Coastal Salinity Management and Cropping System Intensification through Conservation Agriculture in the Ganges Delta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Details
2.3. Determination of Crops’ and Cropping Systems’ Yield
2.4. Determination of Soil Organic Carbon Status
2.5. Determination of Water Footprint
2.6. Economics and Statistical Analysis
3. Results
3.1. Soil Salinity
3.2. Weed Biomass
3.3. Soil Organic Carbon Status
3.4. Yield and Economics
3.4.1. Yield of Rabi and Summer Crops
3.4.2. Yield and Economics of Cropping Systems
3.5. Water Footprint
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarangi, S.K.; Maji, B.; Sharma, P.C.; Digar, S.; Mahanta, K.K.; Burman, D.; Mandal, U.K.; Mandal, S.; Mainuddin, M. Potato (Solanum tuberosum L.) cultivation by zero tillage and paddy straw mulching in the saline soils of the Ganges Delta. Potato Res. 2021, 64, 271–305. [Google Scholar] [CrossRef]
- Mainuddin, M.; Bell, R.W.; Gaydon, D.S.; Kirby, J.M.; Barrett-Lennard, E.G.; Glover, M.; Akanda, M.A.R.; Maji, B.; Ali, M.A.; Brahmachari, K.; et al. An overview of the Ganges coastal zone: Climate, hydrology, land use, and vulnerability. J. Indian Soc. Coast. Agric. Res. 2019, 37, 1–11. [Google Scholar]
- Bell, R.W.; Mainuddin, M.; Barrett-Lennard, E.G.; Sarangi, S.K.; Maniruzzaman, M.; Brahmachari, K.; Sarker, K.K.; Burman, D.; Gaydon, D.S.; Kirby, J.M.; et al. Cropping systems intensification in the coastal zone of the Ganges Delta: Opportunities and risks. J. Indian Soc. Coast. Agric. Res. 2019, 37, 153–161. [Google Scholar]
- Mahanta, K.K.; Burman, D.; Sarangi, S.K.; Mandal, U.K.; Maji, B.; Mandal, S.; Digar, S.; Mainuddin, M. Drip irrigation for reducing soil salinity and increasing cropping intensity: Case studies in Indian Sundarbans. J. Indian Soc. Coast. Agric. Res. 2019, 37, 64–71. [Google Scholar]
- Jat, M.L.; Chakraborty, D.; Ladha, J.K.; Rana, D.S.; Gathala, M.K.; McDonald, A.; Gerard, B. Conservation agriculture for sustainable intensification in South Asia. Nat. Sustain. 2020, 3, 336–343. [Google Scholar] [CrossRef]
- Dewi, E.S.; Abdulai, I.; Brach-Mujica, G.; Rotter, R.P. Salinity constraints for small-scale agriculture and impact on adaptation in North Aceh, Indonesia. Agronomy 2022, 12, 341. [Google Scholar] [CrossRef]
- Sarangi, S.K.; Burman, D.; Mandal, S.; Maji, B.; Tuong, T.P.; Humphreys, E.; Bandyopadhyay, B.K.; Sharma, D.K. Reducing irrigation water requirement of dry season rice (boro) in coastal areas using timely seeding and short duration varieties. In CGIAR Challenge Program on Water and Food (CPWF), Proceedings of the Revitalizing the Ganges Costal Zone: Turning Science into Policy and Practices, 21–23 October 2014, Colombo, Sri Lanka; Humphreys, E., Tuong, T.P., Buisson, M.C., Pukinskis, I., Phillips, M., Eds.; CGIAR: Montpellier, France, 2015; pp. 68–79. [Google Scholar]
- Cassman, K.G.; Grassini, P. A global perspective on sustainable intensification research. Nat. Sustain. 2020, 3, 262–268. [Google Scholar] [CrossRef]
- Pretty, J.; Benton, T.G.; Bharucha, Z.P.; Dicks, L.V.; Flora, C.B.; Godfray, H.C.J.; Goulson, D.; Hartley, S.; Lampkin, N.; Morris, C.; et al. Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain. 2018, 1, 441–446. [Google Scholar] [CrossRef]
- Dixon, J.; Mekuria, M.; Rodriguez, D. Sustainable Intensification as a driver of agricultural and rural transformation. In Sustainable Intensification of Maize Legume Farming Systems for Food Security in Eastern and Southern Africa; Wilkus, E., Mekuria, M., Rodriguez, D., Dixon, J., Eds.; ACIAR Monograph 211; Australian Centre for International Agricultural Research: Canberra, Australia, 2021. [Google Scholar]
- Nunes, M.R.; Karlen, D.L.; Moorman, T.B. Tillage Intensity Effects on Soil Structure Indicators—A US Meta-Analysis. Sustainability 2020, 12, 2071. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Hedlund, K.; Jackson, L.E.; Kätterer, T.; Lugato, E.; Thomsen, I.K.; Jørgensen, H.B.; Isberg, P.E. How does tillage intensity affect soil organic carbon? A systematic review. Environ. Evid. 2020, 6, 30. [Google Scholar] [CrossRef]
- Nandan, R.; Singh, V.; Singh, S.S.; Kumar, V.; Hazra, K.K.; Nath, C.P.; Poonia, S.; Malik, R.K.; Bhattacharyya, R.; McDonald, A. Impact of conservation tillage in rice-based cropping systems on soil aggregation, carbon pools and nutrients. Geoderma 2019, 340, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Keil, A.; D’souza, A.; McDonald, A. Zero-tillage as a pathway for sustainable wheat intensification in the Eastern Indo-Gangetic Plains: Does it work in farmers’fields? Food Secur. 2015, 7, 983–1001. [Google Scholar] [CrossRef]
- Aryal, J.P.; Sapkota, T.B.; Jat, M.L.; Bishnoi, D.K. On-farm economic and environmental impact of zero-tillage wheat: A case of north-west India. Exp. Agric. 2014, 51, 1–16. [Google Scholar] [CrossRef]
- Oppenheimer, M.; Glavovic, B.C.; Hinkel, J.; van de Wal, R.; Magnan, A.K.; Abd-Elgawad, A.; Cai, R.; Cifuentes-Jara, M.; DeConto, R.M.; Ghosh, T.; et al. Sea level rise and implications for low-lying islands, coasts and communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019; pp. 321–445. [Google Scholar] [CrossRef]
- Biswas, T.; Majumder, A.; Dey, S.; Mandal, A.; Ray, S.; Kapoor, P.; Emam, W.; Kanthal, S.; Ishizaka, A.; Matuka, A. Evaluation of management practices in rice–wheat cropping system using multicriteria decision-making methods in conservation agriculture. Sci. Rep. 2024, 14, 8600. [Google Scholar] [CrossRef] [PubMed]
- Magar, S.T.; Timsina, J.; Devkota, K.P.; Weili, L.; Rajbhandari, N. Conservation agriculture for increasing productivity, profitability and water productivity in rice-wheat system of the Eastern Gangetic Plain. Environ. Chall. 2022, 7, 100468. [Google Scholar] [CrossRef]
- Jat, H.S.; Kumar, P.; Sutaliya, J.M.; Kumar, S.; Choudhary, M.; Singh, Y.; Jat, M.L. Conservation agriculture based sustainable intensification of basmati rice-wheat system in North-West India. Arch. Agron. Soil Sci. 2019, 65, 1370–1386. [Google Scholar] [CrossRef]
- Francaviglia, R.; Almagro, M.; Vicente-Vicente, J.L. Conservation agriculture and soil organic carbon: Principles, processes, practices and policy options. Soil Syst. 2023, 7, 17. [Google Scholar] [CrossRef]
- Dumanski, J.; Peiretti, R.; Benetis, J.; McGarry, D.; Pieri, C. The paradigm of conservation tillage. Proc. World Assoc. Soil Water Conserv. 2006, 58–64. Available online: https://www.researchgate.net/publication/284061910_The_paradigm_of_conservation_tillage (accessed on 31 March 2024).
- Jat, R.K.; Sapkota, T.B.; Singh, R.G.; Jat, M.L.; Kumar, M.; Gupta, R.K. Seven years of conservation agriculture in a rice–wheat rotation of Eastern Gangetic Plains of South Asia: Yield trends and economic profitability. Field Crops Res. 2014, 164, 199–210. [Google Scholar] [CrossRef]
- Sapkota, T.B.; Majumdar, K.; Jat, M.L.; Kumar, A.; Bishnoi, D.K.; McDonald, A.J.; Pampolino, M. Precision nutrient management in conservation agriculture-based wheat production of Northwest India: Profitability, nutrient use efficiency and environmental footprint. Field Crops Res. 2014, 155, 233–244. [Google Scholar] [CrossRef]
- Sapkota, T.B.; Jat, M.L.; Aryal, J.P.; Jat, R.K.; Khatri-Chhetri, A. Climate change adaptation, greenhouse gas mitigation and economic profitability of conservation agriculture: Some examples from cereal systems of Indo-Gangetic Plains. J. Integr. Agric. 2015, 14, 1524–1533. [Google Scholar] [CrossRef]
- Carceles Rodriguez, B.; Duran-Zuazo, V.H.; Soriano Rodriguez, M.; Garcia-Tejero, I.F.; Galvez Ruiz, B.; Cuadros Tavira, S. Conservation agriculture as a sustainable system for soil health: A review. Soil Syst. 2022, 6, 87. [Google Scholar] [CrossRef]
- Released Varieties. Available online: https://icar-nrri.in/released-varieties/#:~:text=In%20India%20more%20than%201200,been%20contributed%20from%20NRRI%2C%20Cuttack (accessed on 31 March 2024).
- Raghu, P.T.; Veettil, P.C.; Das, S. Smallholder adaptation to flood risks: Adoption and impact of Swarna-Sub 1. Environ. Chall. 2022, 7, 100480. [Google Scholar] [CrossRef]
- Rhoades, J.D.; Chanduvi, F.; Lesch, S. Soil Salinity Assessment—Methods and Interpretation of Electrical Conductivity Measurements; FAO Irrigation and Drainage Paper 57; FAO: Rome, Italy, 1999. [Google Scholar]
- Chan, K.Y.; Bowman, A.; Oates, A. Oxidizible organic carbon fractions and soil quality changes in oxicpaleustalf under different pasture leys. Soil Sci. 2001, 166, 61–67. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Blair, G.J.; Lefroy, R.D.B.; Lisle, L. Soil carbon fractions based on their degree of oxidation and development of a carbon management index for agricultural systems. Aust. J. Agric. Res. 1995, 46, 1459–1466. [Google Scholar] [CrossRef]
- Hazra, K.K.; Ghosh, P.K.; Venkatesh, M.S.; Nath, C.P.; Kumar, N.; Singh, M.; Singh, J.; Nadarajan, N. Improving soil organic carbon pools through inclusion of summer mungbean in cereal-cereal cropping systems in Indo-Gangetic plain. Arch. Agron. Soil Sci. 2018, 64, 1690–1704. [Google Scholar] [CrossRef]
- Chapagain, A.K.; Hoekstra, A.Y. The blue, green and grey water footprint of rice from production and consumption perspectives. Ecol. Econ. 2011, 70, 749–758. [Google Scholar] [CrossRef]
- International Rice Research Institute, Manila, Philippines. Available online: https://news.irri.org/2013/08/irri-biometrics-group-releases.html (accessed on 31 March 2024).
- Panse, V.G.; Sukhatme, P.V. Statistical Methods for Agricultural Workers; Indian Council of Agricultural Research: New Delhi, India, 1978; p. 361. [Google Scholar]
- Du, C.; Li, L.; Effah, Z. Effects of straw mulching and reduced tillage on crop production and environment—A review. Water 2022, 14, 2471. [Google Scholar] [CrossRef]
- El-Mageed, T.A.A.; Semida, W.M.; El-Wahed, M.H.A. Effect of mulching on plant water status, soil salinity and yield of squash under summer-fall deficit irrigation in salt affected soil. Agric. Water Manag. 2016, 173, 1–12. [Google Scholar] [CrossRef]
- Paul, P.L.C.; Bell, R.W.; Barrett-Lennard, E.G.; Kabir, E. Impact of rice straw mulch on soil physical properties, sunflower root distribution and yield in a salt-affected clay-textured soil. Agriculture 2021, 11, 264. [Google Scholar] [CrossRef]
- Pooniya, V.; Zhiipao, R.R.; Biswakarma, N.; Kumar, D.; Shivay, Y.S.; Babu, S.; Das, K.; Choudhary, A.K.; Swarnalakshmi, K.; Jat, R.D.; et al. Conservation agriculture based integrated crop management sustains producitivity and economic profitability along with soil properties of the maize-wheat rotation. Sci. Rep. 2022, 12, 1962. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Gabrielle, B.; Beillouin, D.; Makowshi, D. High probability of yield gain through conservation agriculture in dry regions for major staple crops. Sci. Rep. 2021, 11, 3344. [Google Scholar] [CrossRef] [PubMed]
- Sims, B.; Corsi, S.; Gbehounou, G.; Kienzle, J.; Taguchi, M.; Friedrich, T. Sustainable weed management for conservation agriculture: Options for smallholder farmers. Agriculture 2018, 8, 118. [Google Scholar] [CrossRef]
- Fonteyne, S.; Singh, R.G.; Govaerts, B.; Verhulst, N. Rotation, mulch, zero tillage reduce weeds in a long-term conservation agriculture trial. Agronomy 2020, 10, 962. [Google Scholar] [CrossRef]
- Bhan, S.; Behera, U.K. Conservation agriculture in India—Problems, prospects and polity issues. Int. Soil Water Conserv. Res. 2014, 2, 1–12. [Google Scholar] [CrossRef]
- Bohoussou, Y.N.; Kou, Y.H.; Yu, W.B.; Lin, B.; Virk, A.L.; Zhao, X.; Dang, Y.P.; Zhang, H.L. Impacts of the components of conservation agriculture on soil organic carbon and total nitrogen storage: A global meta-analysis. Sci. Total Environ. 2022, 842, 156822. [Google Scholar] [CrossRef]
- Krishna, V.V.; Keil, A.; Jain, M.; Zhou, W.; Jose, M.; Surendran-Padmaja, S.; Barba-Escoto, L.; Singh, B.; Jat, M.L.; Erenstein, O. Conservation agriculture benefits Indian farmers, but technology targeting needed for greater impacts. Front. Agron. 2022, 4, 772732. [Google Scholar] [CrossRef]
Parameters | Procedure | Mean | Range |
---|---|---|---|
BD (g cm−3) | Core sampler | 1.47 | 1.40–1.52 |
pH (1:2) | Soil: water | 7.29 | 7.05–7.44 |
ECe (dS m−1) | Saturation extract | 2.81 | 1.99–4.40 |
Microbial population (CFU g−1 soil) | Dilution plate method in Nutrient Agar plate | 1.89 × 106 | 1.625–2.15 × 106 |
Sand (%) | Bouyoucos hydrometer | 22.5 | 21.1–24.3 |
Silt (%) | 31.6 | 30.1–32.5 | |
Clay (%) | 45.9 | 43.3–47.3 | |
N (kg ha−1) | Alkaline potassium permanganate method | 177.7 | 165.9–201.3 |
P (kg ha−1) | Olsen method | 17.5 | 14.1–21.6 |
K (kg ha−1) | Flame photometric method | 293.1 | 285.5–303.9 |
OC (%) | Walkley and Black | 0.43 | 0.40–0.47 |
Cropping System | Treatment Details |
---|---|
Rice–potato–green-gram |
|
Rice–mustard–green-gram |
|
Rice–garlic–green-gram |
|
Particulars | Year | Kharif Rice | Potato | Mustard | Garlic | Green Gram * |
---|---|---|---|---|---|---|
Variety | 2020–2023 | Swarna-Sub1 | Kufri Pukhraj | DRMR 150-35 | Yamuna Safed | Local |
Seed rate | 2020–2023 | 45 kg ha−1 | 1.5–1.8 t ha−1 | 5–6 kg ha−1 | 0.50–0.75 t ha−1 | 20–25 kg ha−1 |
Date of sowing/planting | 2020–2021 | 21 June 2020 | ZT: 26 November 2020 Conv: 7 December 2020 | ZT: 26 November 2020 Conv: 7 December 2020 | ZT: 26 November 2020 Conv: 7 December 2020 | ZT: 25 February 2021 Conv: 13 March 2021 |
2021–2022 | 6 June 2021 | ZT: 10 November 2021 Conv: 27 December 2021 | ZT: 10 November 2021 Conv: 27 December 2021 | ZT: 10 November 2021 Conv: 27 December 2021 | ZT: 13 February 2022 Conv: 5 March 2022 | |
2022–2023 | 10 June 2022 | ZT: 3 November 2022 Conv: 23 December 2022 | ZT: 3 November 2022 Conv: 23 December 2022 | ZT: 3 November 2022 Conv: 23 December 2022 | ZT: 7 February 2023 Conv: 23 March 2023 | |
Date of harvesting | 2020–2021 | 23 November 2020 | ZT: 9 February 2021 Conv: 3 March 2021 | ZT: 19 February 2021 Conv: 10 March 2021 | ZT: 24 March 2021 Conv: 7 April 2021 | ZT: 27 April 2021 Conv: 15 May 2021 |
2021–2022 | 7 November 2021 | ZT: 10 February 2022 Conv: 13 March 2022 | ZT: 12 February 2022 Conv: 1 March 2022 | ZT: 10 March 2022 Conv: 3 April 2022 | ZT: 22 April 2022 Conv: 9 May 2022 | |
2022–2023 | 1 November 2022 | ZT: 7 February 2023 Conv: 23 March 2023 | ZT: 1 February 2023 Conv: 15 March 2023 | ZT: 3 March 2023 Conv: 10 April 2023 | ZT: 11 April 2023 Conv: 27 May 2023 | |
Manure (FYM) used (t ha−1) | 2020–2023 | 10 | 5 | 5 | 5 | - |
Paddy straw recycled (t ha−1) | 2020–2023 | - | 9–15 (season−1) | 2–6 (season−1) | 3–7 (season−1) | - |
Chemical fertilizer (N-P-K) used (kg ha−1) | 2020–2023 | 60–40–40 | 100–75–75 | 40–20–20 | 75–40–40 | 12.5–25–12.5 |
Treatments for Potato Cultivation | Tuber Yield (t ha−1) of Potato | Seed Yield (t ha−1) of Green Gram | ||||
---|---|---|---|---|---|---|
2020–2021 | 2021–2022 | 2022–2023 | 2020–2021 | 2021–2022 | 2022–2023 | |
Conventional tillage for ridge and furrow planting of potato, no crop residue recycling | 14.48 c ±0.99 | 11.16 e ±1.63 | 11.19 f ±2.19 | 0.4 c ±0.04 | 0.36 e ±0.03 | 0.32 c ±0.01 |
Zero-tillage (ZT) planting with 30 × 15 cm crop geometry and 9 t ha−1 paddy straw mulching (PSM) | 21.74 ab ±6.20 | 17.08 d ±3.00 | 20.74 d ±3.95 | 0.58 bc ±0.11 | 0.64 d ±0.04 | 0.54 b ±0.06 |
ZT planting with 30 × 15 cm crop geometry and 12 t ha−1 PSM | 23.31 a ±2.33 | 25.34 ab ±0.39 | 28.21 a ±1.79 | 0.64 ab ±0.07 | 0.81 bc ±0.09 | 0.56 b ±0.05 |
ZT planting with 30 × 15 cm crop geometry and 15 t ha−1 PSM | 22.75 a ±0.54 | 26.54 a ±2.29 | 28.46 a ±0.56 | 0.61 b ±0.16 | 0.87 b ±0.05 | 0.64 ab ±0.09 |
ZT planting with 45 × 15 cm crop geometry and 9 t ha−1 PSM | 16.90 bc ±2.70 | 16.24 cd ±0.38 | 18.32 e ±0.47 | 0.60 b ±0.08 | 0.67 cd ±0.16 | 0.57 b ±0.09 |
ZT planting of potato with 45 × 15 cm crop geometry and 12 t ha−1 PSM | 18.30 b ±1.29 | 22.94 b ±3.11 | 23.01 c ±2.38 | 0.65 a ±0.10 | 0.94 ab ±0.06 | 0.77 a ±0.16 |
ZT planting with 45 × 15 cm crop geometry and 15 t ha−1 PSM | 18.63 b ±3.10 | 26.12 a ±4.34 | 26.02 ab ±1.94 | 0.69 a ±0.15 | 1.04 a ±0.18 | 0.80 a ±0.15 |
ZT planting with 60 × 15 cm crop geometry and 9 t ha−1 PSM | 16.82 bc ±1.13 | 15.37 d ±1.99 | 17.26 e ±0.53 | 0.84 a ±0.29 | 0.78 bc ±0.08 | 0.69 ab ±0.24 |
ZT planting with 60 × 15 cm crop geometry and 12 t ha−1 PSM | 18.59 b ±2.54 | 18.94 c ±2.94 | 22.66 cd ±1.11 | 0.65 a ±0.08 | 1.02 ab ±0.08 | 0.74 a ±0.21 |
ZT planting with 60 × 15 cm crop geometry and 15 t ha−1 PSM | 18.94 b ±1.21 | 19.50 c ±2.48 | 23.97 bc ±1.17 | 0.73 a ±0.09 | 1.04 a ±0.05 | 0.77 a ±0.20 |
SEm± | 1.46 | 1.39 | 1.07 | 0.10 | 0.08 | 0.08 |
LSD0.05 | 3.06 | 2.93 | 2.25 | 0.21 | 0.16 | 0.16 |
Treatments for Mustard Cultivation | Seed Yield (t ha−1) of Mustard | Seed Yield (t ha−1) of Green Gram | ||||
---|---|---|---|---|---|---|
2020–2021 | 2021–2022 | 2022–2023 | 2020–2021 | 2021–2022 | 2022–2023 | |
Control (conventional tillage for ridge and furrow planting of mustard, no crop residue recycling) | 0.56 d ±0.10 | 0.69 c ±0.05 | 0.95 d ±0.10 | 0.31 c ±0.05 | 0.35 c ±0.02 | 0.32 d ±0.06 |
ZT planting of mustard with 20 × 10 cm crop geometry and 2 t ha−1 paddy straw mulching (PSM) | 0.96 c ±0.16 | 1.21 b ±0.50 | 1.72 abc ±0.26 | 0.39 bc ±0.02 | 0.55 b ±0.17 | 0.52 abc ±0.01 |
ZT planting of mustard with 20 × 10 cm crop geometry and 4 t ha−1 PSM | 1.16 abc ±0.26 | 1.42 ab ±0.11 | 1.78 abc ±0.36 | 0.48 a ±0.09 | 0.71 a ±0.15 | 0.54 abc ±0.03 |
ZT planting of mustard with 20 × 10 cm crop geometry and 6 t ha−1 PSM | 1.34 a ±0.12 | 1.44 ab ±0.34 | 1.76 abc ±0.25 | 0.45 ab ±0.07 | 0.79 a ±0.23 | 0.58 a ±0.07 |
ZT planting of mustard with 25 × 10 cm crop geometry and 2 t ha−1 PSM | 1.26 ab ±0.07 | 1.33 ab ±0.04 | 1.60 bc ±0.06 | 0.44 ab ±0.02 | 0.58 b ±0.04 | 0.48 ab ±0.01 |
ZT planting of mustard with 25 × 10 cm crop geometry and 4 t ha−1 PSM | 1.20 abc ±0.06 | 1.43 ab ±0.30 | 2.01 a ±0.19 | 0.46 ab ±0.07 | 0.78 a ±0.11 | 0.50 b ±0.03 |
ZT planting of mustard with 25 × 10 cm crop geometry and 6 t ha−1 PSM | 1.22 ab ±0.08 | 1.59 a ±0.28 | 1.85 ab ±0.28 | 0.47 ab ±0.04 | 0.80 a ±0.07 | 0.61 a ±0.03 |
ZT planting of mustard with 30 × 10 cm crop geometry and 2 t ha−1 PSM | 1.25 ab ±0.12 | 1.23 ab ±0.08 | 1.44 c ±0.11 | 0.41 ab ±0.05 | 0.59 b ±0.07 | 0.46 c ±0.02 |
ZT planting of mustard with 30 × 10 cm crop geometry and 4 t ha−1 PSM | 1.13 ab ±0.07 | 1.27 ab ±0.38 | 1.52 bc ±0.12 | 0.39 bc ±0.02 | 0.80 a ±0.07 | 0.49 c ±0.02 |
ZT planting of mustard with 30 × 10 cm crop geometry and 6 t ha−1 PSM | 1.05 bc ±0.08 | 1.42 ab ±0.23 | 1.55 bc ±0.12 | 0.44 ab ±0.06 | 0.83 a ±0.07 | 0.56 abc ±0.05 |
SEm± | 0.14 | 0.16 | 0.17 | 0.04 | 0.09 | 0.03 |
LSD0.05 | 0.27 | 0.33 | 0.35 | 0.08 | 0.18 | 0.07 |
Treatments for Garlic Cultivation | Bulb Yield (t ha−1) of Garlic | Seed Yield (t ha−1) of Green Gram | ||||
---|---|---|---|---|---|---|
2020–2021 | 2021–2022 | 2022–2023 | 2020–2021 | 2021–2022 | 2022–2023 | |
Control (conventional tillage for ridge and furrow planting of garlic, no crop residue recycling) | 2.26 d ±1.42 | 3.39 d ±0.48 | 2.18 e ±1.12 | 0.25 c ±0.003 | 0.16 d ±0.02 | 0.29 b ±0.02 |
ZT planting of garlic with 20 × 10 cm crop geometry and 3 t ha−1 paddy straw mulching (PSM) | 3.53 cd ±1.36 | 4.68 c ±1.37 | 5.44 cd ±0.78 | 0.27 bc ±0.06 | 0.19 cd ±0.02 | 0.35 ab ±0.03 |
ZT planting of garlic with 20 × 10 cm crop geometry and 5 t ha−1 PSM | 3.98 bc ±1.49 | 6.11 b ±1.35 | 6.14 bc ±1.13 | 0.26 bc ±0.03 | 0.22 abc ±0.02 | 0.35 ab ±0.03 |
ZT planting of garlic with 20 × 10 cm crop geometry and 7 t ha−1 PSM | 4.09 bc ±1.15 | 7.52 a ±1.84 | 8.21 a ±0.99 | 0.28 bc ±0.03 | 0.26 a ±0.01 | 0.37 a ±0.03 |
ZT planting of garlic with 25 × 10 cm crop geometry and 3 t ha−1 PSM | 5.05 ab ±0.55 | 4.88 c ±1.77 | 4.81 d ±1.00 | 0.34 ab ±0.08 | 0.20 bc ±0.05 | 0.31 ab ±0.04 |
ZT planting of garlic with 25 × 10 cm crop geometry and 5 t ha−1 PSM | 5.18 ab ±1.92 | 6.46 ab ±1.24 | 5.62 cd ±1.01 | 0.35 ab ±0.09 | 0.24 abc ±0.01 | 0.31 ab ±0.05 |
ZT planting of garlic with 25 × 10 cm crop geometry and 7 t ha−1 PSM | 5.38 ab ±1.98 | 6.94 ab ±2.14 | 5.97 cd ±1.20 | 0.41 a ±0.07 | 0.23 ab ±0.005 | 0.33 ab ±0.05 |
ZT planting of garlic with 30 × 10 cm crop geometry and 3 t ha−1 PSM | 4.79 abc ±1.33 | 4.55 c ±1.62 | 5.28 cd ±0.65 | 0.27 bc ±0.02 | 0.17 cd ±0.06 | 0.30 b ±0.02 |
ZT planting of garlic with 30 × 10 cm crop geometry and 5 t ha−1 PSM | 5.40 ab ±2.27 | 7.06 ab ±1.34 | 6.66 bc ±0.13 | 0.30 bc ±0.02 | 0.25 a ±0.02 | 0.33 ab ±0.04 |
ZT planting of garlic with 30 × 10 cm crop geometry and 7 t ha−1 PSM | 6.05 a ±1.77 | 7.19 ab ±2.06 | 7.57 ab ±0.88 | 0.31 bc ±0.01 | 0.26 a ±0.03 | 0.35 ab ±0.05 |
SEm± | 0.70 | 0.54 | 0.73 | 0.04 | 0.03 | 0.03 |
LSD0.05 | 1.46 | 1.13 | 1.52 | 0.08 | 0.05 | 0.06 |
Rice-Based Cropping Systems | Rice Equivalent Yield (t ha−1) | Cost of Cultivation (USD ha−1) | Gross Return (USD ha−1) | Net Return (USD ha−1) | BCR |
---|---|---|---|---|---|
Rice–fallow * | 4.58 g | 708 j | 1170 h | 462 c | 1.65 c |
Rice–potato * | 10.78 d | 2082 c | 2735 cd | 653 b | 1.31 d |
Rice–mustard * | 5.93 f | 1036 i | 1511 gh | 474 c | 1.46 cd |
Rice–garlic * | 9.42 de | 1700 f | 2392 ef | 692 b | 1.41 d |
Rice–potato–green-gram * | 12.36 c | 2408 a | 3068 c | 660 bc | 1.27 d |
Rice–mustard–green-gram * | 7.12 f | 1362 g | 1812 fg | 450 | 1.33 d |
Rice–garlic–green-gram * | 10.38 de | 2053 c | 2594 de | 541 bc | 1.26 d |
Rice–ZTPSM potato ** | 15.05 b | 1971 d | 3812 b | 1841 a | 1.93 b |
Rice–ZTPSM-mustard ** | 6.46 f | 1003 i | 1645 g | 642 bc | 1.64 c |
Rice–ZTPSM-garlic ** | 14.92 b | 1756 e | 3779 b | 2023 a | 2.15 a |
Rice–ZTPSM-potato–ZTPSM-green-gram ** | 17.63 a | 2261 b | 4353 a | 2092 a | 1.93 b |
Rice–ZTPSM-mustard–ZTPSM-green-gram ** | 8.15 e | 1252 h | 2070 f | 818 b | 1.65 c |
Rice–ZTPSM-garlic–ZTPSM-green-gram ** | 16.12 ab | 2059 c | 4031 a | 1972 a | 1.96 ab |
SEm± | 0.75 | 13 | 117 | 117 | 0.06 |
LSD0.05 | 2.20 | 37 | 342 | 341 | 0.19 |
Rice-Based Cropping Systems | Rice Equivalent Yield (t ha−1) | Cost of Cultivation (USD ha−1) | Gross Return (USD ha−1) | Net Return (USD ha−1) | BCR |
---|---|---|---|---|---|
Rice–fallow * | 4.94 f | 706 l | 1218 i | 512 fg | 1.73 d |
Rice–potato * | 16.10 c | 2611 f | 3337 e | 726 f | 1.28 fg |
Rice–mustard * | 7.24 ef | 1104 j | 1655 h | 551 fg | 1.50 e |
Rice–garlic * | 15.11 cd | 2632 e | 3149 e | 517 fg | 1.20 gh |
Rice–potato–green-gram * | 17.78 c | 2944 b | 3656 d | 712 f | 1.24 g |
Rice–mustard–green-gram * | 8.87 e | 1437 h | 1965 g | 528 fg | 1.37 f |
Rice–garlic–green-gram * | 15.86 c | 2965 a | 3291 e | 326 g | 1.11 h |
Rice–ZTPSM-potato ** | 25.84 b | 2513 g | 5186 b | 2673 b | 2.06 a |
Rice–ZTPSM-mustard ** | 9.51 e | 1096 k | 2086 g | 990 e | 1.90 bc |
Rice–ZTPSM-garlic ** | 23.42 b | 2612 f | 4724 c | 2112 c | 1.81 c |
Rice–ZTPSM-potato–ZT-green-gram ** | 29.90 a | 2845 d | 5951 a | 3106 a | 2.09 a |
Rice–ZTPSM-mustard–ZT-green-gram ** | 12.82 d | 1419 i | 2719 f | 1299 d | 1.92 b |
Rice–ZTPSM-garlic–ZT-green-gram ** | 24.45 b | 2935 c | 4923 c | 1987 c | 1.68 d |
SEm± | 1.02 | 2 | 81 | 79 | 0.03 |
LSD0.05 | 2.98 | 6 | 237 | 231 | 0.09 |
Rice Based Cropping Systems | Rice Equivalent Yield (t ha−1) | Cost of Cultivation (USD ha−1) | Gross Return (USD ha−1) | Net Return (USD ha−1) | BCR |
---|---|---|---|---|---|
Rice–fallow | 2.99 f | 705 g | 1091 l | 385 h | 1.55 g |
Rice–potato | 11.52 d | 2545 c | 3248 f | 703 f | 1.28 i |
Rice–mustard | 5.25 f | 1087 f | 1663 k | 576 g | 1.53 g |
Rice–garlic | 8.18 e | 2540 c | 2404 h | −136 i | 0.95 k |
Rice–potato–green-gram | 12.66 d | 2863 a | 3537 e | 674 f | 1.24 j |
Rice–mustard–green-gram | 6.39 f | 1406 | 1952 j | 546 g | 1.39 h |
Rice–garlic–green-gram | 9.22 e | 2858 a | 2666 g | −192 i | 0.93 k |
Rice–ZTPSM-potato * | 22.22 b | 2446 d | 5560 b | 3114 b | 2.27 a |
Rice–ZTPSM-mustard * | 8.09 e | 1079 f | 2110 i | 1031 e | 1.96 c |
Rice–ZTPSM-garlic * | 19.20 c | 2521 c | 4819 d | 2298 c | 1.91 d |
Rice–ZTPSM-potato–ZT-green-gram * | 24.65 a | 2763 b | 6170 a | 3407 a | 2.23 b |
Rice–ZTPSM-mustard–ZT-green-gram * | 9.99 e | 1389 e | 2586 g | 1198 d | 1.86 e |
Rice–ZTPSM-garlic–ZT-green-gram * | 20.38 bc | 2830 a | 5120 c | 2290 c | 1.81 f |
SEm± | 0.78 | 19 | 38 | 19 | 0.01 |
LSD0.05 | 2.27 | 56 | 112 | 56 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarangi, S.K.; Mainuddin, M.; Raut, S.; Mandal, U.K.; Mahanta, K.K. Coastal Salinity Management and Cropping System Intensification through Conservation Agriculture in the Ganges Delta. Soil Syst. 2024, 8, 80. https://doi.org/10.3390/soilsystems8030080
Sarangi SK, Mainuddin M, Raut S, Mandal UK, Mahanta KK. Coastal Salinity Management and Cropping System Intensification through Conservation Agriculture in the Ganges Delta. Soil Systems. 2024; 8(3):80. https://doi.org/10.3390/soilsystems8030080
Chicago/Turabian StyleSarangi, Sukanta Kumar, Mohammed Mainuddin, Shishir Raut, Uttam Kumar Mandal, and Kshirendra Kumar Mahanta. 2024. "Coastal Salinity Management and Cropping System Intensification through Conservation Agriculture in the Ganges Delta" Soil Systems 8, no. 3: 80. https://doi.org/10.3390/soilsystems8030080
APA StyleSarangi, S. K., Mainuddin, M., Raut, S., Mandal, U. K., & Mahanta, K. K. (2024). Coastal Salinity Management and Cropping System Intensification through Conservation Agriculture in the Ganges Delta. Soil Systems, 8(3), 80. https://doi.org/10.3390/soilsystems8030080