Long-Term Cropping Management Practices Affect the Biochemical Properties of an Alabama Ultisol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Experimental Design
2.2. Microbial Biomass Carbon, Nitrogen, and Phosphorus
2.3. Amidohydrolases Determination
2.4. Dissolved Organic Matter (DOM) Components
2.5. Statistical Analysis
3. Results
3.1. Microbial Biomass Parameters
3.2. Proteins and Amino Acids
3.3. Amidohydrolases
3.4. Dissolved Organic Matter (DOM) Components
3.5. Correlations between the Soil Attributes Tested
4. Discussion
4.1. Microbial Biomass
4.2. Amidohydrolases
4.3. Dissolved Organic Matter (DOM)
4.4. Correlations between the Soil Attributes Tested
4.5. Overall Summary
5. Conclusions
5.1. Determination of Phenol
5.2. Determination of Hexoses
5.3. Determination of Free Amino Acids
5.4. Protein Determination
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, Z.; Zhang, H. Applied Manure and Nutrient Chemistry for Sustainable Agriculture and Environment; Springer: Amsterdam, The Netherlands, 2014; 372p. [Google Scholar]
- Kouno, K.; Wu, J.; Brookes, P.C. Turnover of biomass C and P in soil following incorporation of glucose or ryegrass. Soil Biol. Biochem. 2002, 34, 617–622. [Google Scholar] [CrossRef]
- McLaughlin, M.J.; McBeath, T.M.; Smernik, R.; Stacey, S.P.; Ajiboye, B.; Guppy, C. The chemical nature of P accumulation in agricultural soils-implications for fertiliser management and design: An Australian perspective. Plant Soil 2011, 349, 69–87. [Google Scholar] [CrossRef]
- Spohn, M.; Widdig, M. Turnover of carbon and phosphorus in the microbial biomass depending on phosphorus availability. Soil Biol. Biochem. 2017, 113, 53–59. [Google Scholar] [CrossRef]
- Richardson, A.E.; Barea, J.M.; Mcneill, A.M.; Prigent-Combaret, C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 2009, 321, 305–339. [Google Scholar] [CrossRef]
- Marx, M.C.; Wood, M.; Jarvis, S.C. A microplate fluorimetric assay for the study of enzymes diversity in soils. Soil Biol. Biochem. 2001, 33, 1633–1640. [Google Scholar] [CrossRef]
- Powlson, D.S.; Brooks, P.C.; Christensen, B.T. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biol. Biochem. 1987, 19, 159–164. [Google Scholar] [CrossRef]
- Islam, K.R.; Weil, R.R. Soil quality indicator properties in mid-Atlantic soils as influenced by conservation management. J. Soil Water Conserv. 2000, 55, 69–78. [Google Scholar]
- Rietz, D.N.; Haynes, R.J. Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biol. Biochem. 2003, 35, 845–854. [Google Scholar] [CrossRef]
- Wang, V.N.L.; Dalal, R.C.; Greene, R.S.B. Salinity and sodicity effects on respiration and microbial biomass of soil. Biol. Fert. Soils 2008, 44, 943–953. [Google Scholar] [CrossRef]
- Bastida, F.; Moreno, J.L.; Hernández, T.; García, C. Microbiological activity in a soil 15 years after its devegetation. Soil Biol. Biochem. 2006, 38, 2503–2507. [Google Scholar] [CrossRef]
- Bowen, S.R.; Gregorich, E.G.; Hopkins, D.W. Biochemical properties and biodegradation of dissolves organic matter from soils. Biol. Fert. Soils 2009, 45, 733–742. [Google Scholar] [CrossRef]
- Kaiser, K.; Kalbitz, K. Cycling downwards—Dissolved organic matter in soils. Soil Biol. Biochem. 2012, 52, 29–32. [Google Scholar] [CrossRef]
- He, Z.; Wu, F. Labile Organic Matter: Chemical Compositions, Function, and Significance in Soil and the Environment; SSSA Special Publication 62; Soil Science Society of America: Madison, WI, USA, 2015; 382p. [Google Scholar]
- Tazisong, I.A.; Senwo, Z.N.; He, Z. Elemental composition and functional groups in soil labile organic matter fractions. In Labile Organic Matter-Chemical Compositions, Function, and Significance in Soil and the Environment; He, Z., Wu, F., Eds.; Soil Science Society of America (SSSA): Madison, WI, USA, 2015; Volume 62, pp. 137–156. [Google Scholar]
- Prasuhn, V. On-farm effects of tillage and crops on soil erosion measured over 10 years in Switzerland. Soil Till. Res. 2012, 120, 137–146. [Google Scholar] [CrossRef]
- Locke, M.A.; Krutz, J.L.; Steinriede, W., Jr.; Testa, S., III. Conservation management imporoves runoff water quality: Implications for environmental sustainability in glyphosate-resistant cotton production systems. Soil Sci. Soc. Am. J. 2015, 79, 660–671. [Google Scholar] [CrossRef]
- Zablotowicz, R.M.; Reddy, K.N.; Weaver, M.A.; Mengistu, A.; Krutz, L.J.; Gordon, R.E.; Bellaloui, N. Cover crops, tillage, and glyphosate effects on chemical and biological properties of a lower Mississippi Delta soil and soybean yield. Environ. Res. J. 2010, 4, 227–251. [Google Scholar]
- Watts, D.B.; Torbert, H.A., III.; Prior, S.A.; Huluka, G. Long-term tillage and poultry litter impacts soil carbon and nitrogen mineralization and fertility. Soil Sci. Soc. Am. J. 2010, 74, 1239–1247. [Google Scholar] [CrossRef]
- Watts, D.B.; Torbert, H.A., III. Long-Term tillage and poultry litter impacts on soybean and corn grain yield. Agron. J. 2011, 103, 1479–1486. [Google Scholar] [CrossRef]
- Lin, Y.; Watts, D.B.; Van Santen, E.; Cao, G. Influence of poultry litter on crop productivity under different field conditions: A meta-analysis. Agron. J. 2018, 110, 807–818. [Google Scholar] [CrossRef]
- Lin, Y.; Watts, D.B.; Runion, G.B. Influence of poultry litter on nutrient availability and fate in plant-soil systems: A meta-analysis. J. Soil Water Conserv. 2022, 77, 230–239. [Google Scholar] [CrossRef]
- USDA—National Agricultural Statistics Service. Crop Production 2022 Summary. United States Department of Agriculture–National Agricultural Statistics Service. Available online: https://downloads.usda.library.cornell.edu/usda-esmis/files/k3569432s/9306v916d/wm119139b/cropan23.pdf (accessed on 4 April 2024).
- Vaiknoras, K.; Hubbs, T. Characteristics and Trends of U.S. Soybean Production Practices, Costs, and Returns Since 2002; Economic Research Report Number 316; U.S. Department of Agriculture, Economic Research Service: Washington, DC, USA, 2023. [Google Scholar]
- Claassen, R.; Bowman, M.; McFadden, J.; Smith, D.; Wallander, S. Tillage Intensity and Conservation Cropping in the United States; Economic Information Bulletin Number 197; U.S. Department of Agriculture, Economic Research Service: Washington, DC, USA, 2018. [Google Scholar]
- He, Z.; Tazisong, I.A.; Yin, X.; Watts, D.B.; Senwo, Z.N.; Torbert, H.A. Long-term cropping system, tillage, and poultry litter application affect the chemical properties of an Alabama Ultisol. Pedosphere 2019, 29, 180–194. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014. [Google Scholar]
- Franzluebbers, A.J.; Hons, F.M.; Zuberer, D.A. Soil organic carbon, microbial biomass, and mineralizable carbon and nitrogen in sorghum. Soil Sci. Soc. Am. J. 1995, 59, 460–466. [Google Scholar] [CrossRef]
- Varoney, P.R.; Paul, E.A. Determination of kc and kN in situ for calibration of the chloroform fumigation-incubation method. Soil Biol. Biochem. 1984, 16, 9–14. [Google Scholar] [CrossRef]
- Franzluebbers, A.J.; Hons, F.M.; Zuberer, D.A. Determination of microbial biomass and nitrogen mineralization following rewetting of dried soil. Soil Sci. Soc. Am. J. 1996, 60, 1133–1139. [Google Scholar] [CrossRef]
- Xing, T.T.; Cai, A.D.; Lu, C.A.; Ye, H.L.; Wu, H.L.; Huai, S.C.; Wang, J.Y.; Xu, M.G.; Lin, Q.M. Increasing soil microbial biomass nitrogen in crop rotation systems by improving nitrogen resources under nitrogen application. J. Integr. Agric. 2022, 21, 1488–1500. [Google Scholar] [CrossRef]
- Cabrera, M.L.; Beare, M.H. Alkaline persulfate oxidation for determining total nitrogen in microbial biomass extract. Soil Sci. Soc. Am. J. 1993, 57, 1007–1012. [Google Scholar] [CrossRef]
- Carter, M.R.; Rennie, D.A. Changes in soil quality under zero tillage farming systems: Distribution of microbial biomass and mineralizable C and N potentials. Can. J. Soil Sci. 1982, 62, 587–597. [Google Scholar] [CrossRef]
- He, Z.; Honeycutt, C.W.; Olanya, M.; Larkin, R.P.; Halloran, J.M. Soil test phosphorus and microbial biomass phosphorus in potato fields. J. Food Agri. Environ. 2011, 9, 540–545. [Google Scholar]
- Brookes, P.C.; Powlson, D.S.; Jenkinson, D.S. Measurement of microbial biomass phosphorus in soil. Soil Biol. Biochem. 1982, 14, 319–329. [Google Scholar] [CrossRef]
- Hedley, M.J.; Stewart, J.W.B. Method to measure microbial phosphate in soils. Soil Biol. Biochem. 1982, 14, 377–385. [Google Scholar] [CrossRef]
- Tabatabai, M.A. Soil Enzymes. In Methods of Soil Analysis: Microbiological and Biochemical Properties; Weaver, R.W., Angle, J.S., Bottomley, P.S., Eds.; Soil Science Society of America: Madison, WI, USA, 1994; pp. 775–833. [Google Scholar]
- Chantigny, M.H.; Angers, D.A.; Bélanger, G.; Rochette, P.; Eriksen-Hamel, N.; Bittman, S.; Buckley, K.; Massé, D.; Gasser, M.-O. Yield and nutrient export of grain corn fertilized with raw and treated liquid swine manure. Agron. J. 2008, 100, 1303–1309. [Google Scholar] [CrossRef]
- De Mendiburu, F. Agricolae: Statistical Procedures for Agricultural Research, R package version 2019, 1.3-1; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- He, Z.; Honeycutt, C.W.; Griffin, T.S.; Larkin, R.P.; Olanya, M.; Halloran, J.M. Increases of soil phosphatase and urease activities in potato fields by cropping rotation practices. J. Food Agri. Environ. 2010, 8, 1112–1117. [Google Scholar]
- Amorim, H.C.; Ashworth, A.J.; Wienhold, B.J.; Savin, M.C.; Allen, F.L.; Saxton, A.M.; Owens, P.R.; Curi, N. Soil quality indices based on long-term conservation cropping systems management. Agrosystems Geosci. Environ. 2020, 3, e20036. [Google Scholar] [CrossRef]
- Tewolde, H.; Shankle, M.W.; Way, T.R.; Pote, D.H.; Sistani, K.R.; He, Z. Poultry litter band placement affects accessibility and conservation of nutrients and cotton yield. Agron. J. 2018, 110, 675–684. [Google Scholar] [CrossRef]
- Xia, Q.; Liu, X.; Gao, Z.; Wang, J.; Yang, Z. Responses of rhizosphere soil bacteria to 2-year tillage rotation treatments during fallow period in semiarid southeastern Loess Plateau. PeerJ 2020, 8, e8853. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Yin, X.; Sykes, V.R.; He, Z. Differential accumulation of heavy metals in soil profile and corn and soybean grains after 15-year poultry litter application under no-tillage. J. Soils Sed. 2022, 22, 844–858. [Google Scholar] [CrossRef]
- Zhong, S.; Zeng, H.; Jin, Z. Soil microbiological and biochemical properties as affected by different long-term banana-based rotations in the tropics. Pedosphere 2015, 25, 868–877. [Google Scholar] [CrossRef]
- He, Z.; Pagliari, P.H.; Waldrip, H.M. Applied and environmental chemistry of animal manure: A review. Pedosphere 2016, 26, 779–816. [Google Scholar] [CrossRef]
- Karlen, D.L.; Eash, N.S.; Unger, P.W. Soil and crop management effects on soil quality indicators. Am. J. Altern. Agric. 1992, 7, 48–55. [Google Scholar] [CrossRef]
- Ozlu, E.; Sandhu, S.S.; Kumar, S.; Arriaga, F.J. Soil health indicators impacted by long-term cattle manure and inorganic fertilizer application in a corn-soybean rotation of South Dakota. Sci. Rep. 2019, 9, 11776. [Google Scholar] [CrossRef]
- Larson, W.E.; Pierce, F.J. The dynamics of soil quality as a measure of sustainable management. In Defining Soil Quality for a Sustainable Environment; Soil Science Society of America (SSSA): Madison, WI, USA, 1994; Volume 35, pp. 37–51. [Google Scholar]
- Alvear, M.A.; Rosas, J.L.; Rouanet, F.B. Effects of three soil tillage systems on some biological activities in an Ultisol from southern Chile. Soil Till. Res. 2005, 82, 195–202. [Google Scholar] [CrossRef]
- Bausenwein, U.; Gattinger, A.; Langer, U.; Embcher, A.; Hartmann, H.P.; Sommer, M.; Munch, J.C.; Schloter, M. Exploring soil microbial communities and soil organic matter: Variability and interactions in arable soils under minimum tillage practice. Appl. Soil Ecol. 2008, 40, 67–77. [Google Scholar] [CrossRef]
- Feng, Y.; Motta, A.C.; Reeves, D.W.; Burmester, C.H.; van Santen, E.; Osborne, J.A. Soil microbial communities under conventional-till and no-till continuous cotton systems. Soil Biol. Biochem. 2003, 35, 1693–1703. [Google Scholar] [CrossRef]
- Jiang, X.; Hu, Y.; Bedell, J.H.; Xie, D.; Wright, A.L. Soil organic carbon and nutrient content in aggregate-size fractions of a subtropical rice soil under variable tillage. Soil Manag. 2011, 27, 28–35. [Google Scholar] [CrossRef]
- Kandeler, E.; Tscherko, D.; Spiegel, H. Long-term monitoring of microbial biomass, N mineralisation and enzyme activities of a Chernozem under different tillage management. Biol. Fert. Soils 1999, 28, 343–351. [Google Scholar] [CrossRef]
- Spedding, T.A.; Hamel, C.; Mehuys, G.R.; Madramootoo, C.A. Soil microbial dynamics in maize-growing soil under different tillage and residue management systems. Soil Biol. Biochem. 2004, 36, 499–512. [Google Scholar] [CrossRef]
- von Lutzow, M.; Leifeld, J.; Kainz, M.; Kogel-Knabner, I.; Munch, J.C. Indications for soil organic matter quality in soils under different management. Geoderma 2002, 105, 243–258. [Google Scholar] [CrossRef]
- Powlson, D.S.; Jenkinson, D.S. A comparison of the organic matter, biomass, adenosine triphosphate and mineralizable nitrogen contents of ploughed and direct-drilled soils. J. Agric. Sci. 1981, 97, 713–721. [Google Scholar] [CrossRef]
- Sorensen, P.; Ladd, J.N.; Amato, M. Microbial assimilation of 14C of ground and unground plant materials decomposing in a loamy sand and a clay soil. Soil Biol. Biochem. 1996, 28, 1425–1434. [Google Scholar] [CrossRef]
- Hungria, M.; Andrade, D.S.; Colozzi-Filho, A.; Balota, E.L. Interação entre microrganismos do solo, feijoeiro e milho em monocultura ou consórcio. Pesqui. Agropecu. Bras. 1997, 32, 807–818. [Google Scholar]
- Balota, E.L.; Colozzi-Filho, A.; Andrade, D.S.; Dick, R.P. Microbial biomass in soils under different tillage and crop rotation systems. Biol. Fert. Soils 2003, 38, 15–20. [Google Scholar] [CrossRef]
- Kraut-Cohen, J.; Zolti, A.; Shaltiel-Harpaz, L.; Argaman, E.; Rabinovich, R.; Green, S.J. Effects of tillage practices on soil micro-biome and agricultural parameters. Sci Total Environ. 2020, 705, 135791. [Google Scholar] [CrossRef] [PubMed]
- Eghball, B.; Wienhold, B.J.; Gilley, J.E.; Eigenberg, R.A. Mineralization of manure nutrients. J. Soil Water Conserv. 2002, 57, 470–473. [Google Scholar]
- Pascual, J.A.; García, C.; Hernandez, T. Lasting microbiological and biochemical effects of the addition of municipal solid waste to an arid soil. Biol. Fert. Soils 1999, 30, 1–6. [Google Scholar] [CrossRef]
- Ritz, K.; Wheatley, R.E.; Griffiths, B.S. Effects of animal manure application and crop plants upon size and activity of soil microbial biomass under organically grown spring barley. Biol. Fert. Soils 1997, 24, 372–377. [Google Scholar] [CrossRef]
- Parham, J.; Deng, S.; Raun, W.; Johnson, G. Long-term cattle manure application in soil. Biol. Fert. Soils 2002, 35, 328–337. [Google Scholar]
- Waldrip, H.M.; He, Z.; Erich, M.S. Effects of poultry manure amendment on phosphorus uptake by ryegrass, soil phosphorus fractions and phosphatase activity. Biol. Fert. Soils 2011, 47, 407–418. [Google Scholar] [CrossRef]
- Bittman, S.; Laurens, J.P.; van Vliet, C.; Kowalenko, G.; McGinn, S.; Hunt, D.E.; Bounaix, F. Surface-banding liquid manure over aeration slots: A new low-disturbance method for reducing ammonia emissions and improving yield of perennial grasses. Agron. J. 2005, 97, 1304–1313. [Google Scholar] [CrossRef]
- Forge, T.A.; Bittman, S.; Kowalenko, C.G. Responses of grassland soil nematodes and protozoa to multi-year and single-year applications of dairy manure slurry and fertilizer. Soil Biol. Biochem. 2005, 37, 1751–1762. [Google Scholar] [CrossRef]
- Mullen, M.D.; Melhorn, C.G.; Duck, B.N. Biological and biochemical soil properties in no-till corn with different cover crops. J. Soil Water Conserv. 1998, 53, 219–224. [Google Scholar]
- Acosta-Martínez, V.; Waldrip, H.M. Soil enzyme activities as affected by manure types, application rates, and management practices. In Applied Manure and Nutrient Chemistry for Sustainable Agriculture and Environment; He, Z., Zhang, H., Eds.; Springer: Amsterdam, The Netherlands, 2014; pp. 99–122. [Google Scholar]
- Acosta-Martinez, V.; Tabatabai, M.A. Enzyme activity in a limes agricultural soil. Biol. Fert. Soils 2000, 31, 85–91. [Google Scholar] [CrossRef]
- Deng, S.P.; Tabatabai, M.A. Effect of tillage and residue management on enzyme activities in soil: III. Phosphatases and arylsulfatase. Biol. Fert. Soils. 1997, 24, 141–146. [Google Scholar] [CrossRef]
- Deng, S.P.; Tabatabai, M.A. Effect of Tillage and Residue Management on Enzyme Activities in Soils: II. Glycosidases. Biol. Fert. Soils 1996, 22, 208–213. [Google Scholar] [CrossRef]
- Kobayashi, M.; Komeda, H.; Nagasawa, T.; Nishiyama, M.; Horinouchi, S.; Beppu, T.; Yamada, H.; Shimizu, S. Amidase coupled with low molecular-mass nitrile hydratase from Rh. rhodochrous J1. Euro J. Biochem. 1993, 217, 327–336. [Google Scholar] [CrossRef]
- Hasebe, A.; Kanazawa, S.; Takai, Y. Microbial biomass in paddy soil 1. Microbial biomass calculated from direct count using fluorescence microscope. Soil Sci. Plant Nutr. 1984, 30, 175–187. [Google Scholar] [CrossRef]
- Kanazawa, S.; Asakawa, S.; Takai, Y. Effect of fertilizer and manure application on microbial numbers, biomass, and enzyme activities in volcanic ash soils. Soil Sci. Plant Nutr. 1988, 34, 429–439. [Google Scholar] [CrossRef]
- Kanazawa, S.; Kiyota, H. Effect of fertilizer and manure application on L-Glutaminase and L-Asparaginase activities in soils. Soil Sci. Plant Nutr. 2000, 46, 741–744. [Google Scholar] [CrossRef]
- Khorsandi, N.; Nourbakhsh, F. Effect of amendment of manure and corn residues on soil N mineralization and enzyme activity. Agron. Sustain. Dev. 2007, 27, 139–143. [Google Scholar] [CrossRef]
- Bhattacharyya, P.; Chakrabarti, K.; Chakraborty, A. Microbial biomass and enzyme activities in submerged rice soil amended with municipal solid waste compost and decomposed cow manure. Chemosphere 2005, 60, 310–318. [Google Scholar] [CrossRef]
- Acosta-Martinez, V.; Harmel, D.R. Soil microbial communities and enzyme activities under various poultry litter application rates. J. Environ. Qual. 2006, 33, 1309–1318. [Google Scholar] [CrossRef]
- Vieira, R.F. Ciclo do Nitrogênio em Sistemas Agrícolas; Embrapa Brasília: Brasília, DF, Brazil, 2017; p. 21. [Google Scholar]
- Sobucki, L.; Ramos, R.F.; Meireles, L.A.; Antoniolli, Z.I.; Jacques, R.J.S. Contribution of enzymes to soil quality and the evolution of research in Brazil. Rev. Bras. Cienc Solo 2021, 45, e0210109. [Google Scholar] [CrossRef]
- Gonzalez Perez, P.; Zhang, R.; Wang, X.; Ye, J.; Huang, D. Characterization of the amino acid composition of soils under organic and conventional management after addition of different fertilizers. J. Soils Sed. 2015, 15, 890–901. [Google Scholar] [CrossRef]
- He, Z.; Senwo, Z.N.; Zou, H.; Tazisong, I.A.; Martens, D.A. Amino compounds in poultry litter, litter-amended pasture soils and grass shoots. Pedosphere 2014, 24, 178–185. [Google Scholar] [CrossRef]
- Ma, H.; Pei, G.; Gao, R.; Yin, Y. Mineralization of amino acids and its signs in nitrogen cycling of forest soil. Acta Ecol. Sin. 2017, 37, 60–63. [Google Scholar] [CrossRef]
- Martens, D.A.; Loeffelmann, K.L. Soil amino acid composition quantified by acid hydrolysis and anion chromatography-pulsed amperometry. J. Agric. Food Chem. 2003, 51, 6521–6529. [Google Scholar] [CrossRef] [PubMed]
- Creamer, C.A.; Filley, T.R.; Olk, D.C.; Stott, D.E.; Dooling, V.; Boutton, T.W. Changes to soil organic N dynamics with leguminous woody plant encroachment into grasslands. Biogeochem 2013, 113, 307–321. [Google Scholar] [CrossRef]
- Senwo, Z.N. Amino Acid Composition of Soil Organic Matter and Nitrogen Transforamtions in Soils under Different Management Systems. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 1995. [Google Scholar]
- Bol, R.; Ostle, N.J.; Petzke, K.J.; Chenu, C.; Balesdent, J. Amino acid N-15 in long-term bare fallow soils: Influence of annual N fertilizer and manure applications. Euro. J. Soil Sci. 2008, 59, 617–629. [Google Scholar] [CrossRef]
- Scheller, E.; Raupp, J. Amino acid and soil organic matter content of topsoil in a long term trial with farmyard manure and mineral fertilizers. Biol. Agric. Hort. 2005, 22, 379–397. [Google Scholar] [CrossRef]
- He, Z.; Olk, D.C.; Waldrip, H.M. Soil amino compound and carbohydrate contents influenced by organic amendments. In Applied Manure and Nutrient Chemistry for Sustainable Agriculture and Environment; He, Z., Zhang, H., Eds.; Springer: Amsterdam, The Netherland, 2014; pp. 69–82. [Google Scholar]
- Peltre, C.; Gregorich, E.G.; Bruun, S.; Jensen, L.S.; Magid, J. Repeated application of organic waste affects soil organic matter composition: Evidence from thermal analysis, FTIR-PAS, amino sugars and lignin biomarkers. Soil Biol. Biochem. 2017, 104, 117–127. [Google Scholar] [CrossRef]
- Wyngaard, N.; Cabrera, M.L.; Shober, A.; Kanwar, R. Fertilization strategy can affect the estimation of soil nitrogen mineralization potential with chemical methods. Plant Soil 2018, 432, 75–89. [Google Scholar] [CrossRef]
- Regelink, I.C.; Stoof, C.R.; Rousseva, S.; Weng, L.; Lair, G.J.; Kram, P.; Nikolaidis, N.P.; Kercheva, M.; Banwart, S.; Comans, R.N. Linkages between aggregate formation, porosity and soil chemical properties. Geoderma 2015, 247, 24–37. [Google Scholar] [CrossRef]
- Borges, C.D.; Corá, J.E.; Barbosa, J.C.; Nahas, E. Soil microbiological attributes under summer/winter crops rotation in a no-tillage system. Arch. Agron. Soil Sci. 2013, 59, 1471–1485. [Google Scholar]
- Madejón, E.; Murillo, J.; Moreno, F.; López, M.; Arrúe, J.L.; Álvaro-Fuentes, J.; Cantero, C. Effect of long-term conservation tillage on soil biochemical properties in Mediterranean Spanish areas. Soil Till. Res. 2009, 105, 55–62. [Google Scholar] [CrossRef]
- Ohno, T.; He, Z.; Tazisong, I.A.; Senwo, Z.N. Influence of tillage, cropping, and nitrogen source on the chemical characteristics of humic acid, fulvic acid, and water-soluble soil organic matter fractions of a long-term cropping system study. Soil Sci. 2009, 174, 652–660. [Google Scholar] [CrossRef]
Symbol | Cropping System and Fertilization |
---|---|
C − L | Corn with synthetic fertilizer |
C + L | Corn with poultry litter (BL) application |
C/W − L | Corn–wheat cover crop with synthetic fertilizer |
C/W + L | Corn–wheat cover crop with BL application |
S − L | Soybean with synthetic fertilizer |
S + L | Soybean with BL application |
S/W − L | Soybean–wheat cover crop with synthetic fertilizer |
S/W + L | Soybean–wheat cover crop with BL application |
Application Year | Cropping System | N | P | K | Ca | Mg |
---|---|---|---|---|---|---|
kg ha−1 | ||||||
1991–2003 | Wheat cover crop of both corn and soybean | 112 | 6.5 | 96 | 86 | 6.1 |
2004–2010 | Corn crop | 150 | 9.8 | 128 | 144 | 9.3 |
2004–2010 | Soybean crop | 45 | 2.6 | 38 | 35 | 2.5 |
2011–2016 | Wheat cover crop of both corn and soybean | 134 | 7.8 | 115 | 103 | 7.2 |
Contrast (a) | MBC | MBN | MBP | Protein | Amino Acid | Amidase | Asparaginase | Glutaminase | Phenol | Hexose |
---|---|---|---|---|---|---|---|---|---|---|
0–5 cm | ||||||||||
Conventional till vs. no till | 0.099 | 0.103 | 0.630 | 0.320 | 0.360 | 0.911 | 0.007 | <0.001 | 0.890 | 0.284 |
C vs. CW | 0.402 | 0.011 | 0.933 | 0.990 | 0.953 | 0.998 | 0.002 | 0.096 | 0.869 | 0.977 |
C vs. S | 0.995 | 0.018 | 0.160 | 0.999 | 0.793 | 0.058 | 0.001 | 0.008 | 0.660 | 0.587 |
C vs. SW | 0.781 | <0.001 | 0.187 | 0.471 | 0.760 | 0.955 | <0.001 | <0.001 | 0.696 | 0.882 |
CW vs. S | 0.539 | 0.996 | 0.396 | 0.983 | 0.977 | 0.080 | 0.997 | 0.616 | 0.979 | 0.818 |
CW vs. SW | 0.086 | 0.014 | 0.446 | 0.316 | 0.966 | 0.985 | 0.009 | 0.018 | 0.987 | 0.987 |
S vs. SW | 0.642 | 0.009 | 0.999 | 0.506 | 0.999 | 0.152 | 0.014 | 0.190 | 0.999 | 0.947 |
−L vs. +L | 0.923 | 0.013 | 0.007 | 0.246 | 0.366 | 0.538 | <0.001 | <0.001 | 0.626 | 0.662 |
5–10 cm | ||||||||||
Conventional till vs. no till | 0.230 | 0.004 | 0.722 | – | 0.617 | 0.922 | 0.167 | 0.915 | 0.299 | 0.796 |
C vs. CW | 0.817 | 0.661 | 0.562 | – | 0.585 | 0.999 | 0.750 | 0.109 | 0.261 | 0.468 |
C vs. S | 0.428 | 0.122 | 0.975 | – | 0.981 | 0.598 | 0.978 | 0.506 | 0.058 | 0.107 |
C vs. SW | 0.991 | 0.025 | 0.996 | – | 0.891 | 0.379 | 0.215 | 0.022 | 0.091 | 0.767 |
CW vs. S | 0.107 | 0.634 | 0.804 | – | 0.801 | 0.668 | 0.516 | 0.748 | 0.832 | 0.779 |
CW vs. SW | 0.937 | 0.220 | 0.434 | – | 0.939 | 0.321 | 0.738 | 0.849 | 0.926 | 0.956 |
S vs. SW | 0.284 | 0.848 | 0.917 | – | 0.987 | 0.042 | 0.108 | 0.298 | 0.996 | 0.482 |
−L vs. +L | 0.190 | <0.001 | 0.069 | – | 0.108 | 0.400 | <0.001 | <0.001 | 0.493 | 0.754 |
Soil Property | MBC a | MBN | MBP | Protein | Amino Acid | Amidase | Asparaginase | Glutaminase | Phenol |
---|---|---|---|---|---|---|---|---|---|
0–5 cm layer | |||||||||
MBN | −0.130 | ||||||||
MBP | −0.038 | 0.688 ** | |||||||
Protein | −0.113 | 0.223 | 0.445 # | ||||||
Amino acid | 0.209 | −0.037 | −0.114 | 0.302 | L | ||||
Amidase | 0.031 | 0.128 | −0.092 | −0.306 | 0.562 * | ||||
Asparaginase | 0.154 | 0.592 * | 0.468 # | 0.221 | 0.296 | 0.318 | |||
Glutaminase | 0.101 | 0.775 *** | 0.766 *** | 0.422 | 0.134 | 0.078 | 0.901 *** | ||
Phenol | 0.235 | −0.207 | −0.009 | 0.449 # | 0.261 | −0.263 | −0.129 | −0.028 | |
Hexose | 0.180 | −0.372 | −0.035 | −0.154 | 0.299 | 0.335 | −0.145 | −0.251 | 0.279 |
5–10 cm layer | |||||||||
MBN | 0.260 | ||||||||
MBP | 0.068 | 0.480 # | |||||||
Protein | 0.000 | 0.000 | 0.000 | ||||||
Amino acid | −0.178 | −0.451 # | −0.444 # | 0.000 | |||||
Amidase | −0.394 | 0.142 | −0.116 | 0.000 | −0.004 | ||||
Asparaginase | −0.080 | 0.677 ** | 0.604 * | 0.000 | −0.516 * | 0.372 | |||
Glutaminase | −0.111 | 0.662 ** | 0.597 * | 0.000 | −0.518 * | 0.279 | 0.936 *** | ||
Phenol | −0.308 | −0.309 | 0.083 | 0.000 | 0.416 | 0.175 | 0.170 | 0.123 | |
Hexose | −0.139 | −0.174 | 0.023 | 0.000 | 0.047 | 0.057 | 0.172 | 0.075 | 0.396 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watts, D.B.; He, Z.; Yin, X.; Torbert, H.A.; Senwo, Z.N.; Tewolde, H. Long-Term Cropping Management Practices Affect the Biochemical Properties of an Alabama Ultisol. Soil Syst. 2024, 8, 41. https://doi.org/10.3390/soilsystems8020041
Watts DB, He Z, Yin X, Torbert HA, Senwo ZN, Tewolde H. Long-Term Cropping Management Practices Affect the Biochemical Properties of an Alabama Ultisol. Soil Systems. 2024; 8(2):41. https://doi.org/10.3390/soilsystems8020041
Chicago/Turabian StyleWatts, Dexter B., Zhongqi He, Xinhua Yin, H. Allen Torbert, Zachary N. Senwo, and Haile Tewolde. 2024. "Long-Term Cropping Management Practices Affect the Biochemical Properties of an Alabama Ultisol" Soil Systems 8, no. 2: 41. https://doi.org/10.3390/soilsystems8020041
APA StyleWatts, D. B., He, Z., Yin, X., Torbert, H. A., Senwo, Z. N., & Tewolde, H. (2024). Long-Term Cropping Management Practices Affect the Biochemical Properties of an Alabama Ultisol. Soil Systems, 8(2), 41. https://doi.org/10.3390/soilsystems8020041