Soil Quality Indicators and Water Erosion in Olive Groves (Olea europaea L.) Under Different Vegetation Cover Management
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area, Experimental Design, and Olive Cultivation History
2.2. Soil Sampling and Preparation
2.3. Investigation of Soil Physical, Chemical, and Biological Indicators
2.4. Rainfall Erosivity Estimation
2.5. Soil and Water Loss Assessment
2.6. Statistical Analysis
3. Results
3.1. Interactions Between Factors
3.2. Soil Chemical Indicators and Soil Texture
3.3. Soil Biological Indicators
3.4. Aggregate Stability and Soil and Water Losses
3.5. Rainfall Erosivity
3.6. Principal Component Analysis (PCA)
4. Discussion
4.1. Soil Chemical Indicators Influenced by Cover Management, Plot Position, and Aggregate Size
4.2. Soil Biological Indicators in Response to Cover Crop Management, Plot Position, and Aggregate Size Distribution
4.3. Effects of Soil Cover Management on Erosion Losses and Aggregate Stability
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
OB | Olive trees grown on bare soil |
OVM | Olive trees within spontaneous vegetation managed by mowing |
OVMC | Olive trees within spontaneous vegetation managed by mowing and weed control around olive trees |
OVH | Olive trees within spontaneous vegetation managed by herbicide |
BS | Bare soil |
PCA | Principal component analysis |
WMD | Weighted mean diameter |
SOM | Soil organic matter |
MBC | Microbial biomass carbon |
qCO2 | Metabolic quotient |
EE-GRSP | Easily extractable glomalin-related soil protein |
β-glu | β-glucosidase |
References
- Villa, F.; Oliveira, A.F. De Origem e expansão da oliveira na América Latina. In Oliveira no Brasil Tecnologias de Produção; de Oliveira, A.F., Ed.; EPAMIG: Belo Horizonte, Brazil, 2012; pp. 21–38. [Google Scholar]
- Costa, S.M.L.; Melloni, R.; dos Reis Ferreira, G.M. Biotechnological potential of soil microorganisms in olive trees in Brazil: A Review. Rev. Agronegocio Meio Ambiente 2019, 12, 723–747. [Google Scholar] [CrossRef]
- Neto, J.V.; Oliveira, A.F.; Oliveira, N.C.; Duarte, H.S.S.; Gonçalves, E.D. Aspectos Técnicos da Cultura da Oliveira; EPAMIG: Belo Horizonte, Brazil, 2008; pp. 1–56. [Google Scholar]
- Coutinho, E.F.; Cappellaro, T.H.; Ribeiro, F.C.; Haerter, J.A. Introdução e importância econômica. In Sistemas de Produção: Cultivo de Oliveira (Olea europaea L.); Embrapa Clima Temperado: Pelotas, Brazil, 2009; pp. 17–20. [Google Scholar]
- Larbi, A.; Ayadi, M.; Ben Dhiab, A.; Msallem, M.; Caballero, J.M. Planting density affects vigour and production of ‘Arbequina’ olive. Span. J. Agric. Res. 2012, 10, 1081–1089. [Google Scholar] [CrossRef]
- Kavvadias, V.; Koubouris, G. Sustainable soil management practices in olive groves. In Soil Fertility Management for Sustainable Development; Panpatte, D., Jhala, Y., Eds.; Springer: Singapore, 2019; pp. 167–188. ISBN 9789811359040. [Google Scholar]
- Gómez, J.; Infante-Amate, J.; De Molina, M.; Vanwalleghem, T.; Taguas, E.; Lorite, I. Olive cultivation, its impact on soil erosion and its progression into yield impacts in southern spain in the past as a key to a future of increasing climate uncertainty. Agriculture 2014, 4, 170–198. [Google Scholar] [CrossRef]
- Beaufoy, G. The olive oil regime. In CAP Regimes and the European Countryside: Prospects for Integration Between Agricultural, Regional and Environmental Policies, 1st ed.; Brouwer, F., Lowe, P., Eds.; CABI Publishing: Wallingford, UK, 2000; pp. 155–177. [Google Scholar]
- Rodríguez Sousa, A.A.; Muñoz-Rojas, J.; Brígido, C.; Prats, S.A. Impacts of agricultural intensification on soil erosion and sustainability of olive groves in Alentejo (Portugal). Landsc. Ecol. 2023, 38, 3479–3498. [Google Scholar] [CrossRef]
- Daryanto, S.; Fu, B.; Wang, L.; Jacinthe, P.A.; Zhao, W. Quantitative synthesis on the ecosystem services of cover crops. Earth Sci. Rev. 2018, 185, 357–373. [Google Scholar] [CrossRef]
- Barbosa, G.M.d.C.; Melo, T.R.d.; Menoncin, A.S.; Colozzi Filho, A.; Telles, T.S. No-tillage participatory quality index reflects the condition of soil management. Rev. Ciênc. Agron. 2023, 54, e20218312. [Google Scholar] [CrossRef]
- Dominchin, M.F.; Verdenelli, R.A.; Aoki, A.; Meriles, J.M. Soil microbiological and biochemical changes as a consequence of land management and water erosion in a semiarid environment. Arch. Agron. Soil Sci. 2020, 66, 763–777. [Google Scholar] [CrossRef]
- Han, C.; Zhou, W.; Gu, Y.; Wang, J.; Zhou, Y.; Xue, Y.; Shi, Z.; Siddique, K.H.M. Effects of tillage regime on soil aggregate-associated carbon, enzyme activity, and microbial community structure in a semiarid agroecosystem. Plant Soil 2024, 498, 543–559. [Google Scholar] [CrossRef]
- Jiang, X.; Wright, A.L.; Wang, J.; Li, Z. Long-term tillage effects on the distribution patterns of microbial biomass and activities within soil aggregates. Catena 2011, 87, 276–280. [Google Scholar] [CrossRef]
- Liao, Z.; Ye, S.; Wang, S. Large macro-aggregate formation improves soil bacterial metabolic activity and diversity in a chronosequence of chinese fir plantations. J. Soil Sci. Plant Nutr. 2024, 24, 3749–3761. [Google Scholar] [CrossRef]
- Fang, H.; Zhai, Y.; Li, C. Evaluating the impact of soil erosion on soil quality in an agricultural land, northeastern China. Sci. Rep. 2024, 14, 15629. [Google Scholar] [CrossRef]
- Li, M.; Li, X.; Shi, Y.; Jiang, Y.; Xue, R.; Zhang, Q. Soil enzyme activity mediated organic carbon mineralization due to soil erosion in long gentle sloping farmland in the black soil region. Sci. Total Environ. 2024, 929, 172417. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Ding, S.; Li, Y.; Zhang, E.; Duan, X. Differential responses of soil cellulase enzymes and oxidative enzymes to soil erosion. Catena 2024, 241, 108015. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Li, P.; Xiao, L. Response of carbon acquisition enzyme activity and organic carbon mineralization to soil erosion and deposition. Soil Tillage Res. 2024, 243, 106169. [Google Scholar] [CrossRef]
- Santos, H.G.; Jacomine, P.K.T.; dos Anjos, L.H.C.; de Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; de Almeida, J.A.; Filho, J.C.A.; Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos, 5th ed.; Embrapa: Brasília, Brazil, 2018; pp. 175–200. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 13th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2022. Available online: https://www.nrcs.usda.gov/resources/guides-and-instructions/keys-to-soil-taxonomy#keys (accessed on 25 August 2025).
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Mitton, R.V.; Melo, V.F.; Pauletti, V. Do aggregate size classes of the subsurface soil horizon have different chemical/mineralogical properties? Rev. Bras. Ciênc. Solo 2019, 43, e0180041. [Google Scholar] [CrossRef]
- Oliveira, E.M.; Hermógenes, G.M.; Brito, L.d.C.; Silva, B.M.; Avanzi, J.C.; Beniaich, A.; Silva, M.L.N. Cover crop management systems improves soil quality and mitigate water erosion in tropical olive orchards. Sci. Hortic. 2024, 330, 113092. [Google Scholar] [CrossRef]
- Bouyoucos, G.J. Hydrometer method improved for making particle size analyses of soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Salton, J.C.; Silva, W.M.; Tomazi, M.; Hernani, L.C. Agregação do solo e estabilidade de agregados. In Manual de Métodos de Análise de Solo, 3rd ed.; Teixeira, P.C., Donagemma, G.K., Fontana, A., Teixeira, W.G., Eds.; Embrapa: Brasília, Brazil, 2017; pp. 129–138. [Google Scholar]
- Teixeira, P.C.; de Campos, D.V.B.; Saldanha, M.F.C. pH do solo. In Manual de Métodos de Análise de Solo, 3rd ed.; Teixeira, P.C., Donagemma, G.K., Fontana, A., Teixeira, W.G., Eds.; Embrapa: Brasília, Brazil, 2017; pp. 200–203. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Teixeira, P.C.; de Campos, D.V.B.; Bianchi, S.R.; Pérez, D.V.; Saldanha, M.F.C. Cátions Trocáveis. In Manual de Métodos de Análise de Solo, 3rd ed.; Teixeira, P.C., Donagemma, G.K., Fontana, A., Teixeira, W.G., Eds.; Embrapa: Brasília, Brazil, 2017; pp. 209–232. [Google Scholar]
- Teixeira, P.C.; de Campos, D.V.B.; Saldanha, M.F.C. Fósforo Disponível. In Manual de Métodos de Análise de Solo, 3rd ed.; Teixeira, P.C., Donagemma, G.K., Fontana, A., Teixeira, W.G., Eds.; Embrapa: Brasília, Brazil, 2017; pp. 203–208. [Google Scholar]
- Alef, K.; Nannipieri, P. Methods in Applied Soil Microbiology and Biochemistry; Academic Press: London, UK, 1995; pp. 463–490. [Google Scholar]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Anderson, T.H.; Domsch, K.H. The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biol. Biochem. 1993, 25, 393–395. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.F.; Upadhyaya, A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 1998, 198, 97–107. [Google Scholar] [CrossRef]
- Eivazi, F.; Tabatabai, M.A. Glucosidases and galactosidases in soils. Soil Biol. Biochem. 1988, 20, 601–606. [Google Scholar] [CrossRef]
- Aquino, R.F.; Silva, M.L.N.; Freitas, D.A.F.; Curi, N.; Mello, C.R.; Avanzi, J.C. Spatial variability of the rainfall erosivity in southern region of Minas Gerais state, Brazil. Cienc. Agrotec. 2012, 36, 533–542. [Google Scholar] [CrossRef]
- Beniaich, A.; Silva, M.L.N.; Guimarães, D.V.; Bispo, D.F.A.; Avanzi, J.C.; Curi, N.; Pio, R.; Dondeyne, S. Assessment of soil erosion in olive orchards (Olea europaea L.) under cover crops management systems in the tropical region of Brazil. Rev. Bras. Ciência Solo 2020, 44, e0190088. [Google Scholar] [CrossRef]
- Cogo, N.P.; Levien, R.; Schwarz, R.A. Perdas de solo e água por erosão hídrica influenciadas por métodos de preparo, classes de declive e níveis de fertilidade do solo. Rev. Bras. Ciênc. Solo 2003, 27, 743–753. [Google Scholar] [CrossRef]
- Peña, E.A.; Slate, E.H. Global validation of linear model assumptions. J. Am. Stat. Assoc. 2006, 101, 341–354. [Google Scholar] [CrossRef]
- Menke, W. Review of the generalized least squares method. Surv. Geophys. 2015, 36, 1–25. [Google Scholar] [CrossRef]
- Rodrigues, M.Â.; Raimundo, S.; Nanvaro, C.; Moutinho-Pereira, J.; Correia, C.M.; Arrobas, M. Gestão da vegetação em olivais de sequeiro com pastoreio. In Livro de Resumos 40a Reunião de Primavera da SPPF; Borda, A., Gomes, A., Abreu, J.M., Rodrigues, M.A., Patanita, M., Farinha, N., Eds.; Sociedade Portuguesa de Pastagens e Forragens: São Miguel, Portugal, 2019; pp. 31–32. [Google Scholar]
- Rodrigues, M.Â.; Cabanas, J.; Lopes, J.; Pavão, F.; Aguiar, C.; Arrobas, M. Ground cover and dynamic of weeds after the introduction of herbicides as soil management system in a rainfed olive orchard. Rev. Ciênc. Agrárias 2009, 32, 30–42. [Google Scholar]
- Hakoomat, A.; Arooj, M.; Sarwar, N.; Areeb, A.; Shahzad, A.N.; Hussain, S. Application of pre and post emergence herbicide under improved field irrigation system proved a sustainable weed management strategy in cotton crop. Planta Daninha 2017, 35, e017158976. [Google Scholar] [CrossRef]
- Kuncheva, G.S.; Dimitrov, P.D. Loss of nutrients by soil water erosion. In Proceedings of the 2020 7th International Conference on Energy Efficiency and Agricultural Engineering (EE&AE), Ruse, Bulgaria, 12–14 November 2020; IEEE: Ruse, Bulgaria, 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Bertol, I.; Mello, E.L.; Guadagnin, J.C.; Zaparolli, A.L.V.; Carrafa, M.R. Nutrient losses by water erosion. Sci. Agric. 2003, 60, 581–586. [Google Scholar] [CrossRef]
- Nicolodi, M.; Coutinho, E.F.; Capellaro, T.H.; Ribeiro, F.C.; Araújo, F.A. Solos. In Sistemas de Produção: Cultivo de Oliveira (Olea europaea L.); Embrapa Clima Temperado: Pelotas, Brazil, 2009; pp. 29–40. [Google Scholar]
- Kuzyakov, Y.; Razavi, B.S. Rhizosphere size and shape: Temporal dynamics and spatial stationarity. Soil Biol. Biochem. 2019, 135, 343–360. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, N.; Zhang, Z.; Lei, C.; Chen, B.; Qin, G.; Qiu, D.; Lu, T.; Qian, H. Deciphering microbial community and nitrogen fixation in the legume rhizosphere. J. Agric. Food Chem. 2024, 72, 5659–5670. [Google Scholar] [CrossRef]
- Melloni, R.; Cardoso, E.J.B.N. Microbiome associated with olive cultivation: A review. Plants 2023, 12, 897. [Google Scholar] [CrossRef]
- dos Santos, J.V.; Bento, L.R.; Bresolin, J.D.; Mitsuyuki, M.C.; Oliveira, P.P.A.; Pezzopane, J.R.M.; Bernardi, A.C.C.; Mendes, I.C.; Martin-Neto, L. The long-term effects of intensive grazing and silvopastoral systems on soil physicochemical properties, enzymatic activity, and microbial biomass. Catena 2022, 219, 106619. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, L.; Zhou, J.; Rengel, Z.; George, T.S.; Feng, G. Exploring the secrets of hyphosphere of arbuscular mycorrhizal fungi: Processes and ecological functions. Plant Soil 2022, 481, 1–22. [Google Scholar] [CrossRef]
- Tótola, M.R.; Chaer, G.M. Microrganismos e processos microbiológicos como indicadores da qualidade do solo. In Tópicos em Ciência do Solo; Alvarez, V.H., Schaefer, C.E.G.R., Barros, N.F.d., Mello, J.W.V.d., Costa, L.M.d., Eds.; Sociedade Brasileira de Ciência do Solo: Viçosa, Brazil, 2002; Volume 2, pp. 195–276. [Google Scholar]
- Kalamulla, R.; Karunarathna, S.C.; Tibpromma, S.; Galappaththi, M.C.A.; Suwannarach, N.; Stephenson, S.L.; Asad, S.; Salem, Z.S.; Yapa, N. Arbuscular mycorrhizal fungi in sustainable agriculture. Sustainability 2022, 14, 12250. [Google Scholar] [CrossRef]
- Akter, S.; Kamruzzaman, M.; Sarder, M.P.; Amin, M.S.; Joardar, J.C.; Islam, M.S.; Nasrin, S.; Islam, M.U.; Islam, F.; Rabbi, S.; et al. Mycorrhizal fungi increase plant nutrient uptake, aggregate stability and microbial biomass in the clay Soil. Symbiosis 2024, 93, 163–176. [Google Scholar] [CrossRef]
- Brady, N.C.; Weil, R.R. Elementos da Natureza e Propriedades dos Solos, 3rd ed.; Bookman: Porto Alegre, Brazil, 2013; pp. 106–145. [Google Scholar]
- Gupta, V.V.S.R.; Germida, J.J. Soil Aggregation: Influence on microbial biomass and implications for biological processes. Soil Biol. Biochem. 2015, 80, A3–A9. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, X.; Zhang, S.; Xing, Y.; Wang, R.; Liang, W. Organic amendment effects on aggregate-associated organic C, microbial biomass C and glomalin in agricultural soils. Catena 2014, 123, 188–194. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, R.; Hu, Y.; Yao, L.; Guo, S. Spatial variations of soil respiration and temperature sensitivity along a steep slope of the semiarid Loess Plateau. PLoS ONE 2018, 13, e0195400. [Google Scholar] [CrossRef]
- Long, L.; Cang, Q.; Xueling, Y.; Lina, J.; Yu, D.; Tong, R. Relationship between the slope microtopography and the spatial redistribution pattern of soil organic carbon under water erosion. J. Soil Water Conserv. 2021, 76, 435–445. [Google Scholar] [CrossRef]
- Xiaojun, N.; Jianhui, Z.; Zhengan, S. Dynamics of soil organic carbon and microbial biomass carbon in relation to water erosion and tillage erosion. PLoS ONE 2013, 8, e64059. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Cai, Y.; Hu, S.; Chang, S.X. Plant mixture effects on carbon-degrading enzymes promote soil organic carbon accumulation. Soil Biol. Biochem. 2021, 163, 108457. [Google Scholar] [CrossRef]
- Tejada, M.; Garcia, C.; Gonzalez, J.L.; Hernandez, M.T. Use of organic amendment as a strategy for saline soil remediation: Influence on the physical, chemical and biological properties of soil. Soil Biol. Biochem. 2006, 38, 1413–1421. [Google Scholar] [CrossRef]
- Bharti, P.; Das, A.; Kumar, S.; Rakshit, R. Assessment of soil specific enzyme activities in aggregates size fractions: A case study from subtropical agro-ecosystem. Eurasian Soil Sci. 2024, 57, 646–656. [Google Scholar] [CrossRef]
- Perez Mateos, M.; Gonzalez Carcedo, S. Effect of fractionation on the enzymatic state and behaviour of enzyme activities in different structural soil units. Biol. Fertil. Soils 1987, 4, 151–154. [Google Scholar] [CrossRef]
- Busto, M.D.; Perez-Mateos, M. Characterization of β-D-glucosidase extracted from soil fractions. Eur. J. Soil Sci. 2000, 51, 193–200. [Google Scholar] [CrossRef]
- Bach, E.M.; Hofmockel, K.S. Soil Aggregate Isolation Method Affects Measures of Intra-Aggregate Extracellular Enzyme Activity. Soil Biol. Biochem. 2014, 69, 54–62. [Google Scholar] [CrossRef]
- Gómez, J.A.; Battany, M.; Fereres, E.; Renschler, C.S. Evaluating the impact of soil management on soil loss in olive orchards. Soil Use Manag. 2003, 19, 127–134. [Google Scholar] [CrossRef]
- Arias-Giraldo, L.F.; Guzmán, G.; Montes-Borrego, M.; Gramaje, D.; Gomez, J.A.; Landa, B.B. Going beyond soil conservation with the use of cover crops in mediterranean sloping olive Orchards. Agronomy 2021, 11, 1387. [Google Scholar] [CrossRef]
- Fortini, R.M.; Braga, M.J.; Freitas, C.O. Impact of conservation agricultural practices in the land of productivity and profit of farms brazilian. Rev. Econ. Sociol. Rural 2020, 58, e199479. [Google Scholar] [CrossRef]
- Salton, J.C.; Mielniczuk, J.; Bayer, C.; Boeni, M.; Conceição, P.C.; Fabrício, A.C.; Macedo, M.C.M.; Broch, D.L. Soil aggregation and aggregate stability under crop-pasture systems in Mato Grosso do Sul state, Brazil. Rev. Bras. Ciênc. Solo 2008, 32, 11–21. [Google Scholar] [CrossRef]
Treatment 1 | Crop Year | ||
---|---|---|---|
2015/2016 | 2016/2017 | 2017 to 2021 | |
OB | Olive trees grown on bare soil | Olive trees grown on bare soil | Olive trees grown on bare soil |
OVM | Olive trees within spontaneous vegetation managed by mowing | Olive trees within spontaneous vegetation managed by mowing | Olive trees within spontaneous vegetation managed by mowing |
OVMC | Olive trees within jack bean (Canavalia ensiformis) | Olive trees within jack bean (Canavalia ensiformis) | Olive trees within spontaneous vegetation managed by mowing and weed control around olive trees |
OVH | Olive trees within pearl millet (Pennisetum glaucum) | Olive trees within brown hemp (Crotalaria juncea) | Olive trees within spontaneous vegetation managed by herbicide |
BS | Bare soil | Bare soil | Bare soil |
Indicator | Methodology | References |
---|---|---|
Physical | ||
Soil texture | Bouyoucos | Bouyoucos [25] |
Weighted mean diameter | Wet sieving | Salton et al. [26] |
Chemical | ||
Soil acidity (pH) | Reading in water with pH meter | Teixeira et al. [27] |
Soil organic matter (SOM) | Oxidation of CO2 | Walkley and Black [28] |
Al3+, Ca2+, and Mg2+ | Potassium chloride extractant | Teixeira et al. [29] |
K+ and P | Mehlich-1 extractant | Teixeira et al. [30] |
Biological | ||
Basal soil respiration (BSR) | CO2 evolved with extraction by NaOH | Alef and Nannipieri [31] |
Microbial biomass carbon (MBC) | Fumigation and extraction | Vance et al. [32] |
Metabolic quotient (qCO2) | Ratio between respiration and microbial biomass carbon | Anderson and Domsch [33] |
Easily extractable glomalin-related soil protein (EE-GRSP) | Extraction with sodium citrate, centrifugation, and quantification in a spectrophotometer | Bradford [34]; Wright and Upadhyaya [35] |
β-glucosidase (β-glu) | Reading in spectrophotometer of p-nitrophenol | Eivazi and Tabatabai [36] |
Variation Factors | |||||||||
---|---|---|---|---|---|---|---|---|---|
Indicators 1 | Block | Cover Systems (CS) | Plot Position (PP) | Aggregate Size (AS) | CS x PP | C x AS | PP x AS | CS x PP x AS | Error |
GL | 2 | 4 | 1 | 2 | 4 | 8 | 2 | 8 | |
pH | 0.64 *** | 0.77 *** | 0.26 * | 0.06 ns | 0.06 ns | 0.06 ns | 0.01 ns | 0.03 ns | 0.06 |
K+ | 12,520.73 ns | 149,703.37 *** | 263.75 ns | 501.79 ns | 21,779.68 ** | 951.78 ns | 242.37 ns | 942.87 ns | 4486.12 |
P | 38.86 *** | 2.62 ns | 10.63 ns | 0.18 ns | 4.13 ns | 4.13 ns | 4.43 ns | 2.82 ns | 3.32 |
Ca2+ | 12.99 *** | 2.90 *** | 0.07 ns | 0.072 ns | 0.18 ns | 0.07 ns | 0.08 ns | 0.10 ns | 0.42 |
Mg2+ | 0.61 *** | 1.98 *** | 0.06 ns | 0.00 ns | 0.03 ns | 0.00 ns | 0.00 ns | 0.003 ns | 0.02 |
Al3+ | 0.03 ns | 0.15 *** | 0.00 ns | 0.02 ns | 0.017 ns | 0.00 ns | 0.00 ns | 0.01 ns | 0.02 |
H + Al | 1.23 ** | 2.28 *** | 0.92 | 0.99 ** | 0.63 ** | 0.30 ns | 0.17 ns | 0.47 ** | 0.15 |
SB | 19.81 *** | 15.25 *** | 0.24 ns | 0.13 ns | 0.31 ns | 0.11 ns | 0.17 ns | 0.19 ns | 0.74 |
t | 19.45 *** | 14.03 *** | 0.27 ns | 0.17 ns | 0.30 ns | 0.13 ns | 0.15 ns | 0.19 ns | 0.68 |
T | 11.63 *** | 6.89 *** | 0.22 ns | 1.85 ns | 0.55 ns | 0.39 ns | 0.08 ns | 0.87 ns | 0.76 |
V | 1150.56 *** | 1418.49 *** | 49.28 ns | 47.49 ns | 63.37 ns | 34.12 ns | 33.98 ns | 36.69 ns | 53.98 |
m | 124.21 ** | 196.46 *** | 7.11 ns | 8.45 ns | 8.08 ns | 2.30 ns | 1.40 ns | 1.24 ns | 23.73 |
SOM | 5.40 *** | 11.077 *** | 0.10 ns | 0.13 ns | 0.10 ns | 0.33 ns | 0.27 ns | 0.12 ns | 0.43 |
BSR | 3.31 *** | 10.02 *** | 1.29 * | 0.36 ns | 0.15 ns | 0.032 ns | 0.00 ns | 0.17 ns | 0.19 |
MBC | 22,773.57 ns | 139,526.37 *** | 25,759.138 ns | 1467.03 ns | 8548.25 ns | 3835.95 ns | 15,372.56 ns | 14,395.50 ns | 25,148.14 |
qCO2 | 3.43 *** | 1.82 ** | 1.94 * | 0.43 ns | 0.14 ns | 0.12 ns | 0.00 ns | 0.18 ns | 0.35 |
EE-GRSP | 0.37 *** | 0.48 *** | 0.01 ns | 0.20 ** | 0.01 ns | 0.03 ns | 0.01 ns | 0.01 ns | 0.02 |
β-glu | 2,726,850.89 *** | 6,646,817.740 *** | 325,279.55 ns | 2,093,098.08 *** | 120,490.60 ns | 178,273.29 ns | 30,303.37 ns | 73,426.27 ns | 191,696.31 |
CPM 1 | Indicator 2 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | K+ | P | Ca2+ | Mg2+ | Al3+ | SB | t | T | V | m | SOM | Clay | Silt | Sand | |
(H2O) | mg dm−3 | cmolc dm−3 | % | g kg−1 | |||||||||||
BS | 4.94 c | 110.74 c | 5.25 ns | 3.25 ab | 0.65 b | 0.47 a | 4.35 b | 4.53 b | 6.03 c | 62.5 b | 15.13 a | 2.35 b | 350 | 167 | 483 |
OB | 5.28 ab | 231.66 b | 8.76 | 2.64 b | 0.70 b | 0.25 b | 4.07 b | 4.15 b | 5.78 c | 66.5 b | 2.92 a | 2.10 b | 372 | 183 | 445 |
OVH | 5.09 bc | 189.98 b | 10.9 | 2.83 b | 0.75 b | 0.30 b | 4.14 b | 4.24 b | 6.25 bc | 63.6 b | 3.27 a | 2.63 b | 353 | 170 | 477 |
OVM | 5.37 a | 339.35 a | 4.34 | 3.33 ab | 1.29 a | 0.24 b | 5.72 a | 5.82 a | 6.95 ab | 76.3 a | 1.89 a | 3.50 a | 335 | 183 | 482 |
OVMC | 5.44 a | 305.01 a | 12.6 | 3.70 a | 1.32 a | 0.28 b | 5.86 a | 5.96 a | 7.23 a | 77.8 a | 2.19 a | 3.94 a | 340 | 170 | 490 |
CV (%) | 5 | 29 | 89 | 24 | 18 | 54 | 20 | 19 | 15 | 11 | 57 | 23 | - | - | - |
Position in the Standard Plot | Chemical Indicator 1 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | K+ | P | Ca2+ | Mg2+ | Al3+ | SB | t | T | V | m | SOM | |
(H2O) | mg dm−3 | cmolc dm−3 | % | g kg−1 | ||||||||
Upper third | 5.17 b | 237.06 a | 4.6 ns | 2.69 ns | 0.92 ns | 0.12 ns | 4.21 ns | 4.33 ns | 6.5 ns | 64.27 ns | 3.15 ns | 29.4 ns |
Lower third | 5.28 a | 233.63 b | 12.20 | 2.75 | 0.97 | 0.12 | 4.32 | 4.44 | 6.40 | 65.75 | 3.71 | 28.7 |
CV (%) | 5 | 29 | 89 | 24 | 18 | 54 | 20 | 19 | 15 | 11 | 57 | 23 |
Aggregate Size (mm) | Chemical Indicator 1 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | K+ | P | Ca2+ | Mg2+ | Al3+ | SB | t | T | V | m | SOM | |
(H2O) | mg dm−3 | cmolc dm−3 | % | g kg−1 | ||||||||
8–4 | 5.21 ns | 238 ns | 1.49 ns | 2.74 ns | 0.95 ns | 0.11 ns | 4.3 ns | 4.4 ns | 6.58 ns | 64.33 ns | 2.93 ns | 28.40 ns |
4–2 | 5.19 | 237.4 | 1.55 | 2.75 | 0.95 | 0.14 | 4.31 | 4.45 | 6.6 | 64.24 | 3.99 | 29.70 |
<2 | 5.28 | 230.64 | 2.53 | 2.66 | 0.93 | 0.11 | 4.19 | 4.30 | 6.16 | 66.46 | 3.36 | 29.00 |
CV (%) | 5 | 29 | 89 | 24 | 18 | 54 | 20 | 19 | 15 | 11 | 57 | 23 |
Chemical Indicator | |||||||
---|---|---|---|---|---|---|---|
H + Al | CV (%) | ||||||
cmolc dm−3 | |||||||
Upper Third | Lower Third | ||||||
8–4 mm | 4–2 mm | <2 mm | 8–4 mm | 4–2 mm | <2 mm | ||
BS | 2.70 Aa | 3.03 Aa | 3.10 Aa | 2.53 Aa | 2.37 A ns | 2.10 Aab | 18 |
OB | 2.33 Aab | 2.47 Aab | 2.23 Aab | 2.23 Aab | 1.83 A | 1.90 Aab | |
OVH | 2.37 Aab | 2.50 Aab | 2.20 Aab | 2.57 Aa | 2.60 A | 2.37 Aa | |
OVM | 3.07 Aa | 1.67 Bb | 1.47 Bb | 1.53 b | 2.00 A | 1.36 Ab | |
OVMC | 1.73 b | 1.87 Ab | 1.53 Ab | 1.77 Bab | 2.60 A | 1.47 Bab |
Plot Positions | Biological Indicator 1 | ||||
---|---|---|---|---|---|
MBC | BSR | qCO2 | β-glu | EE-GRSP | |
mgC g−1 Soil | μgC-CO2 g−1 72 h−1 | μgC-CO2 μg MBC−1 72 h−1 | μg PNP g−1 h−1 | mg g−1 | |
Upper third | 394.82 ns | 1.34 b | 1.11 b | 137.39 ns | 0.86 ns |
Lower third | 360.99 | 1.58 a | 1.40 a | 149.41 | 0.83 |
CV (%) | 42 | 30 | 47 | 30 | 20 |
Soil Aggregate Size (mm) | Biological Indicator 1 | ||||
---|---|---|---|---|---|
MBC | BSR | qCO2 | β-glu | EE-GRSP | |
mgC g−1 Soil | μgC-CO2 g−1 72 h−1 | μgC-CO2 μg MBC−1 72 h−1 | μg PNP g−1 h−1 | mg g−1 | |
(8–4) | 384.64 ns | 1.34 ns | 3.78 ns | 119.16 b | 0.75 b |
(4–2) | 378.39 | 1.50 | 4.37 | 139.49 b | 0.86 ab |
(<2) | 370.68 | 1.55 | 4.81 | 171.55 a | 0.92 a |
CV (%) | 42 | 30 | 47 | 30 | 20 |
Months | Precipitation | Erosivity |
---|---|---|
(2020/2021) | (2020/2021) | |
mm | MJ mm ha−1 h−1 | |
October | 30 | 67 |
November | 197 | 786 |
December | 312 | 1436 |
January | 245 | 1046 |
February | 220 | 908 |
March | 95 | 302 |
April | 9 | 14 |
May | 11 | 18 |
June | 19 | 37 |
July | 0 | 0 |
August | 4 | 5 |
September | 11 | 18 |
Total | 1153 | 4637 |
Cover Plant Management Treatment 1 | Loss by Water Erosion | |
---|---|---|
Soil | Water | |
Mg ha−1 Period−1 | mm Year−1 | |
BS | 39.72 ns | 27.10 ns |
OB | 42.78 | 24.90 |
OVH | 0.41 | 21.34 |
OVM | 0.01 | 20.59 |
OVMC | 0.01 | 27.03 |
CV (%) | 250 | 62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brito, L.d.C.; Severo, E.M.; Jimenez, P.A.J.; Silva, A.O.; Avanzi, J.C.; Santos, D.; Carneiro, M.A.C.; Silva, M.L.N. Soil Quality Indicators and Water Erosion in Olive Groves (Olea europaea L.) Under Different Vegetation Cover Management. Soil Syst. 2025, 9, 96. https://doi.org/10.3390/soilsystems9030096
Brito LdC, Severo EM, Jimenez PAJ, Silva AO, Avanzi JC, Santos D, Carneiro MAC, Silva MLN. Soil Quality Indicators and Water Erosion in Olive Groves (Olea europaea L.) Under Different Vegetation Cover Management. Soil Systems. 2025; 9(3):96. https://doi.org/10.3390/soilsystems9030096
Chicago/Turabian StyleBrito, Larissa da Costa, Eduardo Medeiros Severo, Paul Andres Jimenez Jimenez, Aline Oliveira Silva, Junior Cesar Avanzi, Djail Santos, Marco Aurélio Carbone Carneiro, and Marx Leandro Naves Silva. 2025. "Soil Quality Indicators and Water Erosion in Olive Groves (Olea europaea L.) Under Different Vegetation Cover Management" Soil Systems 9, no. 3: 96. https://doi.org/10.3390/soilsystems9030096
APA StyleBrito, L. d. C., Severo, E. M., Jimenez, P. A. J., Silva, A. O., Avanzi, J. C., Santos, D., Carneiro, M. A. C., & Silva, M. L. N. (2025). Soil Quality Indicators and Water Erosion in Olive Groves (Olea europaea L.) Under Different Vegetation Cover Management. Soil Systems, 9(3), 96. https://doi.org/10.3390/soilsystems9030096