Soils on Recent Tephra of the Somma–Vesuvius Volcanic Complex, Italy
Abstract
:1. Introduction
2. Environmental Setting
3. Materials and Methods
4. Results
4.1. Morphological Features
4.2. Physical and Chemical Properties and Soil Classification
4.3. Mineralogical Features: XRD and FTIR Analyses
5. Discussion
5.1. Morphological Features
5.2. Physical Properties: Particle-Size Distribution and AWC
5.3. Chemical Properties
5.3.1. pH, Organic C
5.3.2. Oxalate Extractable Al and Fe, Al/Si Ratio and Allophane
5.4. Mineralogy
5.4.1. General Remarks
5.4.2. Analcime
6. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shoji, S.; Dahlgren, R.; Nanzyo, M. Genesis of volcanic ash soils. In Volcanic Ash Soils. Genesis, Properties and Utilization; Shoji, S., Nanzyo, M., Dahlgren, R., Eds.; Developments in Soil Science; Elsevier Science Publisher: Amsterdam, The Netherlands, 1993; Volume 21, pp. 37–74. [Google Scholar]
- Ugolini, F.C.; Dahlgren, R.A. Soil development in volcanic ash. Glob. Environ. Res. 2002, 6, 69–81. [Google Scholar]
- Shoji, S.; Dahlgren, R.; Nanzyo, M. Classification of volcanic ash soils. In Volcanic Ash Soils. Genesis, Properties and Utilization; Shoji, S., Nanzyo, M., Dahlgren, R., Eds.; Developments in Soil Science; Elsevier Science Publisher: Amsterdam, The Netherlands, 1993; Volume 21, pp. 73–100. [Google Scholar]
- Chen, J.; Xiao, Q.; Xu, D.; Li, Z.; Chao, L.; Li, X.; Liu, H.; Wang, P.; Zheng, Y.; Liu, X.; et al. Soil microbial community composition and co-occurrence network responses to mild and severe disturbances in volcanic areas. Sci. Total Environ. 2023, 901, 165889. [Google Scholar] [CrossRef]
- Óskarsson, B.V.; Riishuus, M.S.; Arnalds, O. Climate-dependent chemical weathering of volcanic soils in Iceland. Geoderma 2012, 189–190, 635–651. [Google Scholar] [CrossRef]
- van Breemen, V.; Buurman, P. Soil Formation, 2nd ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Delfosse, T.; Delmelle, P.; Iserentant, A.; Delveaux, B. Contribution of SO3 to the acid neutralizing capacity of Andosols exposed to strong volcanogenic acid and SO2 deposition. Eur. J. Soil Sci. 2005, 56, 113–125. [Google Scholar] [CrossRef]
- D’Oriano, C.; Bertagnini, A.; Cioni, R.; Pompilio, M. Identifying recycled ash in basaltic eruptions. Sci. Rep. 2014, 4, 5851. [Google Scholar] [CrossRef]
- Dahlgren, R.; Shoji, S.; Nanzyo, M. Mineralogical characteristics of volcanic ash soils. In Volcanic Ash Soils. Genesis, Properties and Utilization; Shoji, S., Nanzyo, M., Dahlgren, R., Eds.; Developments in Soil Science; Elsevier Science Publisher: Amsterdam, The Netherlands, 1993; Volume 21, pp. 101–144. [Google Scholar]
- Loughnan, F.C. Chemical Weathering of the Silicates Minerals; Elsevier: New York, NY, USA, 1969. [Google Scholar]
- Adamo, P.; Violante, P. Weathering of rocks and neogenesis of minerals associated with lichen activity. Appl. Clay Sci. 2000, 16, 229–256. [Google Scholar] [CrossRef]
- Dahlgren, R.A.; Dragoo, J.P.; Ugolini, F.C. Weathering of Mt. St. Helens tephra under a cryic-udic climte regime. Soil Sci. Soc. Am. J. 1997, 61, 1519–1525. [Google Scholar] [CrossRef]
- Dahlgren, R.A.; Ugolini, F.C.; Casey, W.H. Field weathering rates of Mt. St. Helens tephra. Geochim. Cosmochim. Acta 1999, 63, 587–598. [Google Scholar] [CrossRef]
- D’Alessandro, W.; Bellomo, S.; Parello, F. Fluorine adsorption by volcanic soils at Mt. Etna, Italy. Appl. Geochem. 2012, 27, 1179–1188. [Google Scholar] [CrossRef]
- Egli, M.; Nater, M.; Mirabella, A.; Raimondi, S.; Plötze, M.; Alioth, L. Clay minerals, oxyhydroxide formation, element leaching and humus development in volcanic soils. Geoderma 2008, 143, 101–114. [Google Scholar] [CrossRef]
- Fiantis, D.; Nelson, M.; Shamshuddin, J.; Goh, T.B.; Van Ranst, E. Leaching experiments in recent tephra deposits from Talang volcano (West Sumatra), Indonesia. Geoderma 2010, 156, 161–172. [Google Scholar] [CrossRef]
- James, P.; Chester, D.K.; Duncan, A.M. Development and spatial distribution of soils on an active volcano: Mt. Etna, Sicily. Catena 2016, 137, 277–297. [Google Scholar] [CrossRef]
- Kato, T.; Kamijo, T.; Hatta, T.; Tamura, K.; Higasshi, T. Initial soil formation processes of volcanogeneous Regosols (Scoriacious) from Mijake-jima Island, Japan. Soil Sci. Plant Nutr. 2005, 51, 291–301. [Google Scholar] [CrossRef]
- Lilienfein, J.; Qualls, R.G.; Uselman, S.M.; Bridgham, S.D. Soil formation and organic matter accretion in a young andesitic chronosequence at Mt. Shasta, California. Geoderma 2003, 116, 249–264. [Google Scholar] [CrossRef]
- Panico, S.C.; Memoli, V.; Santorufo, L.; Esposito, F.; De Marco, A.; Barile, R.; Giulia, M. Linkage between site features and soil characteristics within a Mediterranean volcanic area. Front. For. Glob. Chang. 2021, 3, 621231. [Google Scholar] [CrossRef]
- Sasaki, R.; Yoshida, M.; Ohtsu, Y.; Miyahira, M.; Ohta, H.; Watanabe, M.; Suzuki, S. Soil formation of new lahar materials derived from Mt. Pinatubo. Soil Sci. Plant Nutr. 2003, 49, 575–582. [Google Scholar] [CrossRef]
- Shoji, S.; Takahashi, T. Environmental and Agriculture significance of volcanic ash soils. Glob. Environ. Res. 2002, 6, 113–135. [Google Scholar]
- Arnalds, Ó.; Óskarsson, F.; Buurman, P.; Stoops, G.; García-Rodeja, E. Soils of Volcanic Regions in Europe; Springer: Berlin/Heidelberg, Germany, 2007; p. 644. [Google Scholar]
- Bottini, O. Indagini pedogenetiche su formazioni vulcaniche. In Memorie Scientifiche; Francesco Giannini e Figli: Napoli, Italy, 1971; pp. 251–423. Available online: https://opac.bncf.firenze.sbn.it/Record/SBL0380463 (accessed on 6 November 2023).
- Buondonno, C.; Buondonno, C.; Ermice, A. Mineralogia dei suoli sulle vulcanoclastiti del Somma-Vesuvio. In Proceedings of the X Meeting Società Italiana di Chimica Agraria, Roma, Italy, 15–18 September 1992; pp. 115–122. [Google Scholar]
- Buondonno, C.; Adamo, P.; Ermice, A.; Leone, A.P.; Testasecca, A. Studio di andisuoli in due diversi ambienti dell’Italia meridionale. Ann. Fac. Agrar. 1993, 36–48. Available online: https://www.iris.unina.it/handle/11588/327558 (accessed on 6 November 2023).
- Ermice, A. A pedological case study of volcanoclastically impacted landscapes: The Vesuvian Avellino air-fall deposits, Southern Italy. Catena 2017, 149, 241–252. [Google Scholar] [CrossRef]
- Lulli, L. Italian volcanic soils. In Soils of Volcanic Regions in Europe; Arnalds, Ö., Óskarsson, H., Bartoli, F., Buurman, P., Stoops, G., García-Rodeja, E., Eds.; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2007; pp. 51–67. [Google Scholar]
- Murolo, M.; Pugliano, M.L.; Ermice, A. Landfill and natural soils on the Somma-Vesuvius volcanic complex, Italy: Differences and similarities in soil morphology and properties. Soil Sci. 2005, 170, 652–668. [Google Scholar] [CrossRef]
- Ruberti, D.; Vigliotti, M.; Marzaioli, M.; Pacifico, A.; Ermice, A. Stratigraphic architecture and anthropic impacts on subsoil to assess the intrinsic potential vulnerability of groundwater: The northeastern Campania Plain case study, southern Italy. Environ. Earth Sci. 2016, 71, 319–339. [Google Scholar] [CrossRef]
- Vacca, A.; Adamo, P.; Pigna, M.; Violante, P. Genesis of tephra-derived soils from Roccamonfina volcano, South Central Italy. Soil. Sci. Soc. Am. J. 2003, 67, 198–207. [Google Scholar]
- Arnò, V.; Principe, C.; Rosi, M.; Santacroce, R.; Sbrana, A.; Sheridan, M.F. Eruptive History. In Somma-Vesuvius; Santacroce, R., Ed.; Quaderni de “La Ricerca Scientifica”, Issue 114; Comitato Nazionale delle Ricerche (CNR): Rome, Italy, 1987; Volume 3, pp. 53–103. Available online: http://geca.area.ge.cnr.it/files/328066.pdf (accessed on 6 November 2023).
- Di Vito, M.A.; Sulpizio, R.; Zanchetta, G.; D’ Orazio, M. The late Pleistocene pyroclastic deposits of the Campanian Plain: New insights into the explosive activity of Neapolitan volcanoes. J. Volcanol. Geotherm. Res. 2008, 177, 19–48. [Google Scholar] [CrossRef]
- Joron, J.; Metrich, N.; Rosi, M.; Santacroce, R.; Sbrana, A. Chemistry and petrography. In Somma-Vesuvius; Santacroce, R., Ed.; Quaderni de “La Ricerca Scientifica”, Issue 114; Comitato Nazionale delle Ricerche (CNR): Rome, Italy, 1987; Volume 3, pp. 105–173. Available online: http://geca.area.ge.cnr.it/files/328066.pdf (accessed on 6 November 2023).
- Arrighi, S.; Principe, C.; Rosi, M. Violent strombolian and subplinian eruptions at Vesuvius during post-1631 activity. Bull. Volcanol. 2001, 63, 26–150. [Google Scholar] [CrossRef]
- Principe, C.; Rosi, M.; Santacroce, R.; Sbrana, A. Explanatory notes to the Geological Map. In Somma-Vesuvius; Santacroce, R., Ed.; Quaderni de “La Ricerca Scientifica”, Issue 114; Comitato Nazionale delle Ricerche (CNR): Rome, Italy, 1987; Volume 3, pp. 11–51. Available online: http://geca.area.ge.cnr.it/files/328066.pdf (accessed on 6 November 2023).
- Ricciardi, M.; Mazzoleni, S.; La Valva, V. La flora e la vegetazione del Somma-Vesuvio. In Elementi di Biodiversità del Parco Nazionale del Vesuvio; Picariello, O., Ed.; Ente Parco del Vesuvio Napoli: Ottaviano, Italy, 2000; pp. 51–65. [Google Scholar]
- Parascandola, A. Notizie Vesuviane. L’attuale fase solfatarica del Vesuvio. Boll. Soc. Nat. Napoli 1946, LV, 135–139. [Google Scholar]
- Casoria, E. Studio analitico dei prodotti delle ultime eruzioni Vesuviane (1891-94 e 1895-96). Ann. Sc. Agric. Portici 1903, 44. Available online: https://books.google.com/books/about/Annali_della_Regia_Scuola_superiore_di_a.html?id=_oVWuoNnTvEC (accessed on 6 November 2023).
- Bottini, O. Fattori pedogenetici particolari della regione vesuviana. Gas e sublimazioni vulcaniche. In Memorie Scientifiche; Francesco Giannini e Figli: Napoli, Italy, 1971; pp. 399–405. Available online: https://opac.bncf.firenze.sbn.it/Record/SBL0380463 (accessed on 6 November 2023).
- Bottini, O. Le piogge caustiche nella regione vesuviana. In Memorie Scientifiche; Francesco Giannini e Figli: Napoli, Italy, 1971; pp. 406–414. Available online: https://opac.bncf.firenze.sbn.it/Record/SBL0380463 (accessed on 6 November 2023).
- Madonia, P.; Liotta, M. Chemical composition of precipitation at Mt. Vesuvius and Vulcano Island, Italy: Volcanological and environmental implications. Environ. Earth Sci. 2010, 61, 159–171. [Google Scholar] [CrossRef]
- Ermice, A.; Pugliano, M.L.; Buondonno, A.; Flaminio, G.; Buondonno, C. Volcanic ejecta as soil forming factor on carbonate relieves of the Partenio Mountain (Campanian Apennines). Boll. Soc. Geol. Ital. 1999, 118, 505–511. [Google Scholar]
- Inoue, Y.; Baasansuren, J.; Watanabe, M.; Kamei, H.; Lowe, D.G. Interpretation of pre-AD 472 Roman soils from physicochemical and mineralogical properties of buried tephric paleosols at Somma Vesuviana ruin, southwest Italy. Geoderma 2009, 152, 243–251. [Google Scholar] [CrossRef]
- Scarciglia, F.; Zumpano, V.; Sulpizio, R.; Terribile, F.; Pulice, I.; La Russa, M.F. Major factors controlling late Pleistocene to Holocene soil development in the Vesuvius area (southern Italy). Eur. J. Soil Sci. 2014, 65, 406–419. [Google Scholar] [CrossRef]
- Vogel, S.; Märker, M. Comparison of pre-AD 79 Roman paleosols in two contrasting situations around Pompei (Italy). Geogr. Fis. Din. Quat. 2012, 35, 99–209. [Google Scholar]
- Vogel, S.; Märker, M.; Rellini, I.; Hoelzmann, P.; Wulf, S.; Robinson, M.; Steinhübel, L.; Di Maio, G.; Imperatore, C.; Kastenmeier, P.; et al. From a stratigraphic sequence to a landscape evolution model: Late Pleistocene and Holocene volcanism, soil formation and land use in the shade of Mount Vesuvius (Italy). Quat. Int. 2015, 394, 155–179. [Google Scholar] [CrossRef]
- Bottini, O.; Ulpiani, S. Sulla pedogenesi nelle regioni vulcaniche italiane. Ann. Fac. Agrar. 1945, IV, 1–46. [Google Scholar]
- Buondonno, C.; Ermice, A.; Testasecca, A. Aspetti della pedogenesi sulle rocce recenti del Somma-Vesuvio. In Proceedings of the IX Meeting Società Italiana di Chimica Agraria, Torino, Italy, 9–11 September 1991; pp. 161–162. [Google Scholar]
- Cecconi, S.; Radaelli, L. Minerali argillosi di terreni provenienti da zone vulcaniche. Ric. Sci. 1957, 5, 1–4. [Google Scholar]
- Scandone, R.; Giacomelli, L.; Fattori Speranza, F. Persistent activity and violent strombolian eruptions at Vesuvius between 1631 and 1944. J. Volanol. Geotherm. Res. 2008, 170, 167–180. [Google Scholar] [CrossRef]
- Cioni, R.; D’Oriano, C.; Bertagnini, A. Fingerprinting ash deposits of small scale eruptions by their physical and textural features. J. Volcanol. Geotherm. Res. 1999, 177, 277–287. [Google Scholar] [CrossRef]
- Rosi, M.; Principe, C.; Vecci, R. The 1631 Vesuvius eruption. A reconstruction based on historical and stratigraphical data. J. Volcanol. Geotherm. Res. 1993, 58, 151–182. [Google Scholar] [CrossRef]
- Paolillo, A.; Principe, C.; Bisson, M.; Gianardi, R.; Giordano, D.; La Felice, S. Volcanology of the Southwestern sector of Vesuvius volcano, Italy. J. Maps 2016, 12 (Suppl. S1), 425–440. [Google Scholar] [CrossRef]
- Ventura, G.; Vilardo, G.; Bronzino, G.; Gabriele, R.; Nappi, R.; Terranova, C. Geomorphological map of the Somma-Vesuvius volcanic complex (Italy). J. Maps 2005, 1, 30–37. [Google Scholar] [CrossRef]
- Paone, A. Geochemical evolution of the Mt. Somma-Vesuvius volcano. Mineral. Petrol. 2006, 87, 53–80. [Google Scholar] [CrossRef]
- Aiuppa, A.; Federico, C.; Allard, P.; Gurrieri, S.; Valenza, M. Trace metal modeling of groundwater-gas-rock interactions in a volcanic aquifer: Mount Vesuvius, Southern Italy. Chem. Geol. 2005, 216, 289–311. [Google Scholar] [CrossRef]
- Mazzoleni, S.; Ricciardi, M.; Aprile, G.G. Aspetti pionieri della vegetazione del Vesuvio. Ann. Bot. Roma 1989, XLVII (Suppl. S6), 97–107. [Google Scholar]
- Orsi, G.; de Vita, S.; Di Vito, M.A.; Isaia, R.; Nava, R.; Heiken, G. Facing volcanic and related hazards in the Neapolitan area. In Earth Sciences in the Cities: A Reader; Heiken, G., Fakundiny, R., Sutter, J., Eds.; American Geophysical Union: Washington, DC, USA, 2003; Volume 56, pp. 121–170. [Google Scholar]
- Cole, P.D.; Scarpati, C. The 1944 eruption of Vesuvius, Italy: Combining contemporary accounts and field study for a new volcanological reconstruction. Geol. Mag. 2010, 147, 391–415. [Google Scholar] [CrossRef]
- Rosi, M.; Santacroce, R.; Sbrana, A. Carta Geologica del Complesso Vulcanico Somma-Vesuvio. Scala 1:25000. Comitato Nazionale delle Ricerche (CNR). Progetto finalizzato geodinamica. Sottoprogetto 3: Sorveglianza dei vulcani attivi e rischio vulcanico. 1987. Available online: https://repositories.dst.unipi.it/index.php/carte/item/110-carta-geologica-del-complesso-vulcanico-somma-vesuvio (accessed on 6 November 2023).
- Soil Science Division Staff. Examination and description of soil profiles. In Soil Survey Manual; Ditzler, C., Scheffe, K., Monger, H.C., Eds.; USDA Handbook 18; Government Printing Office: Washington, DC, USA, 2017; pp. 83–233. [Google Scholar]
- Gee, G.W.; Bauder, J.W. Particle-size analysis. In Methods of Soil Analysis: Part 1, Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; Agronomy Monograph No 9; American Society of Agronomy and Soil Science Society of America (ASA and SSSA): Madison, WI, USA, 1986; pp. 383–411. [Google Scholar]
- Rawls, W.J.; Brakensiek, D.L.; Saxtonn, K.E. Estimation of soil water properties. Trans. ASAE 1982, 25, 1316–1320. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analyses; Page, A.L., Ed.; Part 2; American Society of Agronomy and Soil Science Society of America (ASA and SSSA): Madison, WI, USA, 1982; pp. 539–579. [Google Scholar]
- Loeppert, R.H.; Suarez, D.L. Carbonate and gypsum. In Methods of Soil Analysis. Part 3. Chemical Methods; Sparks, D.L., Ed.; Soil Science Society of America (SSSA): Madison, WI, USA, 1996; pp. 437–474. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 13th ed.; USDA-Natural Resources Consevation Service: Washington, DC, USA, 2022; p. 402.
- Schwertmann, U. The differentiation of iron oxide in soils by a photochemical extraction with ammonium oxalate. Z. Pflanzenernaher. Dung. Bodenkd. 1964, 105, 194–201. [Google Scholar] [CrossRef]
- Blakemore, L.C.; Searle, P.L.; Dealy, B.K. Methods for Chemical Analyses of Soils; New Zealand Soil Bureau: Lower Hutt, New Zealand, 1987.
- Mizota, C.; van Reeuwijk, L.P. Clay Mineralogy and Chemistry of Soils Formed in Volcanic Material in Diverse Climatic Regions; International Soil Reference and Information Center: Wageningen, The Netherlands, 1989. [Google Scholar]
- Joint Committee on Powder Diffraction Standards. Selected Powder Diffraction Data for Minerals. Data Book, 1st ed.; Publ. DBM-1-23: Swarthmore, PA, USA, 1974; Available online: https://search.worldcat.org/title/Selected-powder-diffraction-data-for-minerals/oclc/819077 (accessed on 6 November 2023).
- Franco, E.; Petti, C.; Stanzione, D.; Ghiara, M.R.; Marchetiello, A. Studi sugli equilibri chimici e sui minerali di neoformazione nell’interazione H2O-leucite. Boll. Soc. Nat. Napoli 1990, 98–99, 25–39. [Google Scholar]
- Baldar, N.A.; Whittig, L.D. Occurrence and synthesis of soil zeolites. Soil Sci. Soc. Am. Proc. 1968, 32, 235–238. [Google Scholar] [CrossRef]
- Nanzyo, M.; Shoji, S.; Dahlgren, R. Physical characteristics of volcanic ash soils. In Volcanic Ash Soils. Genesis, Properties and Utilization; Shoji, S., Nanzyo, M., Dahlgren, R., Eds.; Developments in Soil Science; Elsevier Science Publisher: Amsterdam, The Netherlands, 1993; Volume 21, pp. 189–208. [Google Scholar]
- Ming, D.W.; Mumpton, F.A. Zeolites in soils. In Minerals in Soil Environments, 2nd ed.; Dixon, J.B., Weed, S.B., Eds.; Soil Science Society of America: Madison, WI, USA, 1989; pp. 873–911. [Google Scholar]
- Walkers, G.P.L. Grain-size characteristics of pyroclastic deposits. J. Geol. 1971, 79, 696–714. [Google Scholar] [CrossRef]
- Arnalds, O.; Kimble, J. Andisols of Deserts in Iceland. Soil Sci. Soc. Am. J. 2001, 65, 1778–1786. [Google Scholar] [CrossRef]
- Arnalds, O.; Hallmark, C.T.; Wilding, L.P. Andisols from four different regions of Iceland. Soil. Sci. Soc. Am. J. 1995, 59, 161–169. [Google Scholar] [CrossRef]
- Nieuwenhuyse, A.; Jongmans, G.; van Breemen, N. Andisol formation in a Holocene beach ridge plain under the humid tropical climate of the Atlantic coast of Costa Rica. Geoderma 1993, 57, 423–442. [Google Scholar] [CrossRef]
- Schaetzl, R.J.; Anderson, S. Soils. Genesis and Geomorphology; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Arnalds, O. Volcanic soils of Iceland. Catena 2004, 56, 3–20. [Google Scholar] [CrossRef]
- Jahn, R.; Stahr, K. Development of soils and site qualities on basic volcanoclastics with special reference to the semiarid environment of Lanzarote, canary Islands, Spain. Riv. Mex. Cienc. Geol. 1996, 13, 104–112. [Google Scholar]
- Kawai, K. 1978 Amorphous Materials of Andosols (Kuroboku) in Japan. JARQ 1978, 12, 132–137. [Google Scholar]
- Arnalds, O. Andosols. In Encyclopedia of Soil Science; Chesworth, W., Ed.; Springer: Dordrect, The Netherlands, 2008; pp. 39–45. [Google Scholar]
- Vilmundardóttir, O.K.; Gísladóttir, G.; Lal, R. Early stage development of selected soil profiles along the proglacial moraines of Skaftafellsjökull glacier, SE-Iceland. Catena 2014, 121, 142–150. [Google Scholar] [CrossRef]
- Birkeland, P.W. Soils and Geomorphology; Oxford University Press, Inc.: New York, NY, USA, 1984; p. 372. [Google Scholar]
- Jobbagy, E.G.; Jackson, R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 2000, 10, 423–436. [Google Scholar] [CrossRef]
- De Marco, A.; Arena, C.; Giordano, M.; Virzo De Santo, A. Impact of the invasive tree black locust on soil properties of Mediterranean stone pine-holm oak forests. Plant Soil 2013, 372, 473–486. [Google Scholar] [CrossRef]
- Allen, B.L.; Hajek, B.F. Mineral occurrence in soil environments. In Minerals in Soil Environments, 2nd ed.; Dixon, J.B., Weed, S.B., Eds.; Soil Science Society of America: Madison, WI, USA, 1989; pp. 199–278. [Google Scholar]
- Aomine, S.; Wada, K. Differential weathering of volcanic ash and pumice, resulting in formation of hydrated halloysite. Am. Mineral. 1962, 47, 1024–1048. [Google Scholar]
- Gislason, S.R.; Oelkers, E.H. The mechanism, rates and consequences of basaltic glass dissolution: II. An experimental study of the dissolution rates of basaltic glass as a function of pH and temperature. Geochim. Cosmochim. Acta 2003, 67, 3817–3832. [Google Scholar] [CrossRef]
- Nanzyo, M.; Dahlgren, R.; Shoji, S. Chemical characteristics of volcanic ash soils. In Volcanic Ash Soils. Genesis, Properties and Utilization; Shoji, S., Nanzyo, M., Dahlgren, R., Eds.; Developments in Soil Science; Elsevier Science Publisher: Amsterdam, The Netherlands, 1993; Volume 21, pp. 145–188. [Google Scholar]
- Runge, E.C.A. Soil development sequence and energy model. Soil Sci. 1973, 3, 183–193. [Google Scholar] [CrossRef]
- Schaetzl, R.; Schwenner, C. An application of the Runge energy model of soil development in Michigan’s upper Peninsula. Soil Sci. 2006, 171, 152–166. [Google Scholar] [CrossRef]
- Jongmans, A.G.; Van Oort, F.; Buurman, P.; Jaunet, A.M.; van Doesburg, J.D.J. Morphology, chemistry and mineralogy of isotropic aluminosilcates coatings. Soil Sci. Soc. Am. J. 1994, 58, 501–507. [Google Scholar] [CrossRef]
- Parascandola, A. L’eruzione Vesuviana del marzo 1944. Rendiconto Della Reale Accademia Delle Scienze Fisiche e Matematiche Della Società Reale di Napoli 1945, Serie 4, XIII, 1942–1945. Available online: https://opac.bncf.firenze.sbn.it/Record/CFI0866008 (accessed on 6 November 2023).
- Scherillo, A. Le lave e le scorie dell’eruzione vesuviana del marzo 1944. Ann. Oss. Vesuv. 1949, V, 169–183. [Google Scholar]
- Scherillo, A. Nuovo contributo allo studio dei prodotti dell’eruzione vesuviana del 1944. Bull. Volcanol. 1953, 13, 129–144. [Google Scholar] [CrossRef]
- Del Moro, A.; Fulignati, P.; Marianelli, P.; Sbrana, A. Magma contamination by direct wall rock interaction: Constraints from xenoliths from the walls of a carbonate-hosted magma chamber (Vesuvius 1944 eruption). J. Volcanol. Geotherm. Res. 2001, 112, 15–24. [Google Scholar] [CrossRef]
- Buondonno, C. I minerali argillosi del terreno in provincia di Napoli. Agrochimica 1966, 10, 157–167. [Google Scholar]
- Lulli, L.; Bidini, D.; Lorenzoni, P.; Quantin, P.; Raglione, M. I suoli caposaldo dell’apparato vulcanico di Vico, 1st ed.; Istituto Sperimentale Studio e Difesa Suolo-Firenze: Firenze, Italy, 1990. [Google Scholar]
- Quantin, P.; Lorenzoni, P. Weathering of leucite to clay minerals in tephrites of the Vico Volcano. Min. Petrog. Acta 1992, 35, 289–296. [Google Scholar]
- Remmelzwaal, A. Soil Genesis and Quaternary Landscape Development in the Tyrrhenian Coastal Area of South-Central Italy. Ph.D. Thesis, University of Amsterdam, Amsterdam, The Netherlands, 1978. Available online: https://books.google.co.jp/books/about/Soil_Genesis_and_Quaternary_Landscape_De.html?id=xNROAQAAIAAJ&redir_esc=y (accessed on 6 November 2023).
- Hay, R.L. Geologic occurence of zeolites and some associated minerals. Pure Appl. Chem. 1986, 58, 1339–1342. [Google Scholar] [CrossRef]
- Luth, R.W.; Bowerman, M. Microtextural and powder-diffraction study of analcime phenocrysts in volcanic rocks of the Crowsnest Formation, Southern Alberta, Canada. Can. Mineral. 2004, 42, 897–903. [Google Scholar] [CrossRef]
- Parascandola, A. Mineralogia e Geologia, 1st ed.; Liguori Editore: Napoli, Italy, 1972; p. 533. [Google Scholar]
- Demény, A.; Harangi, S.; Fórizs, I.; Nagy, G. Primary and secondary features of analcimes formed in carbonate-zeolite ocelli of alkaline basalts (Mecsek Mts., Hungary): Textures, chemical, and oxygen isotopes compositions. Geochem. J. 1997, 31, 37–47. [Google Scholar] [CrossRef]
- Giampaolo, C.; Lombardi, G. Thermal behaviour of analcimes from two different genetic environments. Eur. J. Mineral. 1944, 6, 285–289. [Google Scholar] [CrossRef]
- Savage, D.; Rochelle, C.; Moore, Y.; Milodowski, A.; Bateman, K.; Bailey, D.; Mihara, M. Analcime reaction at 25–90 °C in hyperalkaline fluids. Mineral. Mag. 2001, 65, 571–587. [Google Scholar] [CrossRef]
- de’ Gennaro, M.; Langella, A.; Cappelletti, P.; Colella, C. Hydrothermal conversion of trachytic glass to zeolite. 3. Monocationic model glasses. Clays Clay Miner. 1999, 47, 348–357. [Google Scholar] [CrossRef]
- Tucker, M.E. Sedimentary Petrology: An Introduction to the Origin of Sedimentary Rocks, 2nd ed.; Blackwell Scientific Publications: Hoboken, NJ, USA, 1991; p. 272. [Google Scholar]
- Deer, A.W.; Howie, R.A.; Zussman, J. Introduzione ai Minerali che Costituiscono le Rocce; Zanichelli: Bologna, Italy, 1994. [Google Scholar]
- Gupta, A.K.; Yagi, K. Petrology and Genesis of Leucite-Bearing Rocks; Springer: Berlin/Heidelberg, Germany, 1980. [Google Scholar]
- Slaby, E.; Kozlowski, A. Reconstruction of crystallization temperature of artificially grown H-analcime by means of the IR and fluid inclusion studies. Acta Geol. Pol. 2002, 52, 385–394. [Google Scholar]
- Yuan, J.; Yang, J.; Ma, H.; Liu, C.; Zhao, C. Hydrothermal synthesis of analcime and hydroxycancrinite from K-feldspars in Na2SiO3 solution: Characterization and reaction mechanism. RSC Adv. 2016, 6, 54503–54509. [Google Scholar] [CrossRef]
- Putnis, C.V.; Geisler, T.; Schmid-Beurmann, P.; Stephan, T.; Giampaolo, C. An experimental study of the replacement of leucite by analcime. Am. Mineral. 2007, 92, 19–26. [Google Scholar] [CrossRef]
- Robert, M.; Tessier, D. Incipient weathering: Some new concepts on weathering, clay formation and organization. In Weathering, Soils and Paleosols; Martini, I.P., Chesworth, W., Eds.; Elsevier: Amsterdam, The Netherlands, 1992. [Google Scholar]
- Robert, M.; Veneau, G. An experimental evaluation of the effects of pH and concentrations of salts on the alteration of leucite at low temperature. Geoderma 1974, 11, 209–219. [Google Scholar] [CrossRef]
- de’ Gennaro, P.; Cappelletti, A.; Langella, A.; Perrotta, A.; Scarpati, C. Genesis of zeolites in Neapolitan Yellow Tuff: Geological, volcanological and mineralogical evidence. Contrib. Mineral. Petrol. 2000, 139, 17–35. [Google Scholar] [CrossRef]
- Ghiara, M.R.; Petti, G. Chemical alteration of volcanic glasses and related control by secondary minerals: Experimental studies. Aquat. Geochem. 1996, 1, 329–354. [Google Scholar] [CrossRef]
Site/Soil | Outcropping Substrata | Elevation m a.s.l. | Exposure | Soil Use |
---|---|---|---|---|
1 | 1858 lava flow | 530 | SW | Pine forest with Quercus ilex |
2 | 1858 lava flow | 670 | SW | Oak with pine plantation |
3 | Pyroclastics on 1872 lava | 650 | S | Pine forest with Quercus ilex |
4 | Pyroclastics on 1929 lava | 186 | E | Oak plantation |
5 | 1872 lava flow | 670 | S | Pine forest with Quercus ilex |
6 | 1944 pyroclastics | 1050 | N | Sparse spots of shrub vegetation |
7 | 1891–94 lava flow | 930 | N | Sparse shrub vegetation |
Soil | Horizon | Depth | Dry Color | >2 mm Fragments b and Texture c | Structure d | Consistency e | Boundary f |
---|---|---|---|---|---|---|---|
cm | |||||||
1 a | A | 0–5 | 10YR 3/2 | f/m sl | 3f/msbk | fr | cw |
Bw | 5–30 | 10YR 3/4 | f/m/c sl | 3msbk | mfr | cw | |
10YR 4/4 (moist) | |||||||
(2)R/C | 30+ | - | - | - | - | - | |
2 a | A | 0–30 | 10YR 3/4 | f/m/cg ls | 2f/m sbk | vfr | aw |
10YR 4/4 (moist) | |||||||
Bw | 30–68 | 5YR 3/3 | mvg/co sl | 3msbk | l | cw | |
(2)R/C | 68+ | - | - | - | - | - | |
3 a | A | 0–15 | 5YR 3/2 | f/m/cvg ls | 2f/m sbk | fr | cs |
5YR 3/1 | |||||||
C | 15–20 | 5YR 3/1 | c/feg s | 0sg | l | as | |
5YR 2.5/1 | |||||||
5YR 2.5/2 | |||||||
2ABb | 20–31 | 5YR 3/3 | fg ls | 2m/c sbk | fr | cw | |
2C1 | 31–45 | 5YR 2.5/1 | f/mg s | 0sg | l | aw | |
3C2 | 45–60 | 10YR 3/2 | f/mvg s | 0sg/1f sbk | l/vfr | as | |
4C3 g | 60–77 | 10YR 3/1 | f ls | 0ma | fr | - | |
7.5YR 3/1 | |||||||
7.5YR 3/2 | |||||||
5C4 | 77–85 | 5YR 4/2 | s | 0ma | mfr | aw | |
6C5 | 85–92 | 10YR 4/1 | m/ceg ls | 0sg | l | as | |
7C6 | 92–94 | 5YR 3/3 | ls | 0ma | vfr | aw | |
8C7 | 94–102 | 5YR 3/1 | m/ceg/co s | 0sg | - | - | |
(9)R | 102+ | - | - | - | - | - | |
4 a | A | 0–7 | 2.5YR 2.5/2 | m/fvg ls | 0sg | l/vfr | cw |
C | 7–65 | 7.5YR 2.5/1 | m/cvg s | 0sg | l/vfr | cw | |
2ABb | 65–70 | 10YR 3/2.5 | f/m/cg ls | 0/1f sbk | vfr | cw | |
2C1 | 70–85 | 7.5YR 3/2 | f/mvg s | 1f sbk/0sg | vfr/l | cw | |
3C2 | 85–90 | 10R 3/2 | f/m ls | 1f/m sbk | fr | cw | |
4C3 | 90–95 | 2.5YR 2.5/2 | f/mvg s | 0sg | l/vfr | cw | |
5C4 | 95–97 | 10YR 3/2 | c | 1f/m sbk | fr | as | |
6C5 | 97–103 | 10R 2.5/2 | f ls | 1m sbk | fr | as | |
7C6 g | 103–108 | 5YR 3/1 | - | 1m sbk/0sg | mfr/l | b | |
8C7 | 108–150 | 5YR 3/1 | f/m/ceg s | 0/1f sbk | l/fr | as | |
5YR 3/3 | |||||||
9C8 | 150–160 | 10YR 3/2 | - | 1f/msbk | mfr | as | |
10YR 3/1 | |||||||
(10)R | 160+ | - | - | - | - | - | |
5 a | A | 0–3 | 10YR 3/4 | mg ls | 1f/m gr | vfr | aw |
C1 | 3–15 | - | m/ceg s | 1f sbk/0sg | vfr/l | cw | |
C2 | 15–60 | 10YR 4/2 | co/ceg s | 0sg | l | cw | |
(2)R | 60+ | - | - | - | - | - | |
6 | CA | 0–20 | 7.5YR 3/2 | f/m/ceg s | 0sg/1gr | l | cs |
C | 20–65 | 7.5YR 3/2 | m/ceg s | 0sg | l | - | |
7 | A | 0–2 | 5YR 3/2 | f/m/cg s | 0sg | l/vfr | cs |
C1 | 2–6 | 7.5YR 3/2 | m/cvg s | 0sg | l | as | |
2C2 | 6–20 | 10YR 2/1 | cvg s | 0sg | l | cw | |
(3)R | 20+ | - | - | - | - | - |
Soil | Horizons | Depth | Alox | Siox | Alp | (Alox − Alp)/Siox | Allophane a |
---|---|---|---|---|---|---|---|
cm | % | % | |||||
1 | A | 0–5 | 0.90 | 0.8 | 0.1 | 1.0 | 4.4 |
Bw | 5–30 | 1.00 | 0.8 | 0.1 | 1.1 | 4.5 | |
3 | A | 0–15 | 0.82 | 0.6 | 0.08 | 1.2 | 3.5 |
C | 15–20 | 0.64 | 0.6 | 0.04 | 1.0 | 3.3 | |
2ABb | 20–31 | 0.72 | 0.4 | 0.09 | 1.6 | 2.6 | |
2C1 | 31–45 | 0.95 | 0.6 | 0.06 | 1.5 | 3.8 | |
3C2 | 45–60 | 0.84 | 0.6 | 0.06 | 1.3 | 3.6 | |
6 | CA | 0–20 | 0.90 | 1.3 | 0.02 | 0.7 | - |
C | 20–65 | 0.90 | 1.4 | 0.02 | 0.6 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ermice, A.; Amalfitano, C. Soils on Recent Tephra of the Somma–Vesuvius Volcanic Complex, Italy. Soil Syst. 2024, 8, 50. https://doi.org/10.3390/soilsystems8020050
Ermice A, Amalfitano C. Soils on Recent Tephra of the Somma–Vesuvius Volcanic Complex, Italy. Soil Systems. 2024; 8(2):50. https://doi.org/10.3390/soilsystems8020050
Chicago/Turabian StyleErmice, Antonella, and Carmine Amalfitano. 2024. "Soils on Recent Tephra of the Somma–Vesuvius Volcanic Complex, Italy" Soil Systems 8, no. 2: 50. https://doi.org/10.3390/soilsystems8020050
APA StyleErmice, A., & Amalfitano, C. (2024). Soils on Recent Tephra of the Somma–Vesuvius Volcanic Complex, Italy. Soil Systems, 8(2), 50. https://doi.org/10.3390/soilsystems8020050