Changes in the Composition of Soil Organic Matter after the Transformation of Natural Beech Stands into Spruce Monoculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Soil Sampling
2.2. Soil Analysis
2.3. Alkaline-Extractable Organic Substances
2.4. Diffuse Reflectance Infrared Fourier Transform Spectroscopy
2.5. Statistical Analysis
3. Results and Discussion
3.1. Basic Soil Characteristics
3.2. Dissolved Organic Carbon and Low Molecular Mass Organic Acids
3.3. The Spectroscopic Characterization of Alkaline-Extractable Organic Substances
3.4. The Effect of Forest Tree Conversion on Soil Organic Matter and Soil Development through Forest Soil Profile
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Budde, S.; Schmidt, W.; Weckesser, M. Impact of the admixture of European beech (Fagus sylvatica L.) on plant species diversity and naturalness of conifer stands in Lower Saxony. Wald. Online 2011, 11, 49–61. [Google Scholar]
- Spiecker, H.; Hansen, J.; Klimo, E.; Skovsgaard, J.P.; Sterba, H.; von Teuffel, K. Norway Spruce Conversion–Options and Consequences; EFI Research Report 18; Brill: Leiden, The Netherlands; Boston, MA, USA; Köln, Germany, 2004; ISBN 90-04-13728-9. [Google Scholar]
- Verstraeten, G. Conversion of Deciduous Forests to Spruce Plantations and Back: Evaluation of Interacting Effects on Soil, Forest Floor, Earthworm and Understorey Communities. Ph.D. Thesis, Ghent University, Ghent, Belgium, 2013. [Google Scholar]
- Achilles, F.; Tischer, A.; Bernhardt-Römermann, M.; Heinze, M.; Reinhardt, F.; Makeschin, F.; Michalzik, B. European beech leads to more bioactive humus forms but stronger mineral soil acidification as Norway spruce and Scots pine–Results of a repeated site assessment after 63 and 82 years of forest conversion in Central Germany. For. Ecol. Manag. 2021, 483, 118769. [Google Scholar] [CrossRef]
- Klimo, E.; Hager, H.; Kulhavý, J. Spruce Monocultures in Central Europe–Problems and Prospects. In Spruce Monocultures in Central Europe-Problems and Prospects; Proceedings 33; European Forest Institute: Joensuu, Finland, 2000; ISBN 952-9844-76-X. [Google Scholar]
- Seliger, A.; Ammer, C.; Kreft, H.; Zerbe, S. Changes of vegetation in coniferous monocultures in the context of conversion to mixed forests in 30 years–Implications for biodiversity restoration. J. Environ. Manag. 2023, 343, 118199. [Google Scholar] [CrossRef]
- Heine, P.; Hausen, J.; Ottermanns, R.; Schäffer, A.; Roß-Nickoll, M. Forest conversion from Norway spruce to European beech increases species richness and functional structure of aboveground macrofungal communities. For. Ecol. Manag. 2019, 432, 522–533. [Google Scholar] [CrossRef]
- Fernández, J.M.; Plante, A.F.; Leifeld, J.; Rasmussen, C. Methodological considerations for using thermal analysis in the characterization of soil organic matter. J. Therm. Anal. Calorim. 2011, 104, 389–398. [Google Scholar] [CrossRef]
- Lal, R. Soil organic matter and water retention. Agron. J. 2020, 112, 3265–3277. [Google Scholar] [CrossRef]
- Ahmad, B.; Wang, Y.; Hao, J.; Liu, Y.; Bohnett, E.; Zhang, K. Variation of carbon density components with overstory structure of larch plantations in northwest China and its implication for optimal forest management. For. Ecol. Manag. 2021, 496, 119399. [Google Scholar] [CrossRef]
- Ohno, T.; He, Z.; Tazisong, I.A.; Senwo, Z.N. Influence of tillage, cropping, and nitrogen source on the chemical characteristics of humic acid, fulvic acid, and water-soluble soil organic matter fractions of a long-term cropping system study. Soil Sci. 2009, 174, 652–660. [Google Scholar] [CrossRef]
- Li, Q.; Wang, L.; Fu, Y.; Lin, D.; Hou, M.; Li, X.; Hu, D.; Wang, Z. Transformation of soil organic matter subjected to environmental disturbance and preservation of organic matter bound to soil minerals: A review. J. Soils. Sediments 2023, 23, 1485–1500. [Google Scholar] [CrossRef]
- Ukalska-Jaruga, A.; Smreczak, B.; Klimkowicz-Pawlas, A. Soil organic matter composition as a factor affecting the accumulation of polycyclic aromatic hydrocarbons. J. Soils. Sediments 2019, 19, 1890–1900. [Google Scholar] [CrossRef]
- Jamroz, E.; Jerzykiewicz, M. Humic fractions as indicators of soil organic matter responses to clear-cutting in mountain and lowland conditions of southwestern Poland. Land. Degrad. Dev. 2022, 33, 368–378. [Google Scholar] [CrossRef]
- Kooch, Y.; Samadzadeh, B.; Hosseini, S.M. The effects of broad-leaved tree species on litter quality and soil properties in a plain forest stand. Catena 2017, 150, 223–229. [Google Scholar] [CrossRef]
- Bradová, M.; Tejnecký, V.; Borůvka, L.; Němeček, K.; Ash, C.; Šebek, O.; Svoboda, M.; Zenáhlíková, J.; Drábek, O. The variations of aluminium species in mountainous forest soils and its implications to soil acidification. Environ. Sci. Pollut. Res. 2015, 22, 16676–16687. [Google Scholar] [CrossRef] [PubMed]
- Habumugisha, V.; Mourad, K.A.; Hashakimana, L. The Effects of Trees on Soil Chemistry. Curr. Environ. Eng. 2018, 6, 35–44. [Google Scholar] [CrossRef]
- Nacke, H.; Goldmann, K.; Schöning, I.; Pfeiffer, B.; Kaiser, K.; Villamizar, G.A.C.; Schrumpf, M.; Buscot, F.; Daniel, R.; Wubet, T. Fine spatial scale variation of soil microbial communities under European beech and Norway spruce. Front. Microbiol. 2016, 7, 2067. [Google Scholar] [CrossRef]
- Richardson, J.B.; Friedland, A.J. Influence of coniferous and deciduous vegetation on major and trace metals in forests of northern New England, USA. Plant. Soil. 2016, 402, 363–378. [Google Scholar] [CrossRef]
- Campbell, E.E.; Paustian, K. Current developments in soil organic matter modeling and the expansion of model applications: A review. Environ. Res. Lett. 2015, 10, 123004. [Google Scholar] [CrossRef]
- Clarholm, M.; Skyllberg, U.; Rosling, A. Organic acid induced release of nutrients from metal-stabilized soil organic matter—The unbutton model. Soil Biol. Biochem. 2015, 84, 168–176. [Google Scholar] [CrossRef]
- Gerke, J. Concepts and misconceptions of humic substances as the stable part of soil organic matter: A review. Agronomy 2018, 8, 76. [Google Scholar] [CrossRef]
- Hubova, P.; Tejnecky, V.; Ash, C.; Boruvka, L.; Drabek, O. Low-Molecular-Mass Organic Acids in the Forest Soil Environment. Mini. Rev. Org. Chem. 2017, 14, 75–84. [Google Scholar] [CrossRef]
- Adeleke, R.; Nwangburuka, C.; Oboirien, B. Origins, roles and fate of organic acids in soils: A review. S. Afr. J. Bot. 2017, 108, 393–406. [Google Scholar] [CrossRef]
- Xiao, M.; Wu, F.; Liao, H.; Li, W.; Lee, X.; Huang, R. Characteristics and distribution of low molecular weight organic acids in the sediment porewaters in Bosten Lake, China. J. Environ. Sci. 2010, 22, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Ussiri, D.A.N.; Johnson, C.E.; Johnson, C.E. Characterization of organic matter in a northern hardwood forest soil by 13 C NMR spectroscopy and chemical methods of organic matter could account for variations in the structure and chemistry of organic matter in these forest soils. Geoderma 2003, 111, 123–149. [Google Scholar] [CrossRef]
- Senesi, N.; D’Orazio, V.; Ricca, G. Humic acids in the first generation of EUROSOILS. Geoderma 2003, 116, 325–344. [Google Scholar] [CrossRef]
- Guimarães, D.V.; Gonzaga, M.I.S.; da Silva, T.O.; da Silva, T.L.; da Silva Dias, N.; Matias, M.I.S. Soil organic matter pools and carbon fractions in soil under different land uses. Soil Tillage Res. 2013, 126, 177–182. [Google Scholar] [CrossRef]
- Tang, W.W.; Zeng, G.M.; Gong, J.L.; Liang, J.; Xu, P.; Zhang, C.; Huang, B.B. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: A review. Sci. Total Environ. 2014, 468–469, 1014–1027. [Google Scholar] [CrossRef] [PubMed]
- Tunega, D.; Gerzabek, M.H.; Haberhauer, G.; Lischka, H.; Solc, R.; Aquino, A.J.A. Adsorption process of polar and nonpolar compounds in a nanopore model of humic substances. Eur. J. Soil. Sci. 2020, 71, 845–855. [Google Scholar] [CrossRef]
- Yang, C.M.; Wang, M.C.; Lu, Y.F.; Chang, I.F.; Chou, C.H. Humic substances affect the activity of chlorophyllase. J. Chem. Ecol. 2004, 30, 1057–1065. [Google Scholar] [CrossRef]
- Debska, B.; Drag, M.; Banach-Szott, M. Molecular size distribution and hydrophilic and hydrophobic properties of humic acids isolated from forest soil. Soil Water. Res. 2007, 2, 45–53. [Google Scholar] [CrossRef]
- Piccolo, A. The supramolecular structure of humic substances: A novel understanding of humus chemistry and implications in soil science. Adv. Agron. 2002, 75, 57–134. [Google Scholar] [CrossRef]
- Sutton, R.; Sposito, G. Molecular structure in soil humic substances: The new view. Environ. Sci. Technol. 2005, 39, 9009–9015. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Borůvka, L.; Vacek, O.; Jehlička, J. Principal component analysis as a tool to indicate the origin of potentially toxic elements in soils. Geoderma 2005, 128, 289–300. [Google Scholar] [CrossRef]
- Pavlů, L.; Borůvka, L.; Drábek, O.; Nikodem, A. Effect of natural and anthropogenic acidification on aluminium distribution in forest soils of two regions in the Czech Republic. J. For. Res. 2021, 32, 363–370. [Google Scholar] [CrossRef]
- Tejnecký, V.; Bradová, M.; Borůvka, L.; Němeček, K.; Šebek, O.; Nikodem, A.; Zenáhlíková, J.; Rejzek, J.; Drábek, O. Profile distribution and temporal changes of sulphate and nitrate contents and related soil properties under beech and spruce forests. Sci. Total Environ. 2013, 442, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Thai, S.; Pavlů, L.; Tejnecký, V.; Chovancová, S.; Hin, L.; Thet, B.; Němeček, K.; Drábek, O. Temporal changes in soil chemical compositions in acidified mountain forest soils of Czech Republic. Eur. J. For. Res. 2023, 142, 883–897. [Google Scholar] [CrossRef]
- Rennert, T.; Herrmann, L. Thermal-gradient analysis of soil organic matter using an elemental analyser–A tool for qualitative characterization? Geoderma 2022, 425, 116085. [Google Scholar] [CrossRef]
- Cools, N.; De Vos, B. Sampling and Analysis of Soil. In Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of Air Pollution on Forests; UNECE ICP Forests Programme Coordinating Centre, Ed.; Thünen Institute of Forest Ecosystems: Eberswalde, Germany, 2016. [Google Scholar]
- Sparks, D.L.; Page, A.; Helmke, P.; Loeppert, R.H. Methods of soil analysis part 3 Chemical Methods Soil Science Society of America Book Series. In Methods of Soil Analysis; American Society of Agronomy, Inc.: Madison WI, USA, 1996. [Google Scholar]
- Tejnecký, V.; Řeřichová, N.; Bradová, M.; Němeček, K.; Šantrůčková, H.; Ash, C.; Drábek, O. Litter Decomposition as a Source of Active Phosphates in Spruce and Beech Mountainous Forests Affected by Acidification. Procedia Earth Planet. Sci. 2014, 10, 130–132. [Google Scholar] [CrossRef]
- Hubová, P.; Tejnecký, V.; Češková, M.; Borůvka, L.; Němeček, K.; Drábek, O. Behaviour of aluminium in forest soils with different lithology and herb vegetation cover. J. Inorg. Biochem. 2018, 181, 139–144. [Google Scholar] [CrossRef]
- Piccolo, A.; Celano, G.; Conte, P. Methods of isolation and characterization of humic substances to study their interactions with pesticides. In Pesticides/Soil Interactions: Some Current Research Methods; INRA: Paris, France, 2000; pp. 103–116. [Google Scholar]
- Haberhauer, G.; Gerzabek, M.H. Drift and transmission FT-IR spectroscopy of forest soils: An approach to determine decomposition processes of forest litter. Vib. Spectrosc. 1999, 19, 413–417. [Google Scholar] [CrossRef]
- López, R.; Gondar, D.; Iglesias, A.; Fiol, S.; Antelo, J.; Arce, F. Acid properties of fulvic and humic acids isolated from two acid forest soils under different vegetation cover and soil depth. Eur. J. Soil. Sci. 2008, 59, 892–899. [Google Scholar] [CrossRef]
- Buresova, A.; Tejnecky, V.; Kopecky, J.; Drabek, O.; Madrova, P.; Rerichova, N.; Omelka, M.; Krizova, P.; Nemecek, K.; Parr, T.B.; et al. Litter chemical quality and bacterial community structure influenced decomposition in acidic forest soil. Eur. J. Soil. Biol. 2021, 103, 103271. [Google Scholar] [CrossRef]
- Cremer, M.; Prietzel, J. Soil acidity and exchangeable base cation stocks under pure and mixed stands of European beech, Douglas fir and Norway spruce. Plant Soil. 2017, 415, 393–405. [Google Scholar] [CrossRef]
- Berthrong, S.T.; Jobbágy, E.G.; Jackson, R.B. A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecol. Appl. 2009, 19, 2228–2241. [Google Scholar] [CrossRef] [PubMed]
- Gruba, P.; Mulder, J. Tree species affect cation exchange capacity (CEC) and cation binding properties of organic matter in acid forest soils. Sci. Total Environ. 2015, 511, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Augusto, L.; Ranger, J.; Binkley, D.; Rothe, A. Impact of several common tree species of European temperate forests on soil fertility. Ann. For. Sci. 2002, 59, 233–253. [Google Scholar] [CrossRef]
- De Schrijver, A.; Geudens, G.; Augusto, L.; Staelens, J.; Mertens, J.; Wuyts, K.; Gielis, L.; Verheyen, K. The effect of forest type on throughfall deposition and seepage flux: A review. Oecologia 2007, 153, 663–674. [Google Scholar] [CrossRef] [PubMed]
- Kopáček, J.; Hejzlar, J.; Kaňa, J.; Norton, S.A.; Porcal, P.; Turek, J. Trends in aluminium export from a mountainous area to surface waters, from deglaciation to the recent: Effects of vegetation and soil development, atmospheric acidification, and nitrogen-saturation. J. Inorg. Biochem. 2009, 103, 1439–1448. [Google Scholar] [CrossRef] [PubMed]
- Kopáček, J.; Veselý, J. Sulfur and nitrogen emissions in the Czech Republic and Slovakia from 1850 till 2000. Atmos. Environ. 2005, 39, 2179–2188. [Google Scholar] [CrossRef]
- Fagan, M.E.; Kim, D.H.; Settle, W.; Ferry, L.; Drew, J.; Carlson, H.; Slaughter, J.; Schaferbien, J.; Tyukavina, A.; Harris, N.L.; et al. The expansion of tree plantations across tropical biomes. Nat. Sustain. 2022, 5, 681–688. [Google Scholar] [CrossRef]
- Salas, C.; Donoso, P.J.; Vargas, R.; Arriagada, C.A.; Pedraza, R.; Soto, D.P. The forest sector in chile: An overview and current challenges. J. For. 2016, 114, 562–571. [Google Scholar] [CrossRef]
- Barreto, M.S.C.; Ramlogan, M.; Oliveira, D.M.S.; Verburg, E.E.J.; Elzinga, E.J.; Rouff, A.A.; Jemo, M.; Alleoni, L.R.F. Thermal stability of soil organic carbon after long-term manure application across land uses and tillage systems in an oxisol. Catena 2021, 200, 105164. [Google Scholar] [CrossRef]
- Barreto, M.S.C.; Elzinga, E.J.; Ramlogan, M.; Rouff, A.A.; Alleoni, L.R.F. Calcium enhances adsorption and thermal stability of organic compounds on soil minerals. Chem. Geol. 2021, 559, 119804. [Google Scholar] [CrossRef]
- Berg, B.; McClaugherty, C. Plant Litter: Decomposition, Humus Formation, Carbon Sequestration; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Thai, S.; Pavlů, L.; Tejnecký, V.; Vokurková, P.; Nozari, S.; Borůvka, L. Comparison of soil organic matter composition under different land uses by DRIFT spectroscopy. Plant Soil. Environ. 2021, 67, 255–263. [Google Scholar] [CrossRef]
- Margenot, A.J.; Calderón, F.J.; Bowles, T.M.; Parikh, S.J.; Jackson, L.E. Soil Organic Matter Functional Group Composition in Relation to Organic Carbon, Nitrogen, and Phosphorus Fractions in Organically Managed Tomato Fields. Soil Sci. Soc. Am. J. 2015, 79, 772–782. [Google Scholar] [CrossRef]
- Veum, K.S.; Goyne, K.W.; Kremer, R.J.; Miles, R.J.; Sudduth, K.A. Biological indicators of soil quality and soil organic matter characteristics in an agricultural management continuum. Biogeochemistry 2014, 117, 81–99. [Google Scholar] [CrossRef]
- Leinweber, P.; Schulten, H.R.; Kalbitz, K.; Meißner, R.; Jancke, H. Fulvic acid composition in degraded fenlands. J. Plant Nutr. Soil Sci. 2001, 164, 371–379. [Google Scholar] [CrossRef]
- Machado, W.; Franchini, J.C.; de Fátima Guimarães, M.; Filho, J.T. Spectroscopic characterization of humic and fulvic acids in soil aggregates, Brazil. Heliyon 2020, 6, e04078. [Google Scholar] [CrossRef] [PubMed]
- Sierra, M.M.D.; Rauen, T.G.; Tormen, L.; Debacher, N.A.; Soriano-Sierra, E.J. Evidence from surface tension and fluorescence data of a pyrene-assisted micelle-like assemblage of humic substances. Water Res. 2005, 39, 3811–3818. [Google Scholar] [CrossRef]
- Tatzber, M.; Stemmer, M.; Spiegel, H.; Katzlberger, C.; Haberhauer, G.; Mentler, A.; Gerzabek, M.H. FTIR-spectroscopic characterization of humic acids and humin fractions obtained by advanced NaOH, Na4P2O7, and Na2CO3 extraction procedures. J. Plant Nutr. Soil Sci. 2007, 170, 522–529. [Google Scholar] [CrossRef]
- Stevenson, F. Humus Chemistry: Genesis, Composition, Reactions. In Humus Chemistry, 2nd ed.; Wiley: Hoboken, NJ, USA, 1994; ISBN 978-0-471-59474-1. [Google Scholar]
- Pavlů, L.; Mühlhanselová, M. Differences in humic acids structure of various soil types studied by DRIFT spectroscopy. Soil Water Res. 2017, 13, 29–35. [Google Scholar] [CrossRef]
- Haberhauer, G.; Rafferty, B.; Strebl, F.; Gerzabek, M.H. Comparison of the composition of forest soil litter derived from three different sites at various decompositional stages using FTIR spectroscopy. Geoderma 1998, 83, 331–342. [Google Scholar] [CrossRef]
- Mládková, L.; Rohošková, M.; Borůvka, L. Methods for the Assessment of Humic Substances Quality in Forest Soils. Soil Water Res. 2006, 1, 3–9. [Google Scholar] [CrossRef]
- Giovanela, M.; Parlanti, E.; Soriano-Sierra, E.J.; Soldi, M.S.; Sierra, M.M.D. Elemental compositions, FT-IR spectral and thermal behavior of sedimentary fulvic and humic acids from aquatic and terrestrial environments. Geochem. J. 2004, 38, 255–264. [Google Scholar] [CrossRef]
- Pospíšilová, L.; Komínková, M.; Zítka, O.; Kizek, R.; Barančíková, G.; Litavec, T.; Lošák, T.; Hlušek, J.; Martensson, A.; Liptaj, T. Fate of humic acids isolated from natural humic substances. Acta Agric. Scand. Sect. B Soil Plant Sci. 2015, 65, 517–528. [Google Scholar] [CrossRef]
- Gaffney, J.S.; Marley, N.A.; Clark, S.B. Humic and Fulvic Acids and Organic Colloidal Materials in the Environment; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1996; Volume 651. [Google Scholar] [CrossRef]
- Madejova, J.; Komadel, P. Baseline studies of the clay minerals society source clays: Infrared methods. Clays Clay Miner. 2001, 49, 410–432. [Google Scholar] [CrossRef]
- Lundström, U.S.; Van Breemen, N.; Bain, D. The podzolization process. A review. Geoderma 2000, 94, 91–107. [Google Scholar] [CrossRef]
- Sauer, D.; Sponagel, H.; Sommer, M.; Giani, L.; Jahn, R.; Stahr, K. Podzol: Soil of the year 2007. A review on its genesis, occurrence, and functions. J. Plant Nutr. Soil Sci. 2007, 170, 581–597. [Google Scholar] [CrossRef]
- Dlouhá, Š.; Borůvka, L.; Pavlů, L.; Tejnecký, V.; Drábek, O. Comparison of Al speciation and other soil characteristics between meadow, young forest and old forest stands. J. Inorg. Biochem. 2009, 103, 1459–1464. [Google Scholar] [CrossRef]
- Yuan, Z.; Gazol, A.; Lin, F.; Ye, J.; Shi, S.; Wang, X.; Wang, M.; Hao, Z. Soil organic carbon in an old-growth temperate forest: Spatial pattern, determinants and bias in its quantification. Geoderma 2013, 195–196, 48–55. [Google Scholar] [CrossRef]
- Zech, W.; Guggenberger, G.; Haumaier, L.; Pöhhacker, R.; Schäfer, D.; Amelung, W.; Miltner, A.; Kaiser, K.; Ziegler, F. Organic Matter Dynamics in Forest Soils of Temperate and Tropical Ecosystems. In Humic Substances in Terrestrial Ecosystems; Elsevier: Amsterdam, The Netherlands, 1996; pp. 101–170. [Google Scholar] [CrossRef]
- Merabtene, M.D.; Faraoun, F.; Mlih, R.; Djellouli, R.; Latreche, A.; Bol, R. Forest Soil Organic Carbon Stocks of Tessala Mount in North-West Algeria-Preliminary Estimates. Front. Environ. Sci. 2021, 8, 520284. [Google Scholar] [CrossRef]
- Hanakova-Becvarova, P.; Horvath, M.; Sarapatka, B.; Zouhar, V. The effect of stand characteristics on soil organic carbon content in spruce and deciduous stands. For. Syst. 2022, 31, e005. [Google Scholar] [CrossRef]
- Jandl, R.; Leitgeb, E.; Englisch, M. Decadal Changes of Organic Carbon, Nitrogen, and Acidity of Austrian Forest Soils. Soil Syst. 2022, 6, 28. [Google Scholar] [CrossRef]
- Ohno, T.; Parr, T.B.; Ce, M.; Gruselle, I.; Fernandez, I.J.; Sleighter, R.L.; Hatcher, P.G. Molecular Composition and Biodegradability of Soil Organic Matter: A Case Study Comparing Two New England Forest Types. Environ. Sci. Technol. 2014, 48, 7229–7236. [Google Scholar] [CrossRef] [PubMed]
- Thai, S.; Davídek, T.; Pavlů, L. Causes clarification of the soil aggregates stability on mulched soil. Soil Water Res. 2022, 17, 91–99. [Google Scholar] [CrossRef]
- Lal, R. Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Glob. Change Biol. 2018, 24, 3285–3301. [Google Scholar] [CrossRef]
- Zosso, C.U.; Ofiti, N.O.E.; Torn, M.S.; Wiesenberg, G.L.B.; Schmidt, M.W.I. Rapid loss of complex polymers and pyrogenic carbon in subsoils under whole-soil warming. Nat. Geosci. 2023, 16, 344–348. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thai, S.; Pavlů, L.; Vokurková, P.; Thet, B.; Vejvodová, K.; Drábek, O.; Tejnecký, V. Changes in the Composition of Soil Organic Matter after the Transformation of Natural Beech Stands into Spruce Monoculture. Soil Syst. 2024, 8, 74. https://doi.org/10.3390/soilsystems8030074
Thai S, Pavlů L, Vokurková P, Thet B, Vejvodová K, Drábek O, Tejnecký V. Changes in the Composition of Soil Organic Matter after the Transformation of Natural Beech Stands into Spruce Monoculture. Soil Systems. 2024; 8(3):74. https://doi.org/10.3390/soilsystems8030074
Chicago/Turabian StyleThai, Saven, Lenka Pavlů, Petra Vokurková, Bunthorn Thet, Kateřina Vejvodová, Ondřej Drábek, and Václav Tejnecký. 2024. "Changes in the Composition of Soil Organic Matter after the Transformation of Natural Beech Stands into Spruce Monoculture" Soil Systems 8, no. 3: 74. https://doi.org/10.3390/soilsystems8030074
APA StyleThai, S., Pavlů, L., Vokurková, P., Thet, B., Vejvodová, K., Drábek, O., & Tejnecký, V. (2024). Changes in the Composition of Soil Organic Matter after the Transformation of Natural Beech Stands into Spruce Monoculture. Soil Systems, 8(3), 74. https://doi.org/10.3390/soilsystems8030074