Adsorption of Lead from Aqueous Solution by Biochar: A Review
Abstract
:1. Introduction
2. Feedstocks for Biochar Production
3. Modification Methodology
3.1. Biological Modification
3.2. Physical Modification
3.3. Chemical Modification
3.3.1. Metal Salt Modification
3.3.2. Acid Modification
3.3.3. Alkali Modification
3.3.4. Metal Oxide Modification
3.3.5. Organic Matter Modification
3.4. Comparison of Different Modification Methods
4. Adsorption Isotherm and Kinetics
4.1. Adsorption Isotherm
4.2. Adsorption Kinetics
5. Pb Removal Mechanisms by Biochar
5.1. Precipitation
5.2. Surface Complexation
5.3. Ion Exchange
5.4. Electrostatic Interaction
5.5. Chemical Bond
5.6. Physical Adsorption
6. Problems and Future Perspectives
- The current studies on the reusability of biochar and the interference of other ions in solution should be strengthened. Meanwhile, the effects of other heavy metals, such as copper and cadmium, on Pb adsorption need to be studied more carefully to facilitate the simultaneous removal of multiple heavy metals.
- The current research on the Pb adsorption by biochar in wastewater has a large gap with the real Pb polluted water. Thus, the experimental research consistent with the actual polluted water should be promoted.
- The research content of Pb removal mechanism by biochar remains basically unchanged. The main removal mechanisms include ion exchange, surface complexation, electrostatic adsorption, etc. There is a lack of feedback and improvement processes. Besides, the establishment of analytical models between the preparation conditions and the adsorption capacity might help design experiments more rationally.
- The morphology and stability of Pb on the biochar surface need to be explored after adsorption, and the Pb leaching in the solution also needs to be studied in detail.
7. Conclusions
- The results show that different raw materials had different physical and chemical properties. The most popular raw material of biochar for wastewater treatment was agricultural waste, accounting for about 50%.
- The modification methods of biochar were mainly divided into physical and chemical modification. Among them, the chemical modification was the most widely used and had better effect. At the same time, there were many kinds of modifiers, and the most widely used modifier was metal salt.
- According to the study of removal mechanism, the results show that the Pb adsorption by biochar mostly conforms to the Langmuir model, and most of the studies on adsorption kinetics are in line with the pseudo-second-order model.
- Although there were many types of Pb removal mechanisms by biochar in wastewater, precipitation, complexation, ion exchange, and electrostatic attraction are the four main removal mechanisms.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bogusz, A.; Oleszczuk, P.; Dobrowolski, R. Application of laboratory prepared and commercially available biochars to ad-sorption of cadmium, copper and zinc ions from water. Bioresour. Technol. 2015, 196, 540–549. [Google Scholar] [CrossRef] [PubMed]
- Loría, K.C.; Emiliani, J.; Bergara, C.D.; Herrero, M.S.; Salvatierra, L.M.; Pérez, L.M. Effect of daily exposure to Pb-contaminated water on Salvinia biloba physiology and phytoremediation performance. Aquat. Toxicol. 2019, 210, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Hashem, A.; Fletcher, A.; Younis, H.; Mauof, H.; Abou-Okeil, A. Adsorption of Pb (II) ions from contaminated water by 1,2,3,4-butanetetracarboxylic acid-modified microcrystalline cellulose: Isotherms, kinetics, and thermodynamic studies. Int. J. Biol. Macromol. 2020, 164, 3193–3203. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.H.; Wang, S.; Wei, J.; Zhang, X.; Xu, C.; Luan, Z.; Wu, D.; Wei, B. Lead adsorption on carbon nanotubes. Chem. Phys. Lett. 2002, 357, 263–266. [Google Scholar] [CrossRef]
- Xie, Y.; Yuan, X.; Wu, Z.; Zeng, G.; Jiang, L.; Peng, X.; Li, H. Adsorption behavior and mechanism of Mg/Fe layered double hy-droxide with Fe3O4-carbon spheres on the removal of Pb (II) and Cu (II). J. Colloid Interface Sci. 2019, 536, 440–455. [Google Scholar] [CrossRef]
- Qu, J.; Meng, Q.; Lin, X.; Han, W.; Jiang, Q.; Wang, L.; Hu, Q.; Zhang, L.; Zhang, Y. Microwave-assisted synthesis of beta-cyclodextrin functionalized celluloses for enhanced removal of Pb (II) from water: Adsorptive performance and mechanism exploration. Sci. Total Environ. 2020, 752, 141854. [Google Scholar] [CrossRef]
- Wang, L.; Lei, T.; Ren, Z.; Jiang, X.; Yang, X.; Bai, H.; Wang, S. Fe3O4@PDA@MnO2 core-shell nanocomposites for sensitive elec-trochemical detection of trace Pb (II) in water. J. Electroanal. Chem. 2020, 864, 114065. [Google Scholar] [CrossRef]
- Dai, K.; Liu, G.; Xu, W.; Deng, Z.; Wu, Y.; Zhao, C.; Zhang, Z. Judicious fabrication of bifunctionalized graphene oxide/MnFe2O4 magnetic nanohybrids for enhanced removal of Pb (II) from water. J. Colloid Interface Sci. 2020, 579, 815–822. [Google Scholar] [CrossRef]
- Awual, M.R.; Hasan, M.M.; Islam, A.; Rahman, M.M.; Asiri, A.M.; Khaleque, M.A.; Sheikh, M.C. Offering an innovative composited material for effective lead (II) monitoring and removal from polluted water. J. Clean. Prod. 2019, 231, 214–223. [Google Scholar] [CrossRef]
- Goyal, P.; Tiwary, C.S.; Misra, S.K. Ion exchange based approach for rapid and selective Pb (II) removal using iron oxide dec-orated metal organic framework hybrid. J. Environ. Manag. 2020, 277, 111469. [Google Scholar] [CrossRef]
- Huang, L.; Wu, B.; Wu, Y.; Yang, Z.; Yuan, T.; Alhassan, S.I.; Yang, W.; Wang, H.; Zhang, L. Porous and flexible membrane derived from ZIF-8-decorated hyphae for outstanding adsorption of Pb2+ ion. J. Colloid Interface Sci. 2020, 565, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Németh, G.; Mlinárik, L.; Török, Á. Adsorption and chemical precipitation of lead and zinc from contaminated solutions in porous rocks: Possible application in environmental protection. J. Afr. Earth Sci. 2016, 122, 98–106. [Google Scholar] [CrossRef]
- Zhang, S.; Shi, Q.; Christodoulatos, C.; Korfiatis, G.; Meng, X. Adsorptive filtration of lead by electrospun PVA/PAA nanofiber membranes in a fixed-bed column. Chem. Eng. J. 2019, 370, 1262–1273. [Google Scholar] [CrossRef]
- Al-Shannag, M.; Al-Qodah, Z.; Bani-Melhem, K.; Qtaishat, M.R.; Alkasrawi, M. Heavy metal ions removal from metal plating wastewater using electrocoagulation: Kinetic study and process performance. Chem. Eng. J. 2015, 260, 749–756. [Google Scholar] [CrossRef]
- Pang, F.M.; Kumar, P.; Teng, T.T.; Omar, A.K.M.; Wasewar, K.L. Removal of lead, zinc and iron by coagulation–flocculation. J. Taiwan Inst. Chem. Eng. 2011, 42, 809–815. [Google Scholar] [CrossRef]
- Yogeshwaran, V.; Priya, A. Adsorption of lead ion concentration from the aqueous solution using tobacco leaves. Mater. Today Proc. 2020, 37, 489–496. [Google Scholar] [CrossRef]
- Kuganathan, N.; Anurakavan, S.; Abiman, P.; Iyngaran, P.; Gkanas, E.I.; Chroneos, A. Adsorption of lead on the surfaces of pristine and B, Si and N-doped graphene. Phys. B Condens. Matter 2020, 600, 412639. [Google Scholar] [CrossRef]
- Menezes, J.M.C.; Bento, A.M.D.S.; da Silva, J.H.; Filho, F.J.D.P.; da Costa, J.G.M.; Coutinho, H.D.M.; Teixeira, R.N.P. Equilibrium, kinetics and thermodynamics of lead (II) adsorption in bioadsorvent composed by Caryocar coriaceum Wittm barks. Chemosphere 2020, 261, 128144. [Google Scholar] [CrossRef]
- Shen, M.; Song, B.; Zeng, G.; Zhang, Y.; Teng, F.; Zhou, C. Surfactant changes lead adsorption behaviors and mechanisms on microplastics. Chem. Eng. J. 2020, 405, 126989. [Google Scholar] [CrossRef]
- Park, J.-H.; Ok, Y.S.; Kim, S.-H.; Cho, J.-S.; Heo, J.-S.; Delaune, R.D.; Seo, D.-C. Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere 2016, 142, 77–83. [Google Scholar] [CrossRef]
- Nadeem, R.; Zafar, M.N.; Afzal, A.; Hanif, M.A.; Saeed, R. Potential of NaOH pretreated Mangifera indica waste biomass for the mitigation of Ni (II) and Co (II) from aqueous solutions. J. Taiwan Inst. Chem. Eng. 2014, 45, 967–972. [Google Scholar] [CrossRef]
- Li, X.; Wang, C.; Zhang, J.; Liu, J.; Liu, B.; Chen, G. Preparation and application of magnetic biochar in water treatment: A critical review. Sci. Total Environ. 2019, 711, 134847. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.; Mehmood, S.; Núñez-Delgado, A.; Ali, S.; Qaswar, M.; Shakoor, A.; Mahmood, M.; Chen, D.-Y. Enhanced adsorption of aqueous Pb (II) by modified biochar produced through pyrolysis of watermelon seeds. Sci. Total Environ. 2021, 784, 147136. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yu, H.; Liu, L.; Yu, H. Application of co-pyrolysis biochar for the adsorption and immobilization of heavy metals in contaminated environmental substrates. J. Hazard. Mater. 2021, 420, 126655. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.-S.; Lee, J.; Kim, H.-J.; Kim, Y.-P. Fluorogenic Aptasensors with Small Molecules. Chemosensors 2021, 9, 54. [Google Scholar] [CrossRef]
- Oliveira, G.A.; Gevaerd, A.; Mangrich, A.S.; Marcolino-Junior, L.H.; Bergamini, M.F. Biochar obtained from spent coffee grounds: Evaluation of adsorption properties and its application in a voltammetric sensor for lead (II) ions. Microchem. J. 2021, 165, 106114. [Google Scholar] [CrossRef]
- Diao, Z.-H.; Dong, F.-X.; Yan, L.; Chen, Z.-L.; Guo, P.-R.; Xia, X.-J.; Chu, W. A new insight on enhanced Pb (II) removal by sludge biochar catalyst coupling with ultrasound irradiation and its synergism with phenol removal. Chemosphere 2020, 263, 128287. [Google Scholar] [CrossRef]
- Iamsaard, K.; Weng, C.-H.; Yen, L.-T.; Tzeng, J.-H.; Poonpakdee, C.; Lin, Y.-T. Adsorption of metal on pineapple leaf biochar: Key affecting factors, mechanism identification, and regeneration evaluation. Bioresour. Technol. 2021, 344, 126131. [Google Scholar] [CrossRef]
- Uday, V.; Harikrishnan, P.; Deoli, K.; Zitouni, F.; Mahlknecht, J.; Kumar, M. Current trends in production, morphology, and real-world environmental applications of biochar for the promotion of sustainability. Bioresour. Technol. 2022, 359, 127467. [Google Scholar] [CrossRef]
- Inyang, M.; Gao, B.; Yao, Y.; Xue, Y.; Zimmerman, A.R.; Pullammanappallil, P.; Cao, X. Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresour. Technol. 2012, 110, 50–56. [Google Scholar] [CrossRef]
- Luo, M.; Lin, H.; Li, B.; Dong, Y.; He, Y.; Wang, L. A novel modification of lignin on corncob-based biochar to enhance removal of cadmium from water. Bioresour. Technol. 2018, 259, 312–318. [Google Scholar] [CrossRef]
- Li, B.; Yang, L.; Wang, C.-Q.; Zhang, Q.-P.; Liu, Q.-C.; Li, Y.-D.; Xiao, R. Adsorption of Cd (II) from aqueous solutions by rape straw biochar derived from different modification processes. Chemosphere 2017, 175, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.; Wang, Y.; Kasiulienė, A.; Huang, C.; Ai, P. Cadmium removal potential by rice straw-derived magnetic biochar. Clean Technol. Environ. Policy 2016, 19, 761–774. [Google Scholar] [CrossRef]
- Xu, X.; Cao, X.; Zhao, L.; Wang, H.; Yu, H.; Gao, B. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy ma-nure-derived biochar. Environ. Sci. Pollut. Res. 2013, 20, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Zuo, W.-Q.; Chen, C.; Cui, H.-J.; Fu, M.-L. Enhanced removal of Cd (II) from aqueous solution using CaCO3 nanoparticle mod-ified sewage sludge biochar. RSC Adv. 2017, 7, 16238–16243. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Wang, C.; Tian, J.; Liu, J.; Ma, Q.; Liu, B.; Li, X. Investigation on cadmium ions removal from water by different raw materials-derived biochars. J. Water Process Eng. 2020, 35, 101223. [Google Scholar] [CrossRef]
- Tan, X.; Liu, Y.; Zeng, G.; Wang, X.; Hu, X.; Gu, Y.; Yang, Z. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 2015, 125, 70–85. [Google Scholar] [CrossRef] [PubMed]
- Mahdi, Z.; El Hanandeh, A.; Yu, Q.J. Preparation, characterization and application of surface modified biochar from date seed for improved lead, copper, and nickel removal from aqueous solutions. J. Environ. Chem. Eng. 2019, 7, 103379. [Google Scholar] [CrossRef]
- Nzediegwu, C.; Naeth, M.A.; Chang, S.X. Lead (II) adsorption on microwave-pyrolyzed biochars and hydrochars depends on feedstock type and production temperature. J. Hazard. Mater. 2021, 412, 125255. [Google Scholar] [CrossRef]
- Wu, J.; Wang, T.; Wang, J.; Zhang, Y.; Pan, W.-P. A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar: Enhanced the ion exchange and precipitation capacity. Sci. Total Environ. 2020, 754, 142150. [Google Scholar] [CrossRef]
- Tao, Q.; Chen, Y.; Zhao, J.; Li, B.; Li, Y.; Tao, S.; Li, M.; Li, Q.; Xu, Q.; Li, Y.; et al. Enhanced Cd removal from aqueous solution by biologically modified biochar derived from digestion residue of corn straw silage. Sci. Total Environ. 2019, 674, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Shang, H.; Li, Y.; Liu, J.; Wan, Y.; Feng, Y.; Yu, Y. Preparation of nitrogen doped magnesium oxide modified biochar and its sorption efficiency of lead ions in aqueous solution. Bioresour. Technol. 2020, 314, 123708. [Google Scholar] [CrossRef]
- Xiao, J.; Hu, R.; Chen, G. Micro-nano-engineered nitrogenous bone biochar developed with a ball-milling technique for high-efficiency removal of aquatic Cd (II), Cu (II) and Pb (II). J. Hazard. Mater. 2019, 387, 121980. [Google Scholar] [CrossRef]
- Wang, H.; Gao, B.; Wang, S.; Fang, J.; Xue, Y.; Yang, K. Removal of Pb (II), Cu (II), and Cd (II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood. Bioresour. Technol. 2015, 197, 356–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sellaoui, L.; Wang, H.; Badawi, M.; Bonilla-Petriciolet, A.; Chen, Z. Synergistic adsorption of Pb2+ and CrO42− on an engineered biochar highlighted by statistical physical modeling. J. Mol. Liq. 2020, 312, 113483. [Google Scholar] [CrossRef]
- Zhang, L.; Li, W.; Cao, H.; Hu, D.; Chen, X.; Guan, Y.; Tang, J.; Gao, H. Ultra-efficient sorption of Cu2+ and Pb2+ ions by light biochar derived from Medulla tetrapanacis. Bioresour. Technol. 2019, 291, 121818. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Xu, Z.; Feng, Q.; Yao, D.; Yu, J.; Wang, D.; Lv, S.; Liu, Y.; Zhou, N.; Zhong, M.-E. Effect of pyrolysis condition on the ad-sorption mechanism of lead, cadmium and copper on tobacco stem biochar. J. Clean. Prod. 2018, 187, 996–1005. [Google Scholar] [CrossRef]
- Luo, X.; Shen, M.; Huang, Z.; Chen, Z.; Chen, Z.; Lin, B.; Cui, L. Efficient removal of Pb (II) through recycled biochar-mineral composite from the coagulation sludge of swine wastewater. Environ. Res. 2020, 190, 110014. [Google Scholar] [CrossRef]
- Abdelhafez, A.A.; Li, J. Removal of Pb (II) from aqueous solution by using biochars derived from sugar cane bagasse and orange peel. J. Taiwan Inst. Chem. Eng. 2016, 61, 367–375. [Google Scholar] [CrossRef]
- Ahmad, Z.; Gao, B.; Mosa, A.; Yu, H.; Yin, X.; Bashir, A.; Ghoveisi, H.; Wang, S. Removal of Cu (II), Cd (II) and Pb (II) ions from aqueous solutions by biochars derived from potassium-rich biomass. J. Clean. Prod. 2018, 180, 437–449. [Google Scholar] [CrossRef]
- Jin, Q.; Wang, Z.; Feng, Y.; Kim, Y.-T.; Stewart, A.C.; O’Keefe, S.F.; Neilson, A.P.; He, Z.; Huang, H. Grape pomace and its secondary waste management: Biochar production for a broad range of lead (Pb) removal from water. Environ. Res. 2020, 186, 109442. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Yao, Y.; Li, D.; Wu, F.; Zhang, C.; Gao, B. Facile low-temperature one-step synthesis of pomelo peel biochar under air atmosphere and its adsorption behaviors for Ag (I) and Pb (II). Sci. Total Environ. 2018, 640–641, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Hou, D.; Shen, Z.; Jin, F.; O’Connor, D.; Pan, S.; Ok, Y.S.; Tsang, D.C.W.; Bolan, N.S.; Alessi, D.S. Effects of excessive im-pregnation, magnesium content, and pyrolysis temperature on MgO-coated watermelon rind biochar and its lead removal capacity. Environ. Res. 2020, 183, 109152. [Google Scholar] [CrossRef]
- Zhou, N.; Chen, H.; Xi, J.; Yao, D.; Zhou, Z.; Tian, Y.; Lu, X. Biochars with excellent Pb (II) adsorption property produced from fresh and dehydrated banana peels via hydrothermal carbonization. Bioresour. Technol. 2017, 232, 204–210. [Google Scholar] [CrossRef]
- Qiu, B.; Tao, X.; Wang, H.; Li, W.; Ding, X.; Chu, H. Biochar as a low-cost adsorbent for aqueous heavy metal removal: A review. J. Anal. Appl. Pyrolysis 2021, 155, 105081. [Google Scholar] [CrossRef]
- Wang, Y.; Selvamani, V.; Yoo, I.-K.; Kim, T.W.; Hong, S.H. A Novel Strategy for the Microbial Removal of Heavy Metals: Cell-surface Display of Peptides. Biotechnol. Bioprocess Eng. 2021, 26, 1–9. [Google Scholar] [CrossRef]
- Wang, T.; Sun, H.; Ren, X.; Li, B.; Mao, H. Adsorption of heavy metals from aqueous solution by UV-mutant Bacillus subtilis loaded on biochars derived from different stock materials. Ecotoxicol. Environ. Saf. 2018, 148, 285–292. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, Z.; Xu, L.; Buyong, F.; Chay, T.C.; Li, Z.; Cai, Y.; Hu, B.; Zhu, Y.; Wang, X. Modified biochar: Synthesis and mechanism for removal of environmental heavy metals. Carbon Res. 2022, 1, 1–21. [Google Scholar] [CrossRef]
- Kwak, J.-H.; Islam, S.; Wang, S.; Messele, S.A.; Naeth, M.A.; El-Din, M.G.; Chang, S.X. Biochar properties and lead (II) adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation. Chemosphere 2019, 231, 393–404. [Google Scholar] [CrossRef]
- Bardestani, R.; Roy, C.; Kaliaguine, S. The effect of biochar mild air oxidation on the optimization of lead (II) adsorption from wastewater. J. Environ. Manag. 2019, 240, 404–420. [Google Scholar] [CrossRef]
- Lyu, H.; Gao, B.; He, F.; Ding, C.; Tang, J.; Crittenden, J.C. Ball-Milled Carbon Nanomaterials for Energy and Environmental Applications. ACS Sustain. Chem. Eng. 2017, 5, 9568–9585. [Google Scholar] [CrossRef]
- Li, A.; Ge, W.; Liu, L.; Qiu, G. Preparation, adsorption performance and mechanism of MgO-loaded biochar in wastewater treatment: A review. Environ. Res. 2022, 212, 113341. [Google Scholar] [CrossRef] [PubMed]
- Mohan, D.; Singh, P.; Sarswat, A.; Steele, P.H.; Pittman, C.U., Jr. Lead sorptive removal using magnetic and nonmagnetic fast pyrolysis energy cane biochars. J. Colloid Interface Sci. 2015, 448, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhang, Y.; Li, B.; Fan, S.; Xu, H.; Guan, D.-X. Improved adsorption properties of tetracycline on KOH/KMnO4 modified biochar derived from wheat straw. Chemosphere 2022, 296, 133981. [Google Scholar] [CrossRef]
- Dai, X.; Nhung, N.; Hamza, M.F.; Guo, Y.; Chen, L.; He, C.; Ningc, S.; Weic, Y.; Dodbibad, G.; Fujita, T. Selective adsorption and recovery of scandium from red mud leachate by using phosphoric acid pre-treated pitaya peel biochar. Sep. Purif. Technol. 2022, 292, 121043. [Google Scholar] [CrossRef]
- Chen, H.; Li, W.; Wang, J.; Xu, H.; Liu, Y.; Zhang, Z.; Li, Y.; Zhang, Y. Adsorption of cadmium and lead ions by phosphoric ac-id-modified biochar generated from chicken feather: Selective adsorption and influence of dissolved organic matter. Bioresour. Technol. 2019, 292, 121948. [Google Scholar] [CrossRef]
- He, X.; Hong, Z.-N.; Jiang, J.; Dong, G.; Liu, H.; Xu, R.-K. Enhancement of Cd (II) adsorption by rice straw biochar through oxidant and acid modifications. Environ. Sci. Pollut. Res. 2021, 28, 42787–42797. [Google Scholar] [CrossRef]
- Xiong, X.; Yu, I.K.; Chen, S.S.; Tsang, D.C.; Cao, L.; Song, H.; Kwon, E.E.; Ok, Y.S.; Zhang, S.; Poon, C.S. Sulfonated biochar as acid catalyst for sugar hydrolysis and dehydration. Catal. Today 2018, 314, 52–61. [Google Scholar] [CrossRef]
- Li, Y.; Wang, F.; Miao, Y.; Mai, Y.; Li, H.; Chen, X.; Chen, J. A lignin-biochar with high oxygen-containing groups for adsorbing lead ion prepared by simultaneous oxidization and carbonization. Bioresour. Technol. 2020, 307, 123165. [Google Scholar] [CrossRef]
- Yu, W.; Hu, J.; Yu, Y.; Ma, D.; Gong, W.; Qiu, H.; Hu, Z.; Gao, H.-W. Facile preparation of sulfonated biochar for highly efficient removal of toxic Pb (II) and Cd (II) from wastewater. Sci. Total Environ. 2020, 750, 141545. [Google Scholar] [CrossRef]
- Chen, H.; Yang, X.; Liu, Y.; Lin, X.; Wang, J.; Zhang, Z.; Li, N.; Li, Y.; Zhang, Y. KOH modification effectively enhances the Cd and Pb adsorption performance of N-enriched biochar derived from waste chicken feathers. Waste Manag. 2021, 130, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Herath, A.; Layne, C.A.; Perez, F.; Hassan, E.B.; Pittman, C.U., Jr.; Mlsna, T.E. KOH-activated high surface area Douglas Fir biochar for adsorbing aqueous Cr (VI), Pb (II) and Cd (II). Chemosphere 2021, 269, 128409. [Google Scholar] [CrossRef] [PubMed]
- Mu, Y.; Ma, H. NaOH-modified mesoporous biochar derived from tea residue for methylene Blue and Orange II removal. Chem. Eng. Res. Des. 2021, 167, 129–140. [Google Scholar] [CrossRef]
- Ding, Z.; Hu, X.; Wan, Y.; Wang, S.; Gao, B. Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: Batch and column tests. J. Ind. Eng. Chem. 2016, 33, 239–245. [Google Scholar] [CrossRef] [Green Version]
- Cruz, G.J.F.; Mondal, D.; Rimaycuna, J.; Soukup, K.; Gómez, M.M.; Solis, J.L.; Lang, J. Agrowaste derived biochars impregnated with ZnO for removal of arsenic and lead in water. J. Environ. Chem. Eng. 2020, 8, 103800. [Google Scholar] [CrossRef]
- Shen, Z.; Jin, F.; Wang, F.; McMillan, O.; Al-Tabbaa, A. Sorption of lead by Salisbury biochar produced from British broadleaf hardwood. Bioresour. Technol. 2015, 193, 553–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Z.; Hou, D.; Zhao, B.; Xu, W.; Ok, Y.S.; Bolan, N.S.; Alessi, D.S. Stability of heavy metals in soil washing residue with and without biochar addition under accelerated ageing. Sci. Total Environ. 2018, 619–620, 185–193. [Google Scholar] [CrossRef]
- Vasconcelos, H.; Guibal, E.; Laus, R.; Vitali, L.; Fávere, V.T. Competitive adsorption of Cu (II) and Cd (II) ions on spray-dried chitosan loaded with Reactive Orange 16. Mater. Sci. Eng. C 2009, 29, 613–618. [Google Scholar] [CrossRef]
- Deng, J.; Liu, Y.; Liu, S.; Zeng, G.; Tan, X.; Huang, B.; Tang, X.; Wang, S.; Hua, Q.; Yan, Z. Competitive adsorption of Pb (II), Cd (II) and Cu (II) onto chitosan-pyromellitic dianhydride modified biochar. J. Colloid Interface Sci. 2017, 506, 355–364. [Google Scholar] [CrossRef]
- Liu, J.; Huang, Z.; Chen, Z.; Sun, J.; Gao, Y.; Wu, E. Resource utilization of swine sludge to prepare modified biochar adsorbent for the efficient removal of Pb (II) from water. J. Clean. Prod. 2020, 257, 120322. [Google Scholar] [CrossRef]
- Fan, Y.; Wang, H.; Deng, L.; Wang, Y.; Kang, D.; Li, C.; Chen, H. Enhanced adsorption of Pb (II) by nitrogen and phosphorus co-doped biochar derived from Camellia oleifera shells. Environ. Res. 2020, 191, 110030. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, R.; Liu, H.; Li, M.; Chen, T.; Chen, D.; Zou, X.; Frost, R.L. Green preparation of magnetic biochar for the effective accumulation of Pb (II): Performance and mechanism. Chem. Eng. J. 2019, 375, 122011. [Google Scholar] [CrossRef]
- Jia, Y.; Zhang, Y.; Fu, J.; Yuan, L.; Li, Z.; Liu, C.; Zhao, D.; Wang, X. A novel magnetic biochar/MgFe-layered double hydroxides composite removing Pb2+ from aqueous solution: Isotherms, kinetics and thermodynamics. Colloids Surf. A Physicochem. Eng. Asp. 2019, 567, 278–287. [Google Scholar] [CrossRef]
- Yang, W.; Wang, Z.; Song, S.; Han, J.; Chen, H.; Wang, X.; Sun, R.; Cheng, J. Adsorption of copper (II) and lead (II) from seawater using hydrothermal biochar derived from Enteromorpha. Mar. Pollut. Bull. 2019, 149, 110586. [Google Scholar] [CrossRef] [PubMed]
- Nnadozie, E.C.; Ajibade, P.A. Adsorption, kinetic and mechanistic studies of Pb (II) and Cr (VI) ions using APTES functionalized magnetic biochar. Microporous Mesoporous Mater. 2020, 309, 110573. [Google Scholar] [CrossRef]
- Deng, R.; Huang, D.; Wan, J.; Xue, W.; Lei, L.; Wen, X.; Liu, X.; Chen, S.; Yang, Y.; Li, Z.; et al. Chloro-phosphate impregnated biochar prepared by co-precipitation for the lead, cadmium and copper synergic scavenging from aqueous solution. Bioresour. Technol. 2019, 293, 122102. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Du, W.; Wang, F.; Xu, H.; Zhao, T.; Zhang, H.; Ding, Y.; Zhu, W. Comparative study on Pb2+ removal from aqueous solutions using biochars derived from cow manure and its vermicompost. Sci. Total Environ. 2020, 716, 137108. [Google Scholar] [CrossRef]
- Lee, M.-E.; Park, J.H.; Chung, J.W. Comparison of the lead and copper adsorption capacities of plant source materials and their biochars. J. Environ. Manag. 2019, 236, 118–124. [Google Scholar] [CrossRef]
- Ni, B.-J.; Huang, Q.-S.; Wang, C.; Ni, T.-Y.; Sun, J.; Wei, W. Competitive adsorption of heavy metals in aqueous solution onto biochar derived from anaerobically digested sludge. Chemosphere 2018, 219, 351–357. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Liu, Y.-X.; Lu, H.-H.; Yang, R.-Q.; Yang, S.-M. Competitive adsorption of Pb (II), Cu (II), and Zn (II) ions onto hy-droxyapatite-biochar nanocomposite in aqueous solutions. J. Solid State Chem. 2018, 261, 53–61. [Google Scholar] [CrossRef]
- Wongrod, S.; Simon, S.; Guibaud, G.; Lens, P.N.; Pechaud, Y.; Huguenot, D.; van Hullebusch, E.D. Lead sorption by biochar produced from digestates: Consequences of chemical modification and washing. J. Environ. Manag. 2018, 219, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Chen, X.; Yuan, B.; Fu, M.-L. A facile foaming-polymerization strategy to prepare 3D MnO2 modified biochar-based porous hydrogels for efficient removal of Cd (II) and Pb (II). Chemosphere 2019, 239, 124745. [Google Scholar] [CrossRef] [PubMed]
- Gayathri, R.; Gopinath, K.; Kumar, P.S. Adsorptive separation of toxic metals from aquatic environment using agro waste biochar: Application in electroplating industrial wastewater. Chemosphere 2020, 262, 128031. [Google Scholar] [CrossRef]
- Zhang, C.; Shan, B.; Tang, W.; Zhu, Y. Comparison of cadmium and lead sorption by Phyllostachys pubescens biochar produced under a low-oxygen pyrolysis atmosphere. Bioresour. Technol. 2017, 238, 352–360. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Song, Y.; Chen, J.P. Development of a novel biochar/PSF mixed matrix membrane and study of key parameters in treatment of copper and lead contaminated water. Chemosphere 2017, 186, 1033–1045. [Google Scholar] [CrossRef] [PubMed]
- Wan, S.; Wu, J.; Zhou, S.; Wang, R.; Gao, B.; He, F. Enhanced lead and cadmium removal using biochar-supported hydrated manganese oxide (HMO) nanoparticles: Behavior and mechanism. Sci. Total Environ. 2017, 616–617, 1298–1306. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Du, Q.; Sun, Y.; Song, J.; Yang, F.; Tsang, D.C.W. Fabrication of L-cysteine stabilized alpha-FeOOH nanocomposite on porous hydrophilic biochar as an effective adsorbent for Pb2+ removal. Sci. Total Environ. 2020, 720, 137415. [Google Scholar] [CrossRef] [PubMed]
- Fan, R.; Chen, C.-L.; Lin, J.-Y.; Tzeng, J.-H.; Huang, C.-P.; Dong, C. Adsorption characteristics of ammonium ion onto hydrous biochars in dilute aqueous solutions. Bioresour. Technol. 2018, 272, 465–472. [Google Scholar] [CrossRef]
- Ding, Z.; Wan, Y.; Hu, X.; Wang, S.; Zimmerman, A.R.; Gao, B. Sorption of lead and methylene blue onto hickory biochars from different pyrolysis temperatures: Importance of physicochemical properties. J. Ind. Eng. Chem. 2016, 37, 261–267. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Liu, Y.; Zhou, J.; Guo, J.; Ren, J.; Zhou, F. Efficient removal of lead from aqueous solution by urea-functionalized magnetic biochar: Preparation, characterization and mechanism study. J. Taiwan Inst. Chem. Eng. 2018, 91, 457–467. [Google Scholar] [CrossRef]
- Nandi, B.; Goswami, A.; Purkait, M. Adsorption characteristics of brilliant green dye on kaolin. J. Hazard. Mater. 2009, 161, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Huang, Y.; Zhang, S.; Gong, Y.; Su, Y.; Cao, J.; Hu, H. Adsorption characteristics and mechanism of Pb (II) by agricultural waste-derived biochars produced from a pilot-scale pyrolysis system. Waste Manag. 2019, 100, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Li, X.; Liu, Y.; Zeng, G.; Liang, J.; Song, B.; Wei, X. Alginate-modified biochar derived from Ca (II)-impregnated biomass: Excellent anti-interference ability for Pb (II) removal. Ecotoxicol. Environ. Saf. 2018, 165, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.; Alazba, A.; Shafiq, M. Application of biochar derived from date palm biomass for removal of lead and copper ions in a batch reactor: Kinetics and isotherm scrutiny. Chem. Phys. Lett. 2019, 722, 64–73. [Google Scholar] [CrossRef]
- Yang, Y.; Wei, Z.; Zhang, X.; Chen, X.; Yue, D.; Yin, Q.; Xiao, L.; Yang, L. Biochar from Alternanthera philoxeroides could remove Pb (II) efficiently. Bioresour. Technol. 2014, 171, 227–232. [Google Scholar] [CrossRef]
- Kalinke, C.; Mangrich, A.S.; Marcolino-Junior, L.H.; Bergamini, M.F. Biochar prepared from castor oil cake at different tem-peratures: A voltammetric study applied for Pb2+, Cd2+ and Cu2+ ions preconcentration. J. Hazard. Mater. 2016, 318, 526–532. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, B.; Zhao, L.; Sun, L.; Gao, Y.; Li, J.; Yang, F. Biochar-supported reduced graphene oxide composite for adsorption and coadsorption of atrazine and lead ions. Appl. Surf. Sci. 2018, 427, 147–155. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, L.; Wang, Y.; Wang, X.; Wang, S.; Li, Q.; Liu, X.; Xu, Y.; Yang, J.; Bolan, N. Clanis bilineata larvae skin-derived biochars for immobilization of lead: Sorption isotherm and molecular mechanism. Sci. Total Environ. 2020, 704, 135251. [Google Scholar] [CrossRef]
- Kołodyńska, D.; Krukowska, J.; Thomas, P. Comparison of sorption and desorption studies of heavy metal ions from biochar and commercial active carbon. Chem. Eng. J. 2017, 307, 353–363. [Google Scholar] [CrossRef]
- Li, M.; Wei, D.; Liu, T.; Liu, Y.; Yan, L.; Wei, Q.; Du, B.; Xu, W. EDTA functionalized magnetic biochar for Pb (II) removal: Adsorption performance, mechanism and SVM model prediction. Sep. Purif. Technol. 2019, 227, 115696. [Google Scholar] [CrossRef]
- Shen, Z.; Hou, D.; Jin, F.; Shi, J.; Fan, X.; Tsang, D.C.; Alessi, D.S. Effect of production temperature on lead removal mechanisms by rice straw biochars. Sci. Total Environ. 2018, 655, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-D.; Ho, S.-H.; Wang, D.; Wei, Z.-S.; Chang, J.-S.; Ren, N.-Q. Lead removal by a magnetic biochar derived from persulfate-ZVI treated sludge together with one-pot pyrolysis. Bioresour. Technol. 2018, 247, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Wang, C.; Hu, Z.; Zhou, Y.; Xiao, Y.; Wang, T. Pyrolysis of sewage sludge by electromagnetic induction: Biochar properties and application in adsorption removal of Pb (II), Cd (II) from aqueous solution. Waste Manag. 2019, 89, 48–56. [Google Scholar] [CrossRef]
- Wang, S.; Gao, B.; Li, Y.; Mosa, A.; Zimmerman, A.R.; Ma, L.Q.; Harris, W.G.; Migliaccio, K.W. Manganese oxide-modified biochars: Preparation, characterization, and sorption of arsenate and lead. Bioresour. Technol. 2015, 181, 13–17. [Google Scholar] [CrossRef]
- Lee, X.J.; Lee, L.Y.; Hiew, B.Y.Z.; Gan, S.; Thangalazhy-Gopakumar, S.; Ng, H.K. Multistage optimizations of slow pyrolysis synthesis of biochar from palm oil sludge for adsorption of lead. Bioresour. Technol. 2017, 245, 944–953. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.S.; Porter, J.F.; McKay, G. Equilibrium Isotherm Studies for the Sorption of Divalent Metal Ions onto Peat: Copper, Nickel and Lead Single Component Systems. Water Air Soil Pollut. 2002, 141, 1–33. [Google Scholar] [CrossRef]
- Mohubedu, R.P.; Diagboya, P.N.; Abasi, C.Y.; Dikio, E.D.; Mtunzi, F. Magnetic valorization of biomass and biochar of a typical plant nuisance for toxic metals contaminated water treatment. J. Clean. Prod. 2018, 209, 1016–1024. [Google Scholar] [CrossRef]
- Zhao, M.; Dai, Y.; Zhang, M.; Feng, C.; Qin, B.; Zhang, W.; Zhao, N.; Li, Y.; Ni, Z.; Xu, Z.; et al. Mechanisms of Pb and/or Zn adsorption by different biochars: Biochar characteristics, stability, and binding energies. Sci. Total Environ. 2020, 717, 136894. [Google Scholar] [CrossRef]
- Qu, J.; Dong, M.; Wei, S.; Meng, Q.; Hu, L.; Hu, Q.; Wang, L.; Han, W.; Zhang, Y. Microwave-assisted one pot synthesis of β-cyclodextrin modified biochar for concurrent removal of Pb (II) and bisphenol a in water. Carbohydr. Polym. 2020, 250, 117003. [Google Scholar] [CrossRef]
- Wang, C.; Wang, H. Pb (II) sorption from aqueous solution by novel biochar loaded with nano-particles. Chemosphere 2018, 192, 1–4. [Google Scholar] [CrossRef]
- Zhou, R.; Zhang, M.; Li, J.; Zhao, W. Optimization of preparation conditions for biochar derived from water hyacinth by using response surface methodology (RSM) and its application in Pb2+ removal. J. Environ. Chem. Eng. 2020, 8, 104198. [Google Scholar] [CrossRef]
- Wang, C.; Wang, H.; Cao, Y. Pb (II) sorption by biochar derived from Cinnamomum camphora and its improvement with ultrasound-assisted alkali activation. Colloids Surfaces A Physicochem. Eng. Asp. 2018, 556, 177–184. [Google Scholar] [CrossRef]
- Yan, Y.; Sarkar, B.; Zhou, L.; Zhang, L.; Li, Q.; Yang, J.; Bolan, N. Phosphorus-rich biochar produced through bean-worm skin waste pyrolysis enhances the adsorption of aqueous lead. Environ. Pollut. 2020, 266, 115177. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Yang, F.; Li, J.; Cheng, K. Porous biochar-nanoscale zero-valent iron composites: Synthesis, characterization and application for lead ion removal. Sci. Total Environ. 2020, 746, 141037. [Google Scholar] [CrossRef] [PubMed]
- Faheem; Yu, H.; Liu, J.; Shen, J.; Sun, X.; Li, J.; Wang, L. Preparation of MnOx-loaded biochar for Pb2+ removal: Adsorption performance and possible mechanism. J. Taiwan Inst. Chem. Eng. 2016, 66, 313–320. [Google Scholar] [CrossRef]
- Lin, S.; Huang, W.; Yang, H.; Sun, S.; Yu, J. Recycling application of waste long-root Eichhornia crassipes in the heavy metal removal using oxidized biochar derived as adsorbents. Bioresour. Technol. 2020, 314, 123749. [Google Scholar] [CrossRef]
- Wang, S.-Y.; Tang, Y.-K.; Chen, C.; Wu, J.-T.; Huang, Z.; Mo, Y.-Y.; Zhang, K.-X.; Chen, J.-B. Regeneration of magnetic biochar derived from eucalyptus leaf residue for lead (II) removal. Bioresour. Technol. 2015, 186, 360–364. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, W.; Yang, Y.; Huang, X.; Wang, S.; Qiu, R. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Res. 2012, 46, 854–862. [Google Scholar] [CrossRef]
- Neeli, S.T.; Ramsurn, H.; Ng, C.Y.; Wang, Y.; Lu, J. Removal of Cr (VI), As (V), Cu (II), and Pb (II) using cellulose biochar supported iron nanoparticles: A kinetic and mechanistic study. J. Environ. Chem. Eng. 2020, 8, 103886. [Google Scholar] [CrossRef]
- Shi, J.; Fan, X.; Tsang, D.C.; Wang, F.; Shen, Z.; Hou, D.; Alessi, D.S. Removal of lead by rice husk biochars produced at different temperatures and implications for their environmental utilizations. Chemosphere 2019, 235, 825–831. [Google Scholar] [CrossRef]
- Tan, G.; Wu, Y.; Liu, Y.; Xiao, D. Removal of Pb (II) ions from aqueous solution by manganese oxide coated rice straw biochar A low-cost and highly effective sorbent. J. Taiwan Inst. Chem. Eng. 2018, 84, 85–92. [Google Scholar] [CrossRef]
- Wang, H.; Gao, B.; Fang, J.; Ok, Y.S.; Xue, Y.; Yang, K.; Cao, X. Engineered biochar derived from eggshell-treated biomass for removal of aqueous lead. Ecol. Eng. 2017, 121, 124–129. [Google Scholar] [CrossRef]
- Zhang, J.; Shao, J.; Jin, Q.; Zhang, X.; Yang, H.; Chen, Y.; Zhang, S.; Chen, H. Effect of deashing on activation process and lead adsorption capacities of sludge-based biochar. Sci. Total Environ. 2020, 716, 137016. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhu, X.; Shi, L.; Li, J.; Li, S.; Lü, J.; Li, Y. Efficient removal of lead from solution by celery-derived biochars rich in alkaline minerals. Bioresour. Technol. 2017, 235, 185–192. [Google Scholar] [CrossRef]
- Wang, H.; Wang, S.; Chen, Z.; Zhou, X.; Wang, J.; Chen, Z. Engineered biochar with anisotropic layered double hydroxide nanosheets to simultaneously and efficiently capture Pb2+ and CrO42− from electroplating wastewater. Bioresour. Technol. 2020, 306, 123118. [Google Scholar] [CrossRef]
- Zhao, H.T.; Ma, S.; Zheng, S.Y.; Han, S.W.; Yao, F.X.; Wang, X.Z.; Wang, S.S.; Feng, K. Beta-cyclodextrin functionalized biochars as novel sorbents for high-performance of Pb2+ removal. J. Hazard. Mater. 2019, 362, 206–213. [Google Scholar] [CrossRef]
- Yin, W.; Dai, D.; Hou, J.; Wang, S.; Wu, X.; Wang, X. Hierarchical porous biochar-based functional materials derived from bio-waste for Pb (II) removal. Appl. Surf. Sci. 2019, 465, 297–302. [Google Scholar] [CrossRef]
- Li, C.; Zhang, L.; Gao, Y.; Li, A. Facile synthesis of nano ZnO/ZnS modified biochar by directly pyrolyzing of zinc contaminated corn stover for Pb (II), Cu (II) and Cr (VI) removals. Waste Manag. 2018, 79, 625–637. [Google Scholar] [CrossRef]
- Chandraiah, M.R. Facile synthesis of zero valent iron magnetic biochar composites for Pb (II) removal from the aqueous medium. Alex. Eng. J. 2016, 55, 619–625. [Google Scholar] [CrossRef] [Green Version]
- Niu, Z.; Feng, W.; Huang, H.; Wang, B.; Chen, L.; Miao, Y.; Su, S. Green synthesis of a novel Mn–Zn ferrite/biochar composite from waste batteries and pine sawdust for Pb2+ removal. Chemosphere 2020, 252, 126529. [Google Scholar] [CrossRef]
- Jellali, S.; Diamantopoulos, E.; Haddad, K.; Anane, M.; Durner, W.; Mlayah, A. Lead removal from aqueous solutions by raw sawdust and magnesium pretreated biochar: Experimental investigations and numerical modelling. J. Environ. Manag. 2016, 180, 439–449. [Google Scholar] [CrossRef] [PubMed]
- Lian, W.; Yang, L.; Joseph, S.; Shi, W.; Bian, R.; Zheng, J.; Li, L.; Shan, S.; Pan, G. Utilization of biochar produced from invasive plant species to efficiently adsorb Cd (II) and Pb (II). Bioresour. Technol. 2020, 317, 124011. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, B.; Lee, X.; Lehmann, J.; Gao, B. Sorption and desorption of Pb (II) to biochar as affected by oxidation and pH. Sci. Total Environ. 2018, 634, 188–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Zheng, L.; Wang, S.L.; Wu, Z.; Wu, W.; Niazi, N.K.; Shaheen, S.M.; Rinklebe, J.; Bolan, N.; Ok, Y.S.; et al. Sorption mech-anisms of lead on silicon-rich biochar in aqueous solution: Spectroscopic investigation. Sci. Total Environ. 2019, 672, 572–582. [Google Scholar] [CrossRef]
- El-Banna, M.F.; Mosa, A.; Gao, B.; Yin, X.; Ahmad, Z.; Wang, H. Sorption of lead ions onto oxidized bagasse-biochar mitigates Pb-induced oxidative stress on hydroponically grown chicory: Experimental observations and mechanisms. Chemosphere 2018, 208, 887–898. [Google Scholar] [CrossRef]
- Chang, J.; Zhang, H.; Cheng, H.; Yan, Y.; Chang, M.; Cao, Y.; Huang, F.; Zhang, G.; Yan, M. Spent Ganoderma lucidum substrate derived biochar as a new bio-adsorbent for Pb2+/Cd2+ removal in water. Chemosphere 2020, 241, 125121. [Google Scholar] [CrossRef]
- Huang, X.; Wei, D.; Zhang, X.; Fan, D.; Sun, X.; Du, B.; Wei, Q. Synthesis of amino-functionalized magnetic aerobic granular sludge-biochar for Pb (II) removal: Adsorption performance and mechanism studies. Sci. Total Environ. 2019, 685, 681–689. [Google Scholar] [CrossRef]
- Wu, J.; Wang, T.; Zhang, Y.; Pan, W.P. The distribution of Pb (II)/Cd (II) adsorption mechanisms on biochars from aqueous solution: Considering the increased oxygen functional groups by HCl treatment. Bioresour. Technol. 2019, 291, 121859. [Google Scholar] [CrossRef]
- Zama, E.F.; Zhu, Y.-G.; Reid, B.J.; Sun, G.-X. The role of biochar properties in influencing the sorption and desorption of Pb (II), Cd (II) and As (III) in aqueous solution. J. Clean. Prod. 2017, 148, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.; Gao, B.; Wang, S.; Guo, K.; Xu, X.; Yue, Q. Waste-to-resources: Green preparation of magnetic biogas residues-based biochar for effective heavy metal removals. Sci. Total Environ. 2020, 737, 140283. [Google Scholar] [CrossRef]
- Xu, X.; Hu, X.; Ding, Z.; Chen, Y.; Gao, B. Waste-art-paper biochar as an effective sorbent for recovery of aqueous Pb (II) into value-added PbO nanoparticles. Chem. Eng. J. 2017, 308, 863–871. [Google Scholar] [CrossRef]
- Trakal, L.; Bingöl, D.; Pohořelý, M.; Hruška, M.; Komárek, M. Geochemical and spectroscopic investigations of Cd and Pb sorption mechanisms on contrasting biochars: Engineering implications. Bioresour. Technol. 2014, 171, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Bai, T.; Li, Q.; Yang, H.; Yan, Y.; Sarkar, B.; Lam, S.S.; Bolan, N. Influence of pyrolysis temperature on the characteristics and lead (II) adsorption capacity of phosphorus-engineered poplar sawdust biochar. J. Anal. Appl. Pyrolysis 2020, 154, 105010. [Google Scholar] [CrossRef]
- Yang, Z.; Hou, J.; Wu, J.; Miao, L. The effect of carbonization temperature on the capacity and mechanisms of Pb (II) adsorption by microalgae residue-derived biochar. Ecotoxicol. Environ. Saf. 2021, 225, 112750. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, G.; Zheng, H.; Li, F.; Ngo, H.H.; Guo, W.; Liu, C.; Chen, L.; Xing, B. Investigating the mechanisms of biochar’s removal of lead from solution. Bioresour. Technol. 2014, 177, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Liu, Y.; Xing, B.; Qin, X.; Zhang, C.; Xia, H. Lead and cadmium clean removal from wastewater by sustainable biochar derived from poplar saw dust. J. Clean. Prod. 2021, 314, 128074. [Google Scholar] [CrossRef]
- Gao, R.; Xiang, L.; Hu, H.; Fu, Q.; Zhu, J.; Liu, Y.; Huang, G. High-efficiency removal capacities and quantitative sorption mechanisms of Pb by oxidized rape straw biochars. Sci. Total Environ. 2019, 699, 134262. [Google Scholar] [CrossRef]
- Gong, H.; Chi, J.; Ding, Z.; Zhang, F.; Huang, J. Removal of lead from two polluted soils by magnetic wheat straw biochars. Ecotoxicol. Environ. Saf. 2020, 205, 111132. [Google Scholar] [CrossRef]
- Yang, X.; Wan, Y.; Zheng, Y.; He, F.; Yu, Z.; Huang, J.; Wang, H.; Ok, Y.S.; Jiang, Y.; Gao, B. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review. Chem. Eng. J. 2019, 366, 608–621. [Google Scholar] [CrossRef]
- Dhouibi, N.; Binous, H.; Dhaouadi, H.; Dridi-Dhaouadi, S. Hydrodistillation residues of Centaurea nicaeensis plant for copper and zinc ions removal: Novel concept for waste re-use. J. Clean. Prod. 2020, 261, 121106. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, X.; Zhang, K.; Xue, Y. Desorption of calcium-rich crayfish shell biochar for the removal of lead from aqueous solutions. J. Colloid Interface Sci. 2019, 554, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Chi, J. Contribution of different mechanisms to Pb2+ and Cd2+ sorption on magnetic wheat straw biochars: Impact of pyrolysis temperature and DOM in biochar. J. Environ. Chem. Eng. 2022, 10, 107851. [Google Scholar] [CrossRef]
- Fu, C.; Zhang, H.; Xia, M.; Lei, W.; Wang, F. The single/co-adsorption characteristics and microscopic adsorption mechanism of biochar-montmorillonite composite adsorbent for pharmaceutical emerging organic contaminant atenolol and lead ions. Ecotoxicol. Environ. Saf. 2019, 187, 109763. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, Z.; Shen, D.; Shen, F.; Wu, C.; Xiao, R. Low cost earthworm manure-derived carbon material for the adsorption of Cu2+ from aqueous solution: Impact of pyrolysis temperature. Ecol. Eng. 2016, 98, 189–195. [Google Scholar] [CrossRef]
- Cui, X.; Fang, S.; Yao, Y.; Li, T.; Ni, Q.; Yang, X.; He, Z. Potential mechanisms of cadmium removal from aqueous solution by Canna indica derived biochar. Sci. Total Environ. 2016, 562, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Lawluvy, Y.; Shi, Y.; Ighalo, J.O.; He, Y.; Zhang, Y.; Yap, P.-S. Adsorption of cadmium and lead from aqueous solution using modified biochar: A review. J. Environ. Chem. Eng. 2021, 10, 106502. [Google Scholar] [CrossRef]
- Ramola, S.; Belwal, T.; Li, C.J.; Wang, Y.Y.; Lu, H.H.; Yang, S.M.; Zhou, C.H. Improved lead removal from aqueous solution using novel porous bentonite—And calcite-biochar composite. Sci. Total Environ. 2019, 709, 136171. [Google Scholar] [CrossRef]
Feedstock | Modifying Agent | Temperature (°C)/Residence Time (h) | Concentration Range (mg/L) | Contact Time (h) | Isotherm Model | Kinetic Model | Adsorption Capacity (mg/g) | Adsorption Mechanism | Ref. |
---|---|---|---|---|---|---|---|---|---|
Douglas fir | KOH | 900–1000, 10 s | 25–1000 | 1 | Langmuir | Second | 140.00 | --- | [72] |
Sludge | Persulfate-zvi | 600/1.5 | 0–100 | 8 | Langmuir | Second | 180.00 | Electrostatic attraction, electrostatic outer sphere complexation, ion exchange, reduction | [112] |
Raw sewage sludge | Potassium hydroxide | 350/15 min | 10–1000 | 80 min | --- | Second | 106.00 | Precipitation | [91] |
Quercus robur | FeCl3 and FeCl2 | 250/4 | 25–150 | 4 | Langmuir | Second | 63.60 | Electrostatic interactions | [117] |
Pine wood | MnCl2·4H2O | 600/1 | 1–300 | 24 | Langmuir and Freundlich | First and second | 47.05 | Precipitation | [114] |
Rice straw | --- | 550/2 | 0–1 mmol·L−1 | 72 | Langmuir | --- | 0.85 176.12 | Chemical complexation | [118] |
Cow bone | --- | 600/2 | 0–120 | 24 | Langmuir | Second | 558.88 | Surface complexation, cation exchange, chemical precipitation, electrostatic interaction, and cation-π bonding | [43] |
Rice husk | β-cyclodextrin | 300/2 | 10–300 | 2 | Langmuir | Second | 240.13 | Electrostatic attraction and complexation | [119] |
Palm oil sludge | --- | 500/0.5 | 0–150 | 4 | Freundlich | First, second- | 21.76 | Boundary layer diffusion | [115] |
Sewage sludge | --- | 500/0.5 | 0–320 | 6 | Langmuir | First | 41.20 | --- | [113] |
Fallen leaf | Fe2+/Fe3+ | 450/1 | 0–1000 | 2 | Langmuir | Second | 146.84 | --- | [120] |
Water hyacinth | --- | 433/2.65 | 0–1000 | 6 | Freundlich | Second | 251.39 | Precipitation, electrostatic adsorption, surface physical adsorption, ion exchange, and complexation of functional groups. | [121] |
Cinnamomum camphor | Ultrasound-assisted alkali | 450/1 | 50–1000 | 6 | Langmuir | Second | 98.33 | Electrostatic attraction and surface complexation | [122] |
Bean-worm skin waste | --- | 500/4 | 20–300 | 200 | Langmuir | Second | 62.00 | Chemisorption and precipitation | [123] |
Corn stalks | Nanoscale zero-valent iron, KOH | 800/2 | 10–200 | 8 | Langmuir | Second | 480.90 | Reduction reaction, complexation, and co-precipitation | [124] |
Rice husk | Manganese oxide | 800/3 | 15–250 | 1.5 | Langmuir | Second | 86.50 | Electron density reduction in π-bond aromatic moieties due to the addition of -COOH | [125] |
Corncob-to-xylose residue | Nitrogen doped magnesium oxide | 400/2 | 0–500 | 24 | Freundlich | Second | 1429.00 | Ion exchange, precipitation and complexation | [42] |
Date seed | HCl | 550/3 | --- | --- | Sips model | --- | 188.55 | --- | [38] |
Long-root Eichhornia crassipes | --- | 350/20 min | 1.0 mmol·L−1 | 50 min | Langmuir | Second | 118.10 | Complexation | [126] |
Eucalypts leaf residue | ZnCl2, FeCl3 and FeSO4 | 700/2 | 0–100 | 48 | --- | --- | 52.40 | --- | [127] |
Sludge | --- | 550/2 | 200–1000 | 4 | Freundlich | Second | 30.88 | Co-precipitation, complexation | [128] |
Microcrystalline cellulose | Iron nanoparticles | 1000 | 0–1500 | 24 | Tempkin | Second | 17.30 | Reduction | [129] |
Banana peels | --- | 600/2 | 0–600 | 48 | Freundlich | Second | 247.10 | Electrostatic attraction | [50] |
Rice husk | --- | 700/1 | 0–600 | 48 | Freundlich | Second | 26.70 | Precipitation | [130] |
Hickory wood | NaOH | 600/2 | 2–100 | 24 | Langmuir | --- | 53.60 | --- | [74] |
Orange peel | --- | 500 | 6–223 | 6 | Langmuir | Second | 86.96 | Ion exchange and surface precipitation | [49] |
Rice straw | KMnO4 | 420/4 | 1.0 mmol·L−1 | 8 | Langmuir | Second | 305.25 | Complexation | [131] |
Hickory wood | KMnO4 | 600/1 | 0–100 | 24 | Redlich Peterson | Richie n-th-order | 153.10 | Surface adsorption mechanisms | [44] |
Swine sludge | Thiourea | 300/0.5 | 0–100 | 48 | Langmuir | Second | 145.00 | Ion exchange | [80] |
Hickory | --- | 350/5 | 5–250 | 24 | Dubinin | --- | 16.30 | Cation exchange | [99] |
Shell | FeCl3·6H2O, EDTA | 200/8 | 50–500 | 12 | Langmuir | Second | 129.31 | Electrostatic interaction and chemical complexation | [110] |
Bamboo | --- | 450/3 | 2–500 | 48 | Langmuir | First | 261.10 | --- | [132] |
Tobacco stem | --- | 700/2 | 0–1000 | 12 | Langmuir | --- | 2047.00 | Precipitation | [47] |
Bagasse | --- | 300/2 | --- | 24 | Freundlich | Intraparticle diffusion | --- | Ion exchange, precipitation | [95] |
Sludge | Potassium acetate | 700/1 | 5–300 | 24 | Langmuir | Second | 49.47 | Complexation, surface precipitation | [133] |
Watermelon rind | MgO | 600/1 | 50 mmol·L−1 | 24 | --- | --- | 742.00 | --- | [53] |
Palm fiber | FeSO4·7H2O and FeCl3·6H2O | 400/2 | 25–300 | 24 | Sips model | Second | 188.18 | Electrostatic interaction, ion exchange, and complexation | [100] |
Celery | --- | 500/3 | 60–400 | 24 | --- | --- | 304.00 | Precipitation, cation exchange, and surface complexation | [134] |
Coagulation sludge | MgCl2⋅6H2O, MgFe3⋅6H2O | 500/4 | 0–140 | 24 | Langmuir | Second | 488.78 | Ion exchange, electrostatic interaction | [48] |
Pinewood sawdust | Al(NO3)3·9H2O, MgSO4·7H2O | 350/1 | 10–500 | 24 | Langmuir | Second | 591.20 | Complexation and electrostatic interaction | [135] |
C. Oleifera shells | Polyammonium phosphate | 550/1 | 100–2000 | 6 | Langmuir | Second | 723.60 | Surface complexation | [81] |
Rice straws | β–cyclodextrin | 500/4 | 50–5000 | 4 | Langmuir | Second | 131.24 | Ion exchange and complexation | [136] |
Soybean cake | --- | 700/2 | 60 | 2.5 | Second | 133.60 | Cation exchange, precipitation | [137] | |
Shredded wood | Mild air | 475/0.25 | 0–500 | --- | --- | --- | 44.00 | Precipitation | [60] |
Pomelo peel | H3PO4 | 250/2 | 10–2000 | 24 | Langmuir | Second | 88.70 | Surface complexation and electrostatic interactions | [52] |
Date seed | HCl | 550/3 | --- | --- | Sips | --- | 188.55 | --- | [38] |
Peanut shell | Hydrated manganese oxide | 400/1 | 0–30 | 24 | Freundlich | Second | 330.00 | Complexation | [96] |
Corn stalks | FeSO4·7H2O, L-cysteine | 120/12 | 10–150 | 10 | Freundlich | Second | 103.04 | Electrostatic attraction | [97] |
Axonopus compressus | Sulfuric acid | 180/0.5 | 0–200 | 15 min | Langmuir | Second | 191.07 | Complexation and ion exchange | [70] |
Corn stover | ZnO/ZnS | 600/1 | 5–100 | 48 | Freundlich | Second | 135.80 | Ion exchange, inner sphere complexation | [138] |
Eucalyptus globules bark | Zero valent iron | 750 | 0–200 | 2 | Langmuir | Second | 60.80 | --- | [139] |
Grape pomace | --- | 700/2 | 50–300 | 24 | Langmuir | Second | 134.00 | Electrostatic attraction, cation exchange, complexation | [51] |
Wheat straw | Natural hematite | 800/2 | 5–1500 | 24 | Freundlich | Second | 196.91 | Precipitation and the surface complexation | [83] |
Pine sawdust | Magnetic ferrite | 200/8 | 5–100 | 6 | Langmuir | Second | 99.50 | Chemical binding adsorption, electrostatic attraction, and ion exchange | [140] |
Medulla tetrapanacis | --- | 700/1 | 50–400 | 24 | Langmuir | Second | 1031.23 | Complexation, precipitation, π-π interactions, ion exchange | [46] |
Raw sawdust | Magnesium | 600/1 | 20–600 | 1.5 | --- | --- | 202.20 | Ion exchange | [141] |
Douglas fir | KOH | 900–1000/ 10 s | 25–1000 | 1 | Langmuir | Second | 140.00 | --- | [72] |
Sludge | Persulfate-zvi | 600/1.5 | 0–100 | 8 | Langmuir | Second | 180.00 | Electrostatic attraction, electrostatic outer sphere complexation, ion exchange, reduction | [112] |
Raw sewage sludge | Potassium hydroxide | 350/15 min | 10–1000 | 80 min | --- | Second | 106.00 | Precipitation | [91] |
Quercus robur | FeCl3 and FeCl2 | 250/4 | 25–150 | 4 | Langmuir | Second | 63.60 | Electrostatic interactions | [117] |
Pine wood | MnCl2·4H2O | 600/1 | 1–300 | 24 | Langmuir and Freundlich | First and second | 47.05 | Precipitation | [101] |
Rice straw | --- | 550/2 | 0–1 mmol·L−1 | 72 | Langmuir | --- | 0.85 176.12 | Chemical complexation | [118] |
Rice husk | β-cyclodextrin | 300/2 | 10–300 | 2 | Langmuir | Second | 240.13 | Electrostatic attraction and complexation | [119] |
Water hyacinth | --- | 433/2.65 | 0–1000 | 6 | Freundlich | Second | 251.39 | Precipitation, electrostatic adsorption, surface physical adsorption, ion exchange, and complexation of functional groups. | [121] |
Palm oil sludge | --- | 500/0.5 | 0–150 | 4 | Freundlich | First, second- | 21.76 | Boundary layer diffusion | [115] |
Cinnamomum camphor | Ultrasound-assisted alkali | 450/1 | 50–1000 | 6 | Langmuir | Second | 98.33 | Electrostatic attraction and surface complexation | [122] |
Fallen leaf | Fe2+/Fe3+ | 450/1 | 0–1000 | 2 | Langmuir | Second | 146.84 | --- | [120] |
Bean-worm skin waste | --- | 500/4 | 20–300 | 200 | Langmuir | Second | 62.00 | Chemisorption and precipitation | [123] |
Corn stalks | Nanoscale zero-valent iron, KOH | 800/2 | 10–200 | 8 | Langmuir | Second | 480.90 | Reduction reaction, complexation, and co-precipitation | [124] |
Rice husk | Manganese oxide | 800/3 | 15–250 | 1.5 | Langmuir | Second | 86.50 | Electron density reduction in π-bond aromatic moieties due to the addition of -COOH | [125] |
Corncob-to-xylose residue | Nitrogen doped magnesium oxide | 400/2 | 0–500 | 24 | Freundlich | Second | 1429.00 | Ion exchange, precipitation and complexation | [42] |
Ragweed | --- | 450/2 | 1000 ppm | 24 | Langmuir | Second | 358.70 | Precipitation, ion exchange, complexation | [142] |
Sewage sludge | --- | 500/0.5 | 0–320 | 6 | Langmuir | First | 41.20 | --- | [113] |
Sludge | --- | 550/2 | 200–1000 | 4 | Freundlich | Second | 30.88 | Co-precipitation, complexation | [128] |
Long-root Eichhornia crassipes | --- | 350/20 min | 1.0 mmol·L−1 | 50min | Langmuir | Second | 118.10 | Complexation | [126] |
Eucalypts leaf residue | ZnCl2, FeCl3 and FeSO4 | 700/2 | 0–100 | 48 | --- | --- | 52.40 | --- | [127] |
Microcrystalline cellulose | Iron nanoparticles | 1000 | 0–1500 | 24 | Tempkin | Second | 17.30 | Reduction | [129] |
Banana peels | --- | 600/2 | 0–600 | 48 | Freundlich | Second | 247.10 | Electrostatic attraction | [50] |
Rice husk | --- | 700/1 | 0–600 | 48 | Freundlich | Second | 26.70 | Precipitation | [130] |
Hickory wood | NaOH | 600/2 | 2–100 | 24 | Langmuir | --- | 53.60 | --- | [74] |
Orange peel | --- | 500 | 6–223 | 6 | Langmuir | Second | 86.96 | Ion exchange and surface precipitation | [49] |
Rice straw | KMnO4 | 420/4 | 1.0 mmol·L−1 | 8 | Langmuir | Second | 305.25 | Complexation | [131] |
Hickory wood | KMnO4 | 600/1 | 0–100 | 24 | Redlich Peterson | Richie n-th-order | 153.10 | Surface adsorption mechanisms | [44] |
Swine sludge | Thiourea | 300/0.5 | 0–100 | 48 | Langmuir | Second | 145.00 | Ion exchange | [80] |
Hickory | --- | 350/5 | 5–250 | 24 | Dubinin–Radushkevich | --- | 16.30 | Cation exchange | [99] |
Maple wood | H2O2 | 550/ | 5–550 | 24 | Langmuir | --- | 43.30 | --- | [143] |
Coconut fiber | --- | 500/4 | 50–500 | 24 | Langmuir | Second | 175.40 | Cation exchange, complexation with functional group, precipitation | [144] |
British broadleaf hardwood | --- | 600 | --- | 24 | Langmuir | Second | 47.66 | Cation exchange | [76] |
Raw bagasse | KMnO4 | 600/8 | 5–200 | 48 | Langmuir | Second | 37.45 | Precipitation, ion exchange | [145] |
Ganoderma lucidum substrate | --- | 650/2 | 0–300 | 24 | Freundlich | Second | 262.76 | Precipitation | [146] |
Aerobic granular sludge | FeCl3·6H2O, FeSO4·7H2O | 200/8 | 5–150 | 12 | Langmuir | Second | 127.00 | Surface complexation, electrostatic attraction, and precipitation | [147] |
Camellia seed husk | --- | 700/1 | 0–300 | 48 | Langmuir | Second | 109.67 | Ion exchange, complexation, Pb–π interaction, and precipitation | [148] |
Mulberry wood | --- | 650/4 | ––– | --- | Freundlich | --- | 250.00 | Ion exchange and chemical precipitation, Pb2+-p-electrons interaction | [149] |
Biogas residue | FeCl3, FeSO4·7H2O | 700/2 | 25–300 | 4 | Langmuir | Second | 181.82 | Surface complexation and precipitation, electrostatic attraction | [150] |
Printing leaflets | --- | 600/2 | 20–400 | 24 | Langmuir | Second | 1555.00 | Electrostatic interactions, and pi-pi interactions | [151] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Wang, X.; Li, N.; Tao, J.; Yan, B.; Cui, X.; Chen, G. Adsorption of Lead from Aqueous Solution by Biochar: A Review. Clean Technol. 2022, 4, 629-652. https://doi.org/10.3390/cleantechnol4030039
Wang C, Wang X, Li N, Tao J, Yan B, Cui X, Chen G. Adsorption of Lead from Aqueous Solution by Biochar: A Review. Clean Technologies. 2022; 4(3):629-652. https://doi.org/10.3390/cleantechnol4030039
Chicago/Turabian StyleWang, Chuanbin, Xutong Wang, Ning Li, Junyu Tao, Beibei Yan, Xiaoqiang Cui, and Guanyi Chen. 2022. "Adsorption of Lead from Aqueous Solution by Biochar: A Review" Clean Technologies 4, no. 3: 629-652. https://doi.org/10.3390/cleantechnol4030039
APA StyleWang, C., Wang, X., Li, N., Tao, J., Yan, B., Cui, X., & Chen, G. (2022). Adsorption of Lead from Aqueous Solution by Biochar: A Review. Clean Technologies, 4(3), 629-652. https://doi.org/10.3390/cleantechnol4030039