Carbon Capture from Biogas by Deep Eutectic Solvents: A COSMO Study to Evaluate the Effect of Impurities on Solubility and Selectivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Composition of Biogas
2.2. Deep Eutectic Solvents
2.3. COSMO Simulation
3. Results and Discussion
3.1. Sigma Profiles of DES’s, Polar, and Non-Polar Molecules
3.2. Selectivity for CO2 over CH4 by DES in Infinite Dilution
3.3. Effect of Pressure on Selectivity and Solubility of CO2 in Various DES
3.4. Effect of Impurities on CO2 Solubility in Various DES
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Q.; Hu, J.; Lee, D.-J. Biogas from anaerobic digestion processes: Research updates. Renew. Energy 2016, 98, 108–119. [Google Scholar] [CrossRef]
- Khalid, A.; Arshad, M.; Anjum, M.; Mahmood, T.; Dawson, L. The anaerobic digestion of solid organic waste. Waste Manag. 2011, 31, 1737–1744. [Google Scholar] [CrossRef] [PubMed]
- Holm-Nielsen, J.; Al Seadi, T.; Oleskowicz-Popiel, P. The future of anaerobic digestion and biogas utilization. Bioresour. Technol. 2009, 100, 5478–5484. [Google Scholar] [CrossRef] [PubMed]
- Mao, C.; Feng, Y.; Wang, X.; Ren, G. Review on research achievements of biogas from anaerobic digestion. Renew. Sustain. Energy Rev. 2015, 45, 540–555. [Google Scholar] [CrossRef]
- Santiago, R.; Moya, C.; Palomar, J. Siloxanes capture by ionic liquids: Solvent selection and process evaluation. Chem. Eng. J. 2020, 401, 126078. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, Y.; Wu, B.; Zhang, X.; Zhang, S. Biogas upgrading technologies: Energetic analysis and environmental impact assessment. Chin. J. Chem. Eng. 2015, 23, 247–254. [Google Scholar] [CrossRef]
- García-Gutiérrez, P.; Jacquemin, J.; McCrellis, C.; Dimitriou, I.; Taylor, S.F.R.; Hardacre, C.; Allen, R.W.K. Techno-economic feasibility of selective CO2 capture processes from biogas streams using ionic liquids as physical absorbents. Energy Fuels 2016, 30, 5052–5064. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Björkmalm, J.; Ma, C.; Willquist, K.; Yngvesson, J.; Wallberg, O.; Ji, X. Techno-economic evaluation of biogas upgrading using ionic liquids in comparison with industrially used technology in Scandinavian anaerobic digestion plants. Appl. Energy 2018, 227, 742–750. [Google Scholar] [CrossRef]
- Ryckebosch, E.; Drouillon, M.; Vervaeren, H. Techniques for transformation of biogas to biomethane. Biomass Bioenergy 2011, 35, 1633–1645. [Google Scholar] [CrossRef]
- Słupek, E.; Makoś, P.; Gębicki, J. Theoretical and economic evaluation of low-cost deep eutectic solvents for effective biogas upgrading to bio-methane. Energies 2020, 13, 3379. [Google Scholar] [CrossRef]
- Pham, T.P.T.; Cho, C.-W.; Yun, Y.-S. Environmental fate and toxicity of ionic liquids: A review. Water Res. 2010, 44, 352–372. [Google Scholar] [CrossRef]
- Bhatta, L.K.G.; Subramanyam, S.; Chengala, M.D.; Olivera, S.; Venkatesh, K. Progress in hydrotalcite like compounds and metal-based oxides for CO2 capture: A review. J. Clean. Prod. 2015, 103, 171–196. [Google Scholar] [CrossRef]
- Dou, B.; Wang, C.; Song, Y.; Chen, H.; Jiang, B.; Yang, M.; Xu, Y. Solid sorbents for in-situ CO2 removal during sorption-enhanced steam reforming process: A review. Renew. Sustain. Energy Rev. 2016, 53, 536–546. [Google Scholar] [CrossRef]
- Siongco, K.R.; Leron, R.B.; Li, M.-H. Densities, refractive indices, and viscosities of N,N-diethylethanol ammonium chloride-glycerol or -ethylene glycol deep eutectic solvents and their aqueous solutions. J. Chem. Thermodyn. 2013, 65, 65–72. [Google Scholar] [CrossRef]
- Bi, Y.; Hu, Z.; Lin, X.; Ahmad, N.; Xu, J.; Xu, X. Efficient CO2 capture by a novel deep eutectic solvent through facile, one-pot synthesis with low energy consumption and feasible regeneration. Sci. Total Environ. 2020, 705, 135798. [Google Scholar] [CrossRef] [PubMed]
- Sarmad, S.; Nikjoo, D.; Mikkola, J.-P. Amine functionalized deep eutectic solvent for CO2 capture: Measurements and modeling. J. Mol. Liq. 2020, 309, 113159. [Google Scholar] [CrossRef]
- Ghaedi, H.; Ayoub, M.; Sufian, S.; Shariff, A.M.; Hailegiorgis, S.M.; Khan, S.N. CO2 capture with the help of Phosphonium-based deep eutectic solvents. J. Mol. Liq. 2017, 243, 564–571. [Google Scholar] [CrossRef]
- Leron, R.B.; Li, M.-H. Solubility of carbon dioxide in a choline chloride-ethylene glycol based deep eutectic solvent. Thermochim. Acta 2013, 551, 14–19. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003, 70–71. [Google Scholar] [CrossRef] [Green Version]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and their applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef] [Green Version]
- Perna, F.M.; Vitale, P.; Capriati, V. Deep eutectic solvents and their applications as green solvents. Curr. Opin. Green Sustain. Chem. 2020, 21, 27–33. [Google Scholar] [CrossRef]
- Deep Eutectic Solvents Formed between Choline Chloride and Carboxylic Acids: Versatile Alternatives to Ionic Liquids|Journal of the American Chemical Society. Available online: https://pubs-acs-org.portal.lib.fit.edu/doi/10.1021/ja048266j (accessed on 15 March 2021).
- Figueroa, J.D.; Fout, T.; Plasynski, S.; McIlvried, H.; Srivastava, R.D. Advances in CO2 capture technology—The U.S. Department of Energy’s carbon sequestration program. Int. J. Greenh. Gas Control. 2008, 2, 9–20. [Google Scholar] [CrossRef]
- Zhang, N.; Huang, Z.; Zhang, H.; Ma, J.; Jiang, B.; Zhang, L. Highly efficient and reversible CO2 capture by task-specific deep eutectic solvents. Ind. Eng. Chem. Res. 2019, 58, 13321–13329. [Google Scholar] [CrossRef]
- Ren, H.; Lian, S.; Wang, X.; Zhang, Y.; Duan, E. Exploiting the hydrophilic role of natural deep eutectic solvents for greening CO2 capture. J. Clean. Prod. 2018, 193, 802–810. [Google Scholar] [CrossRef]
- Song, Z.; Hu, X.; Wu, H.; Mei, M.; Linke, S.; Zhou, T.; Qi, Z.; Sundmacher, K. Systematic Screening of deep eutectic solvents as sustainable separation media exemplified by the CO2 capture process. ACS Sustain. Chem. Eng. 2020, 8, 8741–8751. [Google Scholar] [CrossRef]
- McGaughy, K.; Reza, M.T. Systems analysis of SO2-CO2 Co-capture from a post-combustion coal-fired power plant in deep eutectic solvents. Energies 2020, 13, 438. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yu, H.; Sun, Y.; Zeng, S.; Zhang, X.; Nie, Y.; Zhang, S.; Ji, X. Screening deep eutectic solvents for CO2 capture with COSMO-RS. Front. Chem. 2020, 8. [Google Scholar] [CrossRef]
- Adeyemi, I.; Abu-Zahra, M.R.; Alnashef, I. Experimental study of the solubility of CO2 in novel amine based deep eutectic solvents. Energy Procedia 2017, 105, 1394–1400. [Google Scholar] [CrossRef]
- Anukam, A.; Mohammadi, A.; Naqvi, M.; Granström, K. A review of the chemistry of anaerobic digestion: Methods of accelerating and optimizing process efficiency. Processes 2019, 7, 504. [Google Scholar] [CrossRef] [Green Version]
- Hagen, M.; Polman, E.; Jensen, J.K.; Myken, A.; Joensson, O.; Dahl, A. Adding Gas from Biomass to the Gas Grid. 2001. Available online: https://www.osti.gov/etdeweb/biblio/20235595 (accessed on 14 March 2021).
- Al Mamun, M.R.; Torii, S. Enhancement of methane concentration by removing contaminants from biogas mixtures using combined method of absorption and adsorption. Int. J. Chem. Eng. 2017, 2017, 7906859. [Google Scholar] [CrossRef]
- Nyamukamba, P.; Mukumba, P.; Chikukwa, E.S.; Makaka, G. Biogas upgrading approaches with special focus on siloxane removal—A review. Energies 2020, 13, 6088. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, Z.; Zheng, Y.; Chen, Y.; Yin, F.; Zhang, W.; Dong, H.; Xin, H. Characterization of Volatile Organic Compound (VOC) emissions from swine manure biogas digestate storage. Atmosphere 2019, 10, 411. [Google Scholar] [CrossRef] [Green Version]
- Shen, M.; Zhang, Y.; Hu, D.; Fan, J.; Zeng, G. A review on removal of siloxanes from biogas: With a special focus on volatile methylsiloxanes. Environ. Sci. Pollut. Res. 2018, 25, 30847–30862. [Google Scholar] [CrossRef]
- Zhekenov, T.; Toksanbayev, N.; Kazakbayeva, Z.; Shah, D.; Mjalli, F.S. Formation of type III deep eutectic solvents and effect of water on their intermolecular interactions. Fluid Phase Equilibria 2017, 441, 43–48. [Google Scholar] [CrossRef]
- Hsu, Y.-H.; Leron, R.B.; Li, M.-H. Solubility of carbon dioxide in aqueous mixtures of (reline + monoethanolamine) at T = (313.2 to 353.2)K. J. Chem. Thermodyn. 2014, 72, 94–99. [Google Scholar] [CrossRef]
- Wichmann, K. COSMOthermX User Guide; COSMOlogic GmbH & Co.: Leverkusen, Germany, 2019; p. 131. [Google Scholar]
- Palmelund, H.; Andersson, M.P.; Asgreen, C.J.; Boyd, B.J.; Rantanen, J.; Löbmann, K. Tailor-made solvents for pharmaceutical use? Experimental and computational approach for determining solubility in deep eutectic solvents (DES). Int. J. Pharm. X 2019, 1, 100034. [Google Scholar] [CrossRef]
- McGaughy, K.; Reza, M.T. Liquid—Liquid extraction of furfural from water by hydrophobic deep eutectic solvents: Improvement of density function theory modeling with experimental validations. ACS Omega 2020, 5, 22305–22313. [Google Scholar] [CrossRef]
- García, G.; Aparicio, S.; Ullah, R.; Atilhan, M. Deep eutectic solvents: Physicochemical properties and gas separation applications. Energy Fuels 2015, 29, 2616–2644. [Google Scholar] [CrossRef]
- Alioui, O.; Benguerba, Y.; Alnashef, I.M. Investigation of the CO2-solubility in deep eutectic solvents using COSMO-RS and molecular dynamics methods. J. Mol. Liq. 2020, 307, 113005. [Google Scholar] [CrossRef]
- Jiang, T.; Zhong, W.; Jafari, T.; Du, S.; He, J.; Fu, Y.-J.; Singh, P.; Suib, S.L. Siloxane D4 adsorption by mesoporous aluminosilicates. Chem. Eng. J. 2016, 289, 356–364. [Google Scholar] [CrossRef]
Molecule | Abbreviation | Composition Volume % | PPM | References |
---|---|---|---|---|
Hydrogen Sulfide | H2S | 0–2 | 0–10,000 | [31,32] |
Ammonia | NH3 | 0–1 | 0–100 | [31,33] |
Nitrogen | N2 | 0–15 | - | [31] |
Water | H2O | 5–10 | - | [32] |
Propanone | Acetone | - | 0–15 | [34] |
Octamethyltrisiloxane | Octa | - | 0–41.35 | [35] |
Decamethylcyclopentasiloxane | Deca | - | 0–5.17 | [33] |
Carbon Dioxide | CO2 | 15–47 | - | [31] |
Methane | CH4 | 35–70 | - | [31] |
DES | Abbreviation | HBA | HBD | Molar Ratio | Molar Mass (g/g mol) |
---|---|---|---|---|---|
N8888Br:Decanoic Acid | N8Br:DA | N8888Br | Decanoic Acid | 1:3 | 1019.08 |
N4444Br:Decanoic Acid | N4Br:DA | N4444Br | Decanoic Acid | 1:3 | 839.15 |
N4444Cl:Ethylene Glycol | N4Cl:EG | N4444Cl | Ethylene Glycol | 1:3 | 464.11 |
ChCl:Ethylene glycol | ChCl:EG | ChCl | Ethylene Glycol | 1:3 | 325.83 |
ChCl:Urea | ChCl:U | ChCl | Urea | 1:2 | 259.74 |
Temp (°C) | 25 | 37 | 55 | ||||||
---|---|---|---|---|---|---|---|---|---|
Mol% | 1% | 3% | 5% | 1% | 3% | 5% | 1% | 3% | 5% |
H2O | 1.01 | 0.99 | 0.96 | 1.00 | 0.98 | 0.96 | 1.00 | 0.98 | 0.95 |
CO2 | - | - | - | - | - | - | - | - | - |
CH4 | 1.00 | 0.96 | 0.92 | 1.00 | 0.95 | 0.91 | 0.99 | 0.95 | 0.91 |
Octa | 0.92 | 0.84 | 0.76 | 0.99 | 0.82 | 0.76 | 0.96 | 0.83 | 0.78 |
Deca | 0.91 | 0.81 | 0.74 | 0.99 | 0.80 | 0.75 | 0.95 | 0.81 | 0.78 |
H2S | 1.01 | 0.98 | 0.95 | 1.00 | 0.98 | 0.95 | 1.00 | 0.97 | 0.95 |
NH3 | 1.03 | 1.01 | 1.03 | 1.01 | 1.02 | 1.03 | 1.01 | 1.02 | 1.03 |
N2 | 1.02 | 0.99 | 0.99 | 1.00 | 0.99 | 0.98 | 1.00 | 0.99 | 0.98 |
Acetone | 1.01 | 0.97 | 0.94 | 1.00 | 0.96 | 0.93 | 1.00 | 0.96 | 0.93 |
SO2 | 1.00 | 0.97 | 0.92 | 1.00 | 0.96 | 0.92 | 0.99 | 0.95 | 0.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quaid, T.; Reza, M.T. Carbon Capture from Biogas by Deep Eutectic Solvents: A COSMO Study to Evaluate the Effect of Impurities on Solubility and Selectivity. Clean Technol. 2021, 3, 490-502. https://doi.org/10.3390/cleantechnol3020029
Quaid T, Reza MT. Carbon Capture from Biogas by Deep Eutectic Solvents: A COSMO Study to Evaluate the Effect of Impurities on Solubility and Selectivity. Clean Technologies. 2021; 3(2):490-502. https://doi.org/10.3390/cleantechnol3020029
Chicago/Turabian StyleQuaid, Thomas, and M. Toufiq Reza. 2021. "Carbon Capture from Biogas by Deep Eutectic Solvents: A COSMO Study to Evaluate the Effect of Impurities on Solubility and Selectivity" Clean Technologies 3, no. 2: 490-502. https://doi.org/10.3390/cleantechnol3020029
APA StyleQuaid, T., & Reza, M. T. (2021). Carbon Capture from Biogas by Deep Eutectic Solvents: A COSMO Study to Evaluate the Effect of Impurities on Solubility and Selectivity. Clean Technologies, 3(2), 490-502. https://doi.org/10.3390/cleantechnol3020029