Three-Phase State Estimation for Distribution-Grid Analytics
Abstract
:1. Introduction
- Guidelines are provided on the utilization of historical smart-meter data collected at customer connection boxes of LV distribution grids for asset management.
- An improved NWLS method is proposed on the basis of three-phase state estimation (3 DSSE) algorithm to be executed offline for the estimation of energy losses, and the loading of lines and substation transformer.
- The accuracy of single- and three-phase state-estimation algorithms is compared and quantified, applied to the state estimation of a real-world LV distribution grid with actual smart-meter measurement data.
2. Asset Management Based on Offline Analysis of Smart-Meter Data
3. Mathematical Formulation of Grid Model and DSSE
3.1. Three-Phase Model of Distribution-Grid Topology
3.2. Representation of Electrical Loads
3.3. Three-Phase State-Estimation Algorithm
4. Simulation Studies
4.1. LV Grid Used for Case Studies
4.2. Case 1: Estimation of Node Voltages
4.3. Case 2: Estimation of Cable Loading
4.4. Case 3: Estimation of Active Energy Losses
5. Discussion
- Per-phase voltages or currents estimated by 3 DSSE algorithm showed voltage or current variations in the corresponding phases. However, such variations were not observed in their positive-sequence values estimated by the 1 DSSE algorithm.
- Using the 3 DSSE algorithm, accuracy in the estimation of active energy losses can be improved by a factor of three compared to the 1 DSSE algorithm.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CCB | Customer connection box |
DER | Distributed energy resources |
DSO | Distribution system operator |
DSSE | Distribution-system state estimation |
ICT | Information and communication technologies |
JB | Junction box |
LV | Low-voltage |
MAE | Mean absolute error |
MV | Medium-voltage |
NV | Node voltages |
NWLS | Nonlinear Weighted Least Square |
PMU | Phasor measurement unit |
pu | per unit |
PV | Photovoltaic |
RTU | Remote terminal unit |
THD | Total harmonic distortion |
1 | Single-phase |
3 | Three-phase |
References
- Mathiesen, B.; Lund, H. Comparative analyses of seven technologies to facilitate the integration of fluctuating renewable energy sources. IET Renew. Power Gener. 2009, 3, 190. [Google Scholar] [CrossRef]
- Samuelsson, O.; Repo, S.; Jessler, R.; Aho, J.; Karenlampi, M.; Malmquist, A. Active distribution network—Demonstration project ADINE. In Proceedings of the 2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe), Gothenburg, Sweden, 11–13 October 2010; pp. 1–8. [Google Scholar] [CrossRef]
- Ghorbani, M.J.; Mokhtari, H. Impact of harmonics on power quality and losses in power distribution systems. Int. J. Electr. Comput. Eng. 2015, 5, 166–174. [Google Scholar] [CrossRef]
- Rad, M.S.; Kazerooni, M.; Ghorbany, M.J.; Mokhtari, H. Analysis of the grid harmonics and their impacts on distribution transformers. In Proceedings of the 2012 IEEE Power and Energy Conference at Illinois—PECI 2012, Champaign, IL, USA, 24–25 February 2012; p. 4. [Google Scholar] [CrossRef]
- Bollen, M.; Hassan, F. Integration of Distributed Generation in the Power System; John wiley and Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Walling, R.A.; Saint, R.; Dugan, R.C.; Burke, J.; Kojovic, L.A. Summary of distributed resources impact on power delivery systems. IEEE Trans. Power Deliv. 2008, 23, 1636–1644. [Google Scholar] [CrossRef]
- Nainar, K.; Pokhrel, B.R.; Pillai, J.R.; Bak-Jensen, B.; Frederiksen, K.H.B. Demand Response in Low Voltage Distribution Networks with High PV Penetration. In Proceedings of the UPEC 2017, Crete, Greece, 28–31 August 2017. [Google Scholar]
- Armendariz, M.; Broden, D.; Honeth, N.; Nordström, L. A method to identify exposed nodes in low voltage distribution grids with High PV penetration. IEEE Power Energy Soc. Gen. Meet. 2015. [Google Scholar] [CrossRef]
- Nainar, K.; Pillai, J.R.; Bak-Jensen, B.; Simpson-Porco, J.W. Predictive control of flexible resources for demand response in active distribution networks. IEEE Trans. Power Syst. 2019, 34, 2957–2969. [Google Scholar] [CrossRef]
- Järventausta, P.; Repo, S.; Rautiainen, A.; Partanen, J. Smart grid power system control in distributed generation environment. Annu. Rev. Control 2010, 34, 277–286. [Google Scholar] [CrossRef]
- Berizzi, A.; Bovo, C.; Ilea, V.; Merlo, M.; Monfredini, G.; Subasic, M.; Arrigoni, C.; Zanellini, F.; Corti, F.; Rochira, I. Advanced functions for DSOs control center. In Proceedings of the 2013 IEEE Grenoble Conference—POWERTECH 2013, Grenoble, France, 16–20 June 2013. [Google Scholar] [CrossRef]
- Schneider, J.; Gaul, A.J.; Neumann, C.; Hogräfer, J.; Wellßow, W.; Schwan, M.; Schnettler, A. Asset management techniques. Int. J. Electr. Power Energy Syst. 2006, 28, 643–654. [Google Scholar] [CrossRef] [Green Version]
- CIRED. Reduction of technical and non-technical losses in distribution networks. In Proceedings of the International Conference on Electricity Distribution, Glasgow, UK, 12–15 June 2017; p. 114. [Google Scholar]
- Zhou, S.; Brown, M.A. Smart meter deployment in Europe: A comparative case study on the impacts of national policy schemes. J. Clean. Prod. 2017, 144, 22–34. [Google Scholar] [CrossRef]
- Kemal, M.S.; Ruben, S.; Olsen, R.L.; Iov, F.; Schwefel, H.P. On the trade-off between timeliness and accuracy for low voltage distribution system grid monitoring utilizing smart meter data. Int. J. Electr. Power Energy Syst. 2020, 121, 106090. [Google Scholar] [CrossRef]
- Pau, M.; Patti, E.; Barbierato, L.; Estebsari, A.; Pons, E.; Ponci, F.; Monti, A. Low voltage system state estimation based on smart metering infrastructure. In Proceedings of the 2016 IEEE International Workshop on Applied Measurements for Power Systems (AMPS), Aachen, Germany, 28–30 September 2016; pp. 1–6. [Google Scholar]
- Wang, Y.; Chen, Q.; Hong, T.; Kang, C. Review of smart meter data analytics: Applications, methodologies, and challenges. IEEE Trans. Smart Grid 2019, 10, 3125–3148. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Yu, N. Parameter Estimation in Three-Phase Power Distribution Networks Using Smart Meter Data. In Proceedings of the 2020 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Liege, Belgium, 18–21 August 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Ahmad, F.; Rasool, A.; Ozsoy, E.; Sekar, R.; Sabanovic, A.; Elitaş, M. Distribution system state estimation-A step towards smart grid. Renew. Sustain. Energy Rev. 2018, 81, 2659–2671. [Google Scholar] [CrossRef] [Green Version]
- Primadianto, A.; Lu, C.N. A review on distribution system state estimation. IEEE Trans. Power Syst. 2017, 32, 1. [Google Scholar] [CrossRef]
- Wang, G.; Giannakis, G.B.; Chen, J.; Sun, J. Distribution system state estimation: An overview. Front. Inf. Technol. Electron. 2019, 20, 4–17. [Google Scholar] [CrossRef]
- Huang, Y.F.; Werner, S.; Huang, J.; Kashyap, N.; Gupta, V. State estimation in electric power grids: Meeting new challenges presented by the requirements of the future grid. IEEE Signal Process. Mag. 2012, 29, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Liu, M.; Xiao, S. A survey on state estimation algorithm of distribution grid. In Proceedings of the 2012 Spring Congress on Engineering and Technology—SCET 2012, Xi’an, China, 27–30 May 2012; pp. 1–4. [Google Scholar]
- Dehghanpour, K.; Wang, Z.; Wang, J.; Yuan, Y.; Bu, F. A survey on state estimation techniques and challenges in smart distribution systems. IEEE Trans. Smart Grid 2019, 10, 2312–2322. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Majeed, A.; Braun, M. Low voltage system state estimation using smart meters. In Proceedings of the 2012 47th International Universities Power Engineering Conference (UPEC), Uxbridge, UK, 4–7 September 2012; pp. 1–6. [Google Scholar]
- Nainar, K.; Iov, F. Smart meter measurement-based state estimation for monitoring of low-voltage distribution grids. Energies 2020, 13, 5367. [Google Scholar] [CrossRef]
- Persson, M.; Lindskog, A. Detection and localization of non-technical losses in distribution systems with future smart meters. In Proceedings of the 2019 IEEE Milan PowerTech, Milan, Italy, 23–27 June 2019. [Google Scholar] [CrossRef]
- Ni, F.; Nguyen, P.H.; Cobben, J.F.; Van den Brom, H.E.; Zhao, D. Three-phase state estimation in the medium-voltage network with aggregated smart meter data. Int. J. Electr. Power Energy Syst. 2018, 98, 463–473. [Google Scholar] [CrossRef]
- Khan, M.A.; Hayes, B. Three phase state estimation in power distribution networks by integrating IEEE-1588 with smart meters. In Proceedings of the 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), College Station, TX, USA, 21–23 May 2019. [Google Scholar] [CrossRef]
- Ranković, A.; Maksimović, B.M.; Sarić, A.T. A three-phase state estimation in active distribution networks. Int. J. Electr. Power Energy Syst. 2014, 54, 154–162. [Google Scholar] [CrossRef]
- Soares, T.M.; Bezerra, U.H.; De Lima Tostes, M.E. Full-observable three-phase state estimation algorithm applied to electric distribution grids. Energies 2019, 12, 1327. [Google Scholar] [CrossRef] [Green Version]
- Picciariello, A.; Alvehag, K.; Soder, L. Impact of Network Regulation on the Incentive for DG Integration for the DSO: Opportunities for a Transition Toward a Smart Grid. IEEE Trans. Smart Grid 2015, 6, 1730–1739. [Google Scholar] [CrossRef]
- Mallet, P.; Granström, P.O.; Hallberg, P.; Lorenz, G.; Mandatova, P. Power to the people!—European Perspectives on the Future of Electric Distribution. IEEE Power Energy Mag. 2014, 12, 51–64. [Google Scholar] [CrossRef]
- Papathanassiou, S.; Hatziargyriou, N.; Anagnostopoulos, P.; Aleixo, L.; Buchholz, B.; Carter-Brown, C.; Drossos, N.; Enayati, B.; Fan, M.; Gabrion, V.; et al. Capacity of Distribution Feeders for Hosting Distributed Energy Resources; Cigre C6.24; CIGRE: Paris, France, 2014; p. 148. [Google Scholar]
- Pilo, F.; Silvestro, F.; Mauri, G.; Taylor, J.; Bak-Jensen, B.; Braun, M.; Kampf, E. Control and Automation Systems at the TSO-DSO interface: A survey on the actual functionalities and DSO requirements. In Proceedings of the CIGRE Symposium 2017, Dublin, Ireland, 29 May–2 June 2017; Cigre WG C6.25. pp. 1–10. [Google Scholar]
- Iov, F.; Ciontea, C. WP 5.1 Report—First Integrated Deployment at Lab and Testbed. Net2DG Project. Technical Report. 2019. Available online: www.net2dg.eu (accessed on 2 April 2021).
- Dzafic, I.; Henselmeyer, S.; Neisius, H.T. High performance State Estimation for smart grid distribution network operation. Innov. Smart Grid 2011, 1–6. [Google Scholar] [CrossRef]
- Primadianto, A.; Lin, W.T.; Lu, C.N. Performance comparison of distribution system state estimation methods. In Proceedings of the 2016 IEEE Innovative Smart Grid Technologies-Asia (ISGT-Asia), Melbourne, Australia, 28 November–1 December 2016; pp. 1121–1126. [Google Scholar] [CrossRef]
- Pau, M.; Pegoraro, P.A.; Sulis, S. Performance of three-phase WLS distribution system state estimation approaches. In Proceedings of the 2015 IEEE International Workshop on Applied Measurements for Power Systems (AMPS), Aachen, Germany, 23–25 September 2015; pp. 138–143. [Google Scholar] [CrossRef]
- Kersting, W.H. Distribution System Modeling and Analysis; CRC Press: Boca Raton, FL, USA, 2012; p. 455. [Google Scholar]
- Bazrafshan, M.; Gatsis, N. Comprehensive modeling of three-phase distribution systems via the bus admittance matrix. IEEE Trans. Power Syst. 2017, 33, 2015–2029. [Google Scholar] [CrossRef] [Green Version]
- Saadat, H. Power System Analysis; WCB/McGraw-Hill: Singapore, 1999. [Google Scholar]
- Baran, M.E.; Kelley, A.W. State estimation for real-time monitoring of distribution systems. IEEE Trans. Power Syst. 1994, 9, 1601–1609. [Google Scholar] [CrossRef]
Method | Average Iteration Number | Average Execution Time (ms) |
---|---|---|
1 DSSE | 3.44 | 2.3 |
3 DSSE | 3.49 | 6.8 |
True Value | Loss Calculation Based on (1) | Single-Phase DSSE | Three-Phase DSSE | |
---|---|---|---|---|
Energy losses [MWh] | 2.47 | 1.86 | 1.93 | 2.64 |
Absolute difference [%] | - | 24.82 | 21.75 | 6.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nainar, K.; Iov, F. Three-Phase State Estimation for Distribution-Grid Analytics. Clean Technol. 2021, 3, 395-408. https://doi.org/10.3390/cleantechnol3020022
Nainar K, Iov F. Three-Phase State Estimation for Distribution-Grid Analytics. Clean Technologies. 2021; 3(2):395-408. https://doi.org/10.3390/cleantechnol3020022
Chicago/Turabian StyleNainar, Karthikeyan, and Florin Iov. 2021. "Three-Phase State Estimation for Distribution-Grid Analytics" Clean Technologies 3, no. 2: 395-408. https://doi.org/10.3390/cleantechnol3020022
APA StyleNainar, K., & Iov, F. (2021). Three-Phase State Estimation for Distribution-Grid Analytics. Clean Technologies, 3(2), 395-408. https://doi.org/10.3390/cleantechnol3020022