disease-covid-19 (accessed on 11 January 2022).
Location | Observations | Time | PM2.5 [μg/m3] | PM10 [μg/m3] | CO [ppm] (SD) |
---|---|---|---|---|---|
Village A | Indoor, close to rural stoves | 16:07 | 87 | 164 | 16 (0.0) |
16:14 | 46 | 93 | 21 (1.4) | ||
16:22 | 64 | 107 | 12 (2.8) | ||
Village B | Courtyard, close to rural stoves | 12:47 | 98 | 140 | 8 (1.4) |
12:53 | 316 | 514 | 7 (0.0) | ||
12:59 | 61 | 89 | 11 (2.8) | ||
13:05 | 87 | 146 | 10 (0.0) | ||
13:11 | 163 | 268 | 8 (1.4) | ||
13:47 | 93 | 134 | 3 (1.4) | ||
Village B | Semi-enclosed space, close to rural stoves | 12:50 | 193 | 323 | 15 (4.2) |
12:56 | 1323 | 2000 a | 22 (0.0) | ||
13:02 | 385 | 645 | 18 (2.8) | ||
13:08 | 624 | 1047 | 12 (1.4) | ||
13:14 | 231 | 391 | 4 (1.4) | ||
13:50 | 70 | 102 | 4 (0.0) | ||
Village C | Outdoors, close to rural stoves | 12:33 | 34 | 55 | 10 (2.8) |
12:39 | 29 | 51 | 4 (1.4) | ||
12:45 | 23 | 43 | 3 (0.0) | ||
12:51 | 25 | 45 | 3 (0.0) | ||
12:57 | 28 | 51 | 3 (1.4) | ||
12:59 | 37 | 69 | 8 (1.4) | ||
13:03 | 31 | 52 | 3 (0.0) | ||
Village D | Outdoors, close to rural stoves | 13:55 | 15 | 28 | 4 (1.4) |
14:05 | 56 | 99 | 19 (2.8) | ||
14:15 | 17 | 35 | 2 (1.4) | ||
14:25 | 15 | 29 | 1 (0.0) | ||
Village E | Semi-enclosed space, close to rural stoves | 16:00 | 417 | 685 | 25 (1.4) |
16:03 | 375 | 618 | 22 (1.4) | ||
16:08 | 1490 | 2000 a | 25 (4.2) | ||
16:13 | 96 | 164 | 8 (1.4) | ||
16:18 | 144 | 238 | 14 (1.4) | ||
16:23 | 253 | 406 | 19 (1.4) | ||
16:28 | 299 | 481 | 18 (1.4) | ||
16:30 | 289 | 465 | 12 (0.0) |
Location | Further Notes | Time Interval [Minutes] | PM2.5 [μg/m3] (N; SD) | PM10 [μg/m3] (N; SD) | CO [ppm] (N; SD) |
---|---|---|---|---|---|
Village B | Courtyard, close to rural stoves | 60 | 136 (6; 94.3) | 215 (6: 158.1) | 8 (6; 2.8) |
Village B | Semi-enclosed space, close to rural stoves | 60 | 471 (6; 458.8) | 751 (6; 691.8) | 13 (6; 7.4) |
Village B | Far away from smoke | - | 23 (8; 2.7) | 43 (8; 5.4) | 2 (8; 0.6) |
Village C | Outdoors, close to rural stoves | 30 | 30 (7; 4.9) | 52 (7; 8.5) | 5 (7; 2.9) |
Village C | Far away from smoke | - | 21 (3; 0.6) | 39 (3; 0.6) | 2 (3; 0.0) |
Village D | Outdoors, close to rural stoves | 30 | 26 (4; 20.2) | 48 (4; 34.3) | 7 (4; 8.4) |
Village D | Far away from smoke | - | 18 (4; 1.5) | 34 (4; 4.2) | 3 (4; 0.6) |
Village E | Semi-enclosed space, close to rural stoves | 30 | 420 (8; 445.3) | 632 (8; 579.5) | 18 (8; 6.2) |
Village E | Far away from smoke | - | 15 (3; 5.0) | 28 (3; 8.0) | 2 (3; 0.6) |
Location | Further Notes | Concentration Using Equation (1) | Threshold Limits by WHO [5,6] | ||||
---|---|---|---|---|---|---|---|
PM2.5 [μg/m3] | PM10 [μg/m3] | CO [ppm] | PM2.5 [μg/m3] | PM10 [μg/m3] | CO [ppm] | ||
Village B | Courtyard, close to rural stoves | 51 | 86 | 4 | 25 | 50 | 7 |
Village B | Semi-enclosed space, close to rural stoves | 135 | 220 | 5 | |||
Village C | Outdoors, close to rural stoves | 23 | 43 | 3 | |||
Village D | Outdoors, close to rural stoves | 20 | 37 | 4 | |||
Village E | Semi-enclosed space, close to rural stoves | 116 | 179 | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vinti, G.; Vaccari, M. A Simplified Model for Estimating Household Air Pollution in Challenging Contexts: A Case Study from Ghana. Clean Technol. 2022, 4, 703-713. https://doi.org/10.3390/cleantechnol4030043
Vinti G, Vaccari M. A Simplified Model for Estimating Household Air Pollution in Challenging Contexts: A Case Study from Ghana. Clean Technologies. 2022; 4(3):703-713. https://doi.org/10.3390/cleantechnol4030043
Chicago/Turabian StyleVinti, Giovanni, and Mentore Vaccari. 2022. "A Simplified Model for Estimating Household Air Pollution in Challenging Contexts: A Case Study from Ghana" Clean Technologies 4, no. 3: 703-713. https://doi.org/10.3390/cleantechnol4030043
APA StyleVinti, G., & Vaccari, M. (2022). A Simplified Model for Estimating Household Air Pollution in Challenging Contexts: A Case Study from Ghana. Clean Technologies, 4(3), 703-713. https://doi.org/10.3390/cleantechnol4030043