Agronomic Effectiveness of Biochar–KCl Composites for Corn Cultivation in Tropical Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biochar Synthesis: Feedstocks and Pyrolysis Conditions
2.2. Co-Pyrolysis
2.3. Characterization of Feedstocks, Biochars, and Composites
2.4. Potassium Release Kinetics
2.5. Agronomic Efficiency of Biochars and Composites
2.6. Statistical Analysis
3. Results and Discussion
3.1. Biochar and Composite Properties
3.1.1. Yield
3.1.2. Ash Content
3.1.3. Total Carbon Content
3.1.4. pH
3.1.5. Electrical Conductivity (EC)
3.1.6. Potassium Content
3.1.7. FTIR Spectroscopy
3.1.8. Cation Exchange Capacity (CEC)
3.2. Potassium Release Kinetics Results
3.3. Agronomic Effectiveness of Biochar–K Composites
3.3.1. Dynamics of K Release from K-BBFs in Soil–Plant Systems
3.3.2. Effect of K-BBFs on Corn Growth and Nutrient Uptake
3.3.3. Residual Soil Potassium After Corn Harvest
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1
Treatment | Linear | Exponential | Power Function | Elovich | Toth | Gompertz | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | AIC | R2 | RMSE | AIC | R2 | RMSE | AIC | R2 | RMSE | AIC | R2 | RMSE | AIC | R2 | RMSE | AIC | |
BBP300 | 0.55 | 4.40 | 180.04 | 0.53 | 4.51 | 181.58 | 0.86 | 0.08 | −59.89 | 0.53 | 4.51 | 181.58 | 0.88 | 2.30 | 143.18 | 0.90 | 2.07 | 136.84 |
BBP650 | 0.46 | 5.30 | 191.18 | 0.44 | 5.39 | 192.25 | 0.75 | 0.12 | −37.04 | 0.44 | 5.39 | 192.25 | 0.79 | 3.34 | 165.52 | 0.81 | 3.17 | 162.27 |
CBP300 | 0.13 | 2.66 | 149.90 | 0.13 | 2.66 | 149.94 | 0.91 | 0.02 | −154.05 | 0.13 | 2.66 | 149.94 | 0.95 | 0.65 | 67.08 | 0.96 | 0.56 | 58.65 |
CBP650 | 0.19 | 3.86 | 172.25 | 0.18 | 3.87 | 172.35 | 0.87 | 0.04 | −107.53 | 0.18 | 3.87 | 172.35 | 0.91 | 1.31 | 109.43 | 0.89 | 1.41 | 113.72 |
BCH300 | 0.53 | 7.57 | 212.59 | 0.50 | 7.78 | 214.27 | 0.93 | 0.09 | −53.45 | 0.50 | 7.78 | 214.27 | 0.94 | 2.66 | 151.81 | 0.87 | 3.98 | 175.94 |
BCH650 | 0.61 | 3.27 | 162.26 | 0.60 | 3.33 | 163.39 | 0.91 | 0.04 | −99.73 | 0.60 | 3.33 | 163.39 | 0.90 | 1.64 | 122.89 | 0.83 | 2.15 | 139.14 |
CCH300 | 0.10 | 6.02 | 198.85 | 0.10 | 6.03 | 198.9 | 0.72 | 0.08 | −59.03 | 0.10 | 6.03 | 198.90 | 0.84 | 2.55 | 149.22 | 0.84 | 2.57 | 149.71 |
CCH650 | 0.29 | 8.97 | 222.79 | 0.27 | 9.04 | 223.27 | 0.95 | 0.07 | −68.20 | 0.27 | 9.04 | 223.27 | 0.69 | 5.93 | 199.97 | 0.95 | 2.33 | 143.83 |
BCM300 | 0.52 | 10.05 | 229.60 | 0.49 | 10.46 | 232.00 | 0.90 | 0.23 | 3.55 | 0.48 | 10.46 | 232.00 | 0.94 | 3.56 | 169.29 | 0.85 | 5.58 | 196.25 |
BCM650 | 0.60 | 3.45 | 165.45 | 0.58 | 3.51 | 166.53 | 0.88 | 0.05 | −84.38 | 0.58 | 3.51 | 166.53 | 0.87 | 1.94 | 132.99 | 0.82 | 2.32 | 143.70 |
CCM300 | 0.26 | 12.49 | 242.64 | 0.24 | 12.61 | 243.21 | 0.93 | 0.16 | −19.29 | 0.24 | 12.61 | 243.21 | 0.96 | 2.85 | 155.89 | 0.96 | 2.92 | 157.43 |
CCM650 | 0.18 | 2.24 | 139.50 | 0.18 | 2.24 | 139.54 | 0.94 | 0.01 | −171.48 | 0.18 | 2.24 | 139.54 | 0.98 | 0.34 | 28.88 | 0.96 | 0.50 | 51.64 |
KCl | 0.06 | 1.84 | 127.72 | 0.06 | 1.84 | 127.72 | 0.81 | 0.01 | −187.18 | 0.06 | 1.84 | 127.72 | 0.96 | 0.40 | 37.48 | 0.96 | 0.39 | 36.94 |
Appendix A.2
References
- Cui, J.; Tcherkez, G. Potassium Dependency of Enzymes in Plant Primary Metabolism. Plant Physiol. Biochem. 2021, 166, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.; Vishwakarma, K.; Hossen, M.S.; Kumar, V.; Shackira, A.M.; Puthur, J.T.; Abdi, G.; Sarraf, M.; Hasanuzzaman, M. Potassium in Plants: Growth Regulation, Signaling, and Environmental Stress Tolerance. Plant Physiol. Biochem. 2022, 172, 56–69. [Google Scholar] [CrossRef] [PubMed]
- Lopes, A.S.; Guimarães Guilherme, L.R. A Career Perspective on Soil Management in the Cerrado Region of Brazil. Adv. Agron. 2016, 137, 1–72. [Google Scholar]
- FAO FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/RFN/visualize (accessed on 30 September 2024).
- Dadach, M.; Ahmed, M.Z.; Bhatt, A.; Radicetti, E.; Mancinelli, R. Effects of Chloride and Sulfate Salts on Seed Germination and Seedling Growth of Ballota Hirsuta Benth. and Myrtus communis L. Plants 2023, 12, 3906. [Google Scholar] [CrossRef]
- Liu, L.; Li, X.; Wang, C.; Ni, Y.; Liu, X. The Role of Chloride Channels in Plant Responses to NaCl. Int. J. Mol. Sci. 2024, 25, 19. [Google Scholar] [CrossRef]
- Wu, Y.; Lu, J.; Wang, D.; Li, Y.; Feng, Z.; Ye, X. Physiological and Transcriptomic Profiles of Tobacco Seedling Leaves in Response to High Chloride Accumulation. J. Plant Interact. 2024, 19, 2355122. [Google Scholar] [CrossRef]
- Santos, C.; Malta, M.R.; Gonçalves, M.G.M.; Borém, F.M.; Pozza, A.A.A.; Martinez, H.E.P.; de Souza, T.L.; Chagas, W.F.T.; de Melo, M.E.A.; Oliveira, D.P.; et al. Chloride Applied via Fertilizer Affects Plant Nutrition and Coffee Quality. Plants 2023, 12, 885. [Google Scholar] [CrossRef]
- Bilias, F.; Kalderis, D.; Richardson, C.; Barbayiannis, N.; Gasparatos, D. Biochar Application as a Soil Potassium Management Strategy: A Review. Sci. Total Environ. 2023, 858, 159782. [Google Scholar] [CrossRef]
- Jia, M.; Yu, J.; Li, Z.; Wu, L.; Christie, P. Effects of Biochar on the Migration and Transformation of Metal Species in a Highly Acid Soil Contaminated with Multiple Metals and Leached with Solutions of Different PH. Chemosphere 2021, 278, 130344. [Google Scholar] [CrossRef]
- Enaime, G.; Lübken, M. Agricultural Waste-based Biochar for Agronomic Applications. Appl. Sci. 2021, 11, 8914. [Google Scholar] [CrossRef]
- Shoudho, K.N.; Khan, T.H.; Ara, U.R.; Khan, M.R.; Shawon, Z.B.Z.; Hoque, M.E. Biochar in Global Carbon Cycle: Towards Sustainable Development Goals. Curr. Res. Green Sustain. Chem. 2024, 8, 100409. [Google Scholar] [CrossRef]
- Leng, L.; Xiong, Q.; Yang, L.; Li, H.; Zhou, Y.; Zhang, W.; Jiang, S.; Li, H.; Huang, H. An Overview on Engineering the Surface Area and Porosity of Biochar. Sci. Total Environ. 2021, 763, 144204. [Google Scholar] [CrossRef] [PubMed]
- Supraja, K.V.; Kachroo, H.; Viswanathan, G.; Verma, V.K.; Behera, B.; Doddapaneni, T.R.K.C.; Kaushal, P.; Ahammad, S.Z.; Singh, V.; Awasthi, M.K.; et al. Biochar Production and Its Environmental Applications: Recent Developments and Machine Learning Insights. Bioresour. Technol. 2023, 387, 129634. [Google Scholar] [CrossRef] [PubMed]
- Razzaghi, F.; Obour, P.B.; Arthur, E. Does Biochar Improve Soil Water Retention? A Systematic Review and Meta-Analysis. Geoderma 2020, 361, 114055. [Google Scholar] [CrossRef]
- Allohverdi, T.; Mohanty, A.K.; Roy, P.; Misra, M. A Review on Current Status of Biochar Uses in Agriculture. Molecules 2021, 26, 5584. [Google Scholar] [CrossRef]
- Pradhan, S.; Abdelaal, A.H.; Mroue, K.; Al-Ansari, T.; Mackey, H.R.; McKay, G. Biochar from Vegetable Wastes: Agro-Environmental Characterization. Biochar 2020, 2, 439–453. [Google Scholar] [CrossRef]
- Weber, K.; Quicker, P. Properties of Biochar. Fuel 2018, 217, 240–261. [Google Scholar] [CrossRef]
- Woolf, D.; Lehmann, J.; Ogle, S.; Kishimoto-Mo, A.W.; McConkey, B.; Baldock, J. Greenhouse Gas Inventory Model for Biochar Additions to Soil. Environ. Sci. Technol. 2021, 55, 14795–14805. [Google Scholar] [CrossRef]
- Adhikari, S.; Mahmud, M.A.P.; Nguyen, M.D.; Timms, W. Evaluating Fundamental Biochar Properties in Relation to Water Holding Capacity. Chemosphere 2023, 328, 138620. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, Y.; Rong, X.; Zhou, X.; Fei, J.; Peng, J.; Luo, G. Biochar and Organic Fertilizer Applications Enhance Soil Functional Microbial Abundance and Agroecosystem Multifunctionality. Biochar 2024, 6, 3. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, T.; Xu, X.; Sun, J.; Pan, G.; Cheng, K. A Global Assessment of the Long-Term Effects of Biochar Application on Crop Yield. Curr. Res. Environ. Sustain. 2024, 7, 100247. [Google Scholar] [CrossRef]
- Laird, D. Biochar Amendments Make the Harvesting of Crop Residue for Bioenergy Production Sustainable. Nutr. Cycl. Agroecosystems 2023, 128, 293–307. [Google Scholar] [CrossRef]
- Leite, A.D.A.; Melo, L.C.A.; Hurtarte, L.C.C.; Zuin, L.; Piccolla, C.D.; Werder, D.; Shabtai, I.; Lehmann, J. Magnesium-Enriched Poultry Manure Enhances Phosphorus Bioavailability in Biochars. Chemosphere 2023, 331, 138759. [Google Scholar] [CrossRef]
- Mota, C.P.; Silva, C.A. Biochar–Nitrogen Composites: Synthesis, Properties, and Use as Fertilizer for Maize. AppliedChem 2024, 4, 157–173. [Google Scholar] [CrossRef]
- Marcińczyk, M.; Oleszczuk, P. Biochar and Engineered Biochar as Slow- and Controlled-Release Fertilizers. J. Clean. Prod. 2022, 339, 130685. [Google Scholar] [CrossRef]
- Melo, L.C.A.; Lehmann, J.; Carneiro, J.S.d.S.; Camps-Arbestain, M. Biochar-Based Fertilizer Effects on Crop Productivity: A Meta-Analysis. Plant Soil 2022, 472, 45–58. [Google Scholar] [CrossRef]
- Chen, G.; Wang, Y.; Wang, J.; Wang, J.; Yu, F.; Ma, Q.; Cheng, Z.; Yan, B.; Song, Y.; Cui, X. Production of Potassium-Enriched Biochar from Canna Indica: Transformation and Release of Potassium. Waste Manag. 2023, 164, 119–126. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Bahar, M.M.; Sarkar, B.; Donne, S.W.; Ok, Y.S.; Palansooriya, K.N.; Kirkham, M.B.; Chowdhury, S.; Bolan, N. Biochar and Its Importance on Nutrient Dynamics in Soil and Plant; Springer: Singapore, 2020; Volume 2, ISBN 0123456789. [Google Scholar]
- Wang, C.; Luo, D.; Zhang, X.; Huang, R.; Cao, Y.; Liu, G.; Zhang, Y.; Wang, H. Biochar-Based Slow-Release of Fertilizers for Sustainable Agriculture: A Mini Review. Environ. Sci. Ecotechnology 2022, 10, 100167. [Google Scholar] [CrossRef]
- Gao, Y.; Fang, Z.; Van Zwieten, L.; Bolan, N.; Dong, D.; Quin, B.F.; Meng, J.; Li, F.; Wu, F.; Wang, H.; et al. A Critical Review of Biochar-Based Nitrogen Fertilizers and Their Effects on Crop Production and the Environment. Biochar 2022, 4, 36. [Google Scholar] [CrossRef]
- Shah, M.H.; Deng, L.; Bennadji, H.; Fisher, E.M. Pyrolysis of Potassium-Doped Wood at the Centimeter and Submillimeter Scales. Energy Fuels 2015, 29, 7350–7357. [Google Scholar] [CrossRef]
- Fachini, J.; Figueiredo, C.C.d.; Frazão, J.J.; Rosa, S.D.; da Silva, J.; Vale, A.T. do Novel K-Enriched Organomineral Fertilizer from Sewage Sludge-Biochar: Chemical, Physical and Mineralogical Characterization. Waste Manag. 2021, 135, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Fachini, J.; Figueiredo, C.C.d.; do Vale, A.T.; da Silva, J.; Zandonadi, D.B. Potassium-Enriched Biochar-Based Fertilizers for Improved Uptake in Radish Plants. Nutr. Cycl. Agroecosystems 2023, 128, 415–427. [Google Scholar] [CrossRef]
- Fachini, J.; Figueiredo, C.C.d.; Vale, A.T. do Assessing Potassium Release in Natural Silica Sand from Novel K-Enriched Sewage Sludge Biochar Fertilizers. J. Environ. Manag. 2022, 314, 115080. [Google Scholar] [CrossRef]
- Ndoung, O.C.N.; Souza, L.R.d.; Fachini, J.; Leão, T.P.; Sandri, D.; Figueiredo, C.C. de Dynamics of Potassium Released from Sewage Sludge Biochar Fertilizers in Soil. J. Environ. Manag. 2023, 346, 119057. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, J.; Xiao, X.; Yuan, Y.; Liao, X.; Shi, B.; Zhang, S. Potassium Assisted Pyrolysis of Chinese Baijiu Distillers’ Grains to Prepare Biochar as Controlled-Release K Fertilizer. Sci. Total Environ. 2023, 884, 163814. [Google Scholar] [CrossRef]
- Jin, J.; Wang, M.; Cao, Y.; Wu, S.; Liang, P.; Li, Y.; Zhang, J.; Zhang, J.; Wong, M.H.; Shan, S.; et al. Cumulative Effects of Bamboo Sawdust Addition on Pyrolysis of Sewage Sludge: Biochar Properties and Environmental Risk from Metals. Bioresour. Technol. 2017, 228, 218–226. [Google Scholar] [CrossRef]
- Ahmed, M.J.; Hameed, B.H. Insight into the Co-Pyrolysis of Different Blended Feedstocks to Biochar for the Adsorption of Organic and Inorganic Pollutants: A Review. J. Clean. Prod. 2020, 265, 121762. [Google Scholar] [CrossRef]
- Poyilil, S.; Palatel, A.; Chandrasekharan, M. Physico-Chemical Characterization Study of Coffee Husk for Feasibility Assessment in Fluidized Bed Gasification Process. Environ. Sci. Pollut. Res. 2022, 29, 51041–51053. [Google Scholar] [CrossRef]
- Hussein, H.S.; Shaarawy, H.H.; Hussien, N.H.; Hawash, S.I. Preparation of Nano-Fertilizer Blend from Banana Peels. Bull. Natl. Res. Cent. 2019, 43, 26. [Google Scholar] [CrossRef]
- Liu, M.; Li, F.; Liu, H.; Wang, C.H. Synergistic Effect on Co-Gasification of Chicken Manure and Petroleum Coke: An Investigation of Sustainable Waste Management. Chem. Eng. J. 2021, 417, 128008. [Google Scholar] [CrossRef]
- Domingues, R.R.; Trugilho, P.F.; Silva, C.A.; De Melo, I.C.N.A.; Melo, L.C.A.; Magriotis, Z.M.; Sánchez-Monedero, M.A. Properties of Biochar Derived from Wood and High-Nutrient Biomasses with the Aim of Agronomic and Environmental Benefits. PLoS ONE 2017, 12, e0176884. [Google Scholar] [CrossRef] [PubMed]
- Sial, T.A.; Khan, M.N.; Lan, Z.; Kumbhar, F.; Ying, Z.; Zhang, J.; Sun, D.; Li, X. Contrasting Effects of Banana Peels Waste and Its Biochar on Greenhouse Gas Emissions and Soil Biochemical Properties. Process Saf. Environ. Prot. 2019, 122, 366–377. [Google Scholar] [CrossRef]
- SEBRAE Brasil é o 4o Produtor Mundial de Banana. Available online: https://sebrae.com.br/sites/PortalSebrae/artigos/brasil-e-o-4-produtor-mundial-de-banana%2C1f00286bf0837810VgnVCM1000001b00320aRCRD?utm_source=chatgpt.com (accessed on 30 September 2024).
- Companhia Nacional de Abastecimento Boletim Da Safra de Café. Available online: https://www.conab.gov.br/info-agro/safras/cafe/boletim-da-safra-de-cafe (accessed on 30 September 2024).
- Corrêa, J.C.; Miele, M. A Cama de Aves e Os Aspectos Agronômicos, Ambientais e Econômicos. In Manejo Ambiental na Avicultura; Embrapa Suínos e Aves: Concórdia, Brazil, 2011. [Google Scholar]
- Bigolin, T.; Talamini, E. Impacts of Climate Change Scenarios on the Corn and Soybean Double-Cropping System in Brazil. Climate 2024, 12, 42. [Google Scholar] [CrossRef]
- Cabral Filho, F.R.; Soares, F.A.L.; Alves, D.K.M.; Teixeira, M.B.; Cunha, F.N.; da Silva, E.C.; Costa, C.T.S.; da Silva, N.F.; Cunha, G.N.; Cavalcante, W.S.d.S. Biomass Accumulation and Technical and Economic Efficiency of Potassium Sources Applied via Fertigation to Corn. Agriculture 2022, 12, 497. [Google Scholar] [CrossRef]
- Thenveettil, N.; Reddy, K.N.; Reddy, K.R. Effects of Potassium Nutrition on Corn (Zea mays L.) Physiology and Growth for Modeling. Agriculture 2024, 14, 968. [Google Scholar] [CrossRef]
- Morais, E.G.d.; Jindo, K.; Silva, C.A. Biochar-Based Phosphate Fertilizers: Synthesis, Properties, Kinetics of P Release and Recommendation for Crops Grown in Oxisols. Agronomy 2023, 13, 326. [Google Scholar] [CrossRef]
- Lang, T.; Jensen, A.D.; Jensen, P.A. Retention of Organic Elements during Solid Fuel Pyrolysis with Emphasis on the Peculiar Behavior of Nitrogen. Energy Fuels 2005, 19, 1631–1643. [Google Scholar] [CrossRef]
- Carneiro, J.S.D.S.; Lustosa Filho, J.F.; Nardis, B.O.; Ribeiro-Soares, J.; Zinn, Y.L.; Melo, L.C.A. Carbon Stability of Engineered Biochar-Based Phosphate Fertilizers. ACS Sustain. Chem. Eng. 2018, 6, 14203–14212. [Google Scholar] [CrossRef]
- Singh, B.; Camps-Arbestain, M.; Lehmann, J. Biochar: A Guide to Analytical Methods; Csiro Publishing: Collingwood, VIC, Australia, 2017; ISBN 9781486305094. [Google Scholar]
- Lago, B.C.; Silva, C.A.; Melo, L.C.A.; Morais, E.G.d. Predicting Biochar Cation Exchange Capacity Using Fourier Transform Infrared Spectroscopy Combined with Partial Least Square Regression. Sci. Total Environ. 2021, 794, 148762. [Google Scholar] [CrossRef]
- Raij, B.v. Fertilidade Do Solo e Manejo de Nutrientes; International Plant Nutrition Institute: Peachtree Corners, GA, USA, 2011; p. 420. [Google Scholar]
- do Carmo, D.L.; Silva, C.A.; de Lima, J.M.; Pinheiro, G.L. Electrical Conductivity and Chemical Composition of Soil Solution: Comparison of Solution Samplers in Tropical Soils. Rev. Bras. Cienc. Solo 2016, 40, 20140795. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; Volume 35, ISBN 978-0-387-98140-6. [Google Scholar]
- Venables, W.N.; Ripley, B.D. Statistics Complements to Modern Applied Statistics with S; Springer: New York, NY, USA, 2002; ISBN 1441930086. [Google Scholar]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous Inference in General Parametric Models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef] [PubMed]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression; Sage publications: Thousand Oaks, CA, USA, 2018. [Google Scholar]
- Nunes, C.A.; Freitas, M.P.; Pinheiro, A.C.M.; Bastos, S.C. Chemoface: A Novel Free User-Friendly Interface for Chemometrics. J. Braz. Chem. Soc. 2012, 23, 2003–2010. [Google Scholar] [CrossRef]
- Piash, M.I.; Iwabuchi, K.; Itoh, T.; Uemura, K. Release of Essential Plant Nutrients from Manure- and Wood-Based Biochars. Geoderma 2021, 397, 115100. [Google Scholar] [CrossRef]
- Selvarajoo, A.; Muhammad, D.; Arumugasamy, S.K. An Experimental and Modelling Approach to Produce Biochar from Banana Peels through Pyrolysis as Potential Renewable Energy Resources. Model. Earth Syst. Environ. 2020, 6, 115–128. [Google Scholar] [CrossRef]
- Yin, G.; Zhang, F.; Gao, Y.; He, W.; Zhang, Q.; Yang, S. Increase of Bio-Char Yield by Adding Potassium Salt during Biomass Pyrolysis. J. Energy Inst. 2023, 110, 101342. [Google Scholar] [CrossRef]
- Wu, W.; Yan, B.; Zhong, L.; Zhang, R.; Guo, X.; Cui, X.; Lu, W.; Chen, G. Combustion Ash Addition Promotes the Production of K-Enriched Biochar and K Release Characteristics. J. Clean. Prod. 2021, 311, 127557. [Google Scholar] [CrossRef]
- de Oliveira Paiva, I.; de Morais, E.G.; Jindo, K.; Silva, C.A. Biochar N Content, Pools and Aromaticity as Affected by Feedstock and Pyrolysis Temperature. Waste Biomass Valorization 2024, 15, 3599–3619. [Google Scholar] [CrossRef]
- Sarfaraz, Q.; Silva, L.; Drescher, G.; Zafar, M.; Severo, F.; Kokkonen, A.; Molin, G.; Shafi, M.; Shafique, Q.; Solaiman, Z. Characterization and Carbon Mineralization of Biochars Produced from Different Animal Manures and Plant Residues. Sci. Rep. 2020, 10, 2–10. [Google Scholar] [CrossRef]
- Pariyar, P.; Kumari, K.; Jain, M.K.; Jadhao, P.S. Evaluation of Change in Biochar Properties Derived from Different Feedstock and Pyrolysis Temperature for Environmental and Agricultural Application. Sci. Total Environ. 2020, 713, 136433. [Google Scholar] [CrossRef]
- Li, L.; Long, A.; Fossum, B.; Kaiser, M. Effects of Pyrolysis Temperature and Feedstock Type on Biochar Characteristics Pertinent to Soil Carbon and Soil Health: A Meta-Analysis. Soil Use Manag. 2023, 39, 43–52. [Google Scholar] [CrossRef]
- Yuan, J.H.; Xu, R.K.; Zhang, H. The Forms of Alkalis in the Biochar Produced from Crop Residues at Different Temperatures. Bioresour. Technol. 2011, 102, 3488–3497. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Ta, N.; Wang, X. Effect of Temperature on the Structural and Physicochemical Properties of Biochar with Apple Tree Branches as Feedstock Material. Energies 2017, 10, 1293. [Google Scholar] [CrossRef]
- Enders, A.; Hanley, K.; Whitman, T.; Joseph, S.; Lehmann, J. Characterization of Biochars to Evaluate Recalcitrance and Agronomic Performance. Bioresour. Technol. 2012, 114, 644–653. [Google Scholar] [CrossRef]
- Xiu, L.; Gu, W.; Sun, Y.; Wu, D.; Wang, Y.; Zhang, H.; Zhang, W.; Chen, W. The Fate and Supply Capacity of Potassium in Biochar Used in Agriculture. Sci. Total Environ. 2023, 902, 165969. [Google Scholar] [CrossRef]
- Karim, A.A.; Kumar, M.; Singh, S.K.; Panda, C.R.; Mishra, B.K. Potassium Enriched Biochar Production by Thermal Plasma Processing of Banana Peduncle for Soil Application. J. Anal. Appl. Pyrolysis 2017, 123, 165–172. [Google Scholar] [CrossRef]
- Hien, T.T.T.; Tsubota, T.; Taniguchi, T.; Shinogi, Y. Enhancing Soil Water Holding Capacity and Provision of a Potassium Source via Optimization of the Pyrolysis of Bamboo Biochar. Biochar 2021, 3, 51–61. [Google Scholar] [CrossRef]
- Bong, H.K.; Selvarajoo, A.; Arumugasamy, S.K. Stability of Biochar Derived from Banana Peel through Pyrolysis as Alternative Source of Nutrient in Soil: Feedforward Neural Network Modelling Study. Environ. Monit. Assess. 2022, 194, 70. [Google Scholar] [CrossRef]
- Fakhar, A.; Galgo, S.J.C.; Canatoy, R.C.; Rafique, M.; Sarfraz, R.; Farooque, A.A.; Khan, M.I. Advancing Modified Biochar for Sustainable Agriculture: A Comprehensive Review on Characterization, Analysis, and Soil Performance. Biochar 2025, 7, 8. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management; Routledge: London, UK, 2009; ISBN 9780415704151. [Google Scholar]
- Foroutan, R.; Peighambardoust, S.J.; Mohammadi, R.; Peighambardoust, S.H.; Ramavandi, B. Cadmium Ion Removal from Aqueous Media Using Banana Peel Biochar/Fe3O4/ZIF-67. Environ. Res. 2022, 211, 113020. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, H.; Shahab, A.; Zhang, K.; Zeng, H.; Bacha, A.U.R.; Nabi, I.; Ullah, H. Comparative Study on Characterization and Adsorption Properties of Phosphoric Acid Activated Biochar and Nitrogen-Containing Modified Biochar Employing Eucalyptus as a Precursor. J. Clean. Prod. 2021, 303, 127046. [Google Scholar] [CrossRef]
- Chung, N.T.; Thuy, D.T.; Trang, L.H.; Vu, N.T. Evaluating Coffee Husk Biochar as a Sustainable and Novel Adsorbent for Lead and Copper in Wastewater. Biomass Convers. Biorefinery, 2025; 1–17, online ahead of print. [Google Scholar] [CrossRef]
- Elnour, A.Y.; Alghyamah, A.A.; Shaikh, H.M.; Poulose, A.M.; Al-Zahrani, S.M.; Anis, A.; Al-Wabel, M.I. Effect of Pyrolysis Temperature on Biochar Microstructural Evolution, Physicochemical Characteristics, and Its Influence on Biochar/Polypropylene Composites. Appl. Sci. 2019, 9, 7–9. [Google Scholar] [CrossRef]
- Domingues, R.R.; Sánchez-Monedero, M.A.; Spokas, K.A.; Melo, L.C.A.; Trugilho, P.F.; Valenciano, M.N.; Silva, C.A. Enhancing Cation Exchange Capacity Ofweathered Soils Using Biochar: Feedstock, Pyrolysis Conditions and Addition Rate. Agronomy 2020, 10, 824. [Google Scholar] [CrossRef]
- Munera-Echeverri, J.L.; Martinsen, V.; Strand, L.T.; Zivanovic, V.; Cornelissen, G.; Mulder, J. Cation Exchange Capacity of Biochar: An Urgent Method Modification. Sci. Total Environ. 2018, 642, 190–197. [Google Scholar] [CrossRef]
- Kharel, G.; Sacko, O.; Feng, X.; Morris, J.R.; Phillips, C.L.; Trippe, K.; Kumar, S.; Lee, J.W. Biochar Surface Oxygenation by Ozonization for Super High Cation Exchange Capacity. ACS Sustain. Chem. Eng. 2019, 7, 16410–16418. [Google Scholar] [CrossRef]
- Doulgeris, C.; Kypritidou, Z.; Kinigopoulou, V.; Hatzigiannakis, E. Simulation of Potassium Availability in the Application of Biochar in Agricultural Soil. Agronomy 2023, 13, 784. [Google Scholar] [CrossRef]
- Rosolem, C.A.; Steiner, F. Effects of Soil Texture and Rates of K Input on Potassium Balance in Tropical Soil. Eur. J. Soil Sci. 2017, 68, 658–666. [Google Scholar] [CrossRef]
- ISO 18644:2016; Fertilizers and Soil Conditioners. Controlled-Release Fertilizer. General Requirements. International Organization for Standardization: Geneva, Switzerland, 2016.
- McBride, M.B. Environmental Chemistry of Soils; Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Jalali, M. Major Ion Chemistry of Soil Solution of Mountainous Soils, Alvand, Hamedan, Western Iran. Soil Sediment Contam. Int. J. 2011, 20, 493–508. [Google Scholar] [CrossRef]
- Najafi-Ghiri, M.; Boostani, H.R.; Hardie, A.G. Investigation of Biochars Application on Potassium Forms and Dynamics in a Calcareous Soil under Different Moisture Conditions. Arch. Agron. Soil Sci. 2022, 68, 325–339. [Google Scholar] [CrossRef]
- Wang, L.; Xue, C.; Nie, X.; Liu, Y.; Chen, F. Effects of Biochar Application on Soil Potassium Dynamics and Crop Uptake. J. Plant Nutr. Soil Sci. 2018, 181, 635–643. [Google Scholar] [CrossRef]
- Hoagland, D.R.; Arnon, D.I. The Water Culture Method for Growing Plants without Soil. Miscellaneous Publications No 354. Circ. Calif. Agric. Exp. Stn. 1941, 347, 461. [Google Scholar]
- Cardoso, D.S.C.P.; Sediyama, M.A.N.; Poltronieri, Y.; Fonseca, M.C.M.; Neves, Y.F. Effect of Concentration and N:K Ratio in Nutrient Solution for Hydroponic Production of Cucumber. Rev. Caatinga 2017, 30, 818–824. [Google Scholar] [CrossRef]
- Lin, D.; Huang, D.; Wang, S. Effects of Potassium Levels on Fruit Quality of Muskmelon in Soilless Medium Culture. Sci. Hortic. 2004, 102, 53–60. [Google Scholar] [CrossRef]
- Ebrahimi, R.; Souri, M.K.; Ebrahimi, F.; Ahmadizadeh, M. Growth and Yield of Strawberries under Different Potassium Concentrations of Hydroponic System in Three Substrates. World Appl. Sci. J. 2012, 16, 1380–1386. [Google Scholar]
- Wilkinson, S.R.; Mays, D.A. Mineral Nutrition. Tall Fescue 2015, 20, 41–73. [Google Scholar] [CrossRef]
- Cometti, N.N.; Furlani, P.R.; Genuncio, G. da C. Soluções Nutritivas: Composição, Formulação, Usos e Atributos. In Nutrição Mineral de Plantas; Fernandes, M.S., Souza, S.R.d., Santos, L.A., Eds.; Sociedade Brasileira de Ciência do Solo: Viçosa, Brazil, 2018; p. 670. ISBN 978-85-86504-23-5. [Google Scholar]
- Geilfus, C.M. Review on the Significance of Chlorine for Crop Yield and Quality. Plant Sci. 2018, 270, 114–122. [Google Scholar] [CrossRef]
- Geilfus, C.M. Chloride: From Nutrient to Toxicant. Plant Cell Physiol. 2018, 59, 877–886. [Google Scholar] [CrossRef]
- Gamboa, A. La Fertilización Del Maiz; Instituto Internacional de la Potasa: Bern, Switzerland, 1980. [Google Scholar]
- Yang, Y.; Ahmed, W.; Ye, C.; Yang, L.; Wu, L.; Dai, Z.; Khan, K.A.; Hu, X.; Zhu, X.; Zhao, Z. Exploring the Effect of Different Application Rates of Biochar on the Accumulation of Nutrients and Growth of Flue-Cured Tobacco (Nicotiana tabacum). Front. Plant Sci. 2024, 15, 1225031. [Google Scholar] [CrossRef]
- ELsaman, N.K.; Amin, A.E.E.A.Z.; El-Razek, M.A.; Roshdy, N.M.K. Comparative Effects of Different Types and Doses of Biochar on Soil Quality Indicators and Arugula Growth under Saline Conditions. Sci. Rep. 2025, 15, 10046. [Google Scholar] [CrossRef]
- Wang, R.; Liu, A.; Chen, X.; Wu, Y.; Peng, W. Effect of Potassium Rate on Yield, Potassium Uptake and Canopy Radiation Interception of Direct-Seeded Winter Canola. Chil. J. Agric. Res. 2023, 83, 107–118. [Google Scholar] [CrossRef]
Feedstock | Biochar Type | Pyrolysis Temperature (°C) | K from Feedstock (%) | K from KCl (%) | Acronym |
---|---|---|---|---|---|
Banana peel | Pure | 300 | 100 | 0 | BBP300 |
Pure | 650 | 100 | 0 | BBP650 | |
Composite | 300 | 60 | 40 | CBP300 | |
Composite | 650 | 82 | 18 | CBP650 | |
Coffee husk | Pure | 300 | 100 | 0 | BCH300 |
Pure | 650 | 100 | 0 | BCH650 | |
Composite | 300 | 65 | 35 | CCH300 | |
Composite | 650 | 78 | 22 | CCH650 | |
Chicken manure | Pure | 300 | 100 | 0 | BCM300 |
Pure | 650 | 100 | 0 | BCM650 | |
Composite | 300 | 45 | 55 | CCM300 | |
Composite | 650 | 57 | 43 | CCM650 |
Soil | pH | K+ | Available P | Na+ | Ca2+ | Mg2+ | Al3+ | H + Al |
---|---|---|---|---|---|---|---|---|
mg dm−3 | cmolc dm−3 | |||||||
Red Oxisol | 4.5 | 31 | 0.1 | 3.0 | 0.3 | 0.2 | 0.6 | 7.2 |
Red-Yellow Oxisol | 4.8 | 226 | 0.1 | 2.5 | 0.9 | 0.4 | 0.4 | 2.8 |
Soil | SB | eCEC | CEC at pH 7 | BS | m | Clay | Silt | Sand |
cmolc dm−3 | % | g kg−1 | ||||||
Red Oxisol | 0.6 | 1.2 | 7.8 | 7.7 | 50.0 | 620 | 160 | 220 |
Red-Yellow Oxisol | 1.9 | 2.2 | 4.7 | 40.0 | 15.9 | 470 | 80 | 450 |
Soil | P-Rem | OM | Zn | Fe | Mn | Cu | B | S-SO42− |
mg L−1 | dag kg−1 | mg dm−3 | ||||||
Red Oxisol | 16.6 | 3.7 | 0.3 | 50.6 | 3.4 | 1.1 | 0.1 | 2.5 |
Red-Yellow Oxisol | 36.6 | 1.7 | 0.2 | 36.0 | 3.5 | 0.0 | 0.1 | 1.2 |
BBF | Biochar Yield | Ash | C | pH | EC | ||
---|---|---|---|---|---|---|---|
(%) | dS m−1 | ||||||
BBP300 | 58.6 | 18.08 ± 0.59 | 54.9 | 9.44 ± 0.03 | f | 16.96 ± 0.03 | e |
BBP650 | 32.4 | 31.08 ± 1.13 | 55.3 | 9.97 ± 0.02 | c | 28.40 ± 0.52 | d |
CBP300 | 73.6 | 56.75 ± 7.69 | 30.7 | 7.95 ± 0.15 | i | 81.03 ± 1.27 | b |
CBP650 | 44.4 | 58.26 ± 0.52 | 39.2 | 9.63 ± 0.01 | de | 69.70 ± 4.74 | c |
BCH300 | 46.0 | 14.40 ± 0.26 | 66.4 | 10.11 ± 0.04 | c | 8.80 ± 0.19 | f |
BCH650 | 30.7 | 20.04 ± 0.52 | 71.2 | 9.71 ± 0.05 | d | 15.08 ± 0.04 | e |
CCH300 | 66.2 | 58.59 ± 0.40 | 34.8 | 7.93 ± 0.07 | i | 75.07 ± 3.12 | c |
CCH650 | 45.6 | 53.80 ± 0.61 | 39.9 | 9.56 ± 0.02 | ef | 72.97 ± 0.59 | c |
BCM300 | 69.2 | 47.56 ± 0.33 | 27.8 | 8.52 ± 0.04 | g | 7.20 ± 0.56 | f |
BCM650 | 55.4 | 61.09 ± 0.73 | 22.9 | 10.65 ± 0.02 | a | 7.40 ± 0.46 | f |
CCM300 | 86.4 | 79.51 ± 1.04 | 11.2 | 8.17 ± 0.24 | h | 87.37 ± 10.56 | a |
CCM650 | 73.8 | 82.96 ± 0.36 | 12.7 | 10.41 ± 0.02 | b | 86.17 ± 1.37 | ab |
Charred Matrix | CEC (cmolc kg−1) |
---|---|
BBP300 | 63.1 |
BBP650 | 15.4 |
BCH300 | 37.9 |
BCH650 | 18.2 |
BCM300 | 26.5 |
BCM650 | 2.9 |
CBP300 | 60.9 |
CBP650 | 8.6 |
CCH300 | 37.6 |
CCH650 | 12.5 |
CCM300 | 24.4 |
CCM650 | 3.2 |
Treatment | K Released in 24 h (% Total K) | K Released in 672 h (% Total K) |
---|---|---|
BBP300 | 35.7 h | 42.0 f |
BBP650 | 37.5 gh | 42.8 f |
BCH300 | 44.3 f | 55.0 bc |
BCH650 | 39.8 g | 46.5 e |
BCM300 | 38.1 gh | 52.8 cd |
BCM650 | 38.7 g | 45.6 e |
CBP300 | 55.8 b | 56.3 b |
CBP650 | 50.6 de | 51.7 d |
CCH300 | 53.5 bc | 55.7 bc |
CCH650 | 50.3 e | 56.9 b |
CCM300 | 52.9 cd | 56.5 b |
CCM650 | 53.3 bc | 54.3 bcd |
KCl | 88.0 a | 88.1 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, G.N.T.S.; Silva, C.A.; Morais, E.G.d. Agronomic Effectiveness of Biochar–KCl Composites for Corn Cultivation in Tropical Soils. Soil Syst. 2025, 9, 45. https://doi.org/10.3390/soilsystems9020045
Rodrigues GNTS, Silva CA, Morais EGd. Agronomic Effectiveness of Biochar–KCl Composites for Corn Cultivation in Tropical Soils. Soil Systems. 2025; 9(2):45. https://doi.org/10.3390/soilsystems9020045
Chicago/Turabian StyleRodrigues, Gabrielly Nayara Tavares Silva, Carlos Alberto Silva, and Everton Geraldo de Morais. 2025. "Agronomic Effectiveness of Biochar–KCl Composites for Corn Cultivation in Tropical Soils" Soil Systems 9, no. 2: 45. https://doi.org/10.3390/soilsystems9020045
APA StyleRodrigues, G. N. T. S., Silva, C. A., & Morais, E. G. d. (2025). Agronomic Effectiveness of Biochar–KCl Composites for Corn Cultivation in Tropical Soils. Soil Systems, 9(2), 45. https://doi.org/10.3390/soilsystems9020045