Water Infiltration in Different Soil Covers and Management in the Cerrado–Amazon Ecotone, Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Treatments and Experimental Design
2.3. Soil Water Infiltration Models
2.4. Statistical Analyses
3. Results
3.1. Physical Characterization of the Soil
Sub-Basin Region | Sand | Silt | Clay | Micro | Macro | TPo | Pd | Bd | K0 | Pdm |
---|---|---|---|---|---|---|---|---|---|---|
.............%........... | .........m3 m−3........... | ..... g cm−3...... | cm h−1 | Mg ha−1 | ||||||
Caiabi River—Cultivated (Soybean) | ||||||||||
Upper | 42.49 B | 29.61 A | 27.9 A | 0.28 A | 0.08 A | 0.36 A | 2.14 B | 1.02 B | 1.21 A | 11.91 A |
Middle | 76.56 A | 5.64 B | 17.8 B | 0.27 A | 0.11 A | 0.38 A | 2.54 A | 1.50 A | 1.12 A | 10.20 A |
Lower | 78.5 A | 5.9 B | 15.6 B | 0.35 A | 0.08 A | 0.43 A | 2.52 A | 1.50 A | 1.28 A | 10.99 A |
Caiabi River—Pasture | ||||||||||
Upper | 49.24 B | 14.66 A | 36.1 A | 0.27 A | 0.10 A | 0.38 A | 2.44 A | 1.41 A | 0.33 A | 8.24 A |
Middle | 49.21 B | 16.19 A | 34.6 A | 0.35 A | 0.02 A | 0.37 A | 2.33 B | 1.58 A | 0.67 A | 8.90 A |
Lower | 84.37 A | 4.63 B | 11.0 B | 0.29 A | 0.11 A | 0.39 A | 2.61 A | 1.58 A | 1.70 A | 7.26 A |
Renato River—Cultivated (Corn) | ||||||||||
Upper | 75.18 B | 8.62 A | 16.2 A | 0.43 A | 0.09 A | 0.52 A | 2.71 A | 1.57 A | 0.79 A | 5.21 B |
Middle | 82.87 A | 4.23 A | 12.9 B | 0.29 B | 0.08 A | 0.37 B | 2.73 A | 1.53 A | 1.22 A | 6.48 B |
Lower | 73.90 B | 6.7 A | 19.4 A | 0.28 B | 0.09 A | 0.37 B | 2.65 A | 1.56 A | 0.68 A | 12.07 A |
Renato River—Pasture | ||||||||||
Upper | 80.43 A | 3.67 A | 15.9 A | 0.40 A | 0.02 A | 0.42 A | 2.78 A | 1.53 B | 1.22 A | 8.07 A |
Middle | 83.16 A | 3.94 A | 12.9 A | 0.37 A | 0.06 A | 0.43 A | 2.63 A | 1.59 B | 0.57 A | 8.29 A |
Lower | 81.94 A | 3.36 A | 14.7 A | 0.33 A | 0.04 A | 0.37 A | 2.69 A | 1.75 A | 0.90 A | 6.65 A |
3.2. Initial and Final Infiltration Rates
3.3. Principal Component Analysis (PCA)
3.4. Kostiakov–Lewis, Horton, and Philip Infiltration Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rápalo, L.M.C.; Uliana, E.M.; Moreira, M.C.; Da Silva, D.D.; De Melo Ribeiro, C.B.; Da Cruz, I.F.; Dos Reis Pereira, D. Effects of land-use and-cover changes on streamflow regime in the Brazilian Savannah. J. Hydrol. Reg. Stud. 2021, 38, e100934. [Google Scholar] [CrossRef]
- Bertol, I.; Barbosa, F.T.; Berto, C.; Luciano, R.V. Water infiltration in two cultivated soils in Southern Brazil. Revista Brasileira de Ciência Solo 2015, 39, 573–588. [Google Scholar] [CrossRef]
- Almeida, W.S.; Panachuki, E.; De Oliveira, P.T.S.; Da Silva Menezes, R.; Alves Sobrinho, T.; De Carvalho, D.F. Effect of soil tillage and vegetal cover on soil water infiltration. Soil Tillage Res. 2018, 175, 130–138. [Google Scholar] [CrossRef]
- Hunke, P.; Roller, R.; Zeilhofer, P.; Schröder, B.; Mueller, E.N. Soil changes under different land-uses in the Cerrado of Mato Grosso, Brazil. Geoderma Reg. 2015, 4, 31–43. [Google Scholar] [CrossRef]
- Niu, F.; Gao, Z.; Lin, Z.; Luo, J.; Fan, X. Vegetation influence on the soil hydrological regime in permafrost regions of the Qinghai-Tibet Plateau, China. Geoderma 2019, 354, e113892. [Google Scholar] [CrossRef]
- Basche, A.D.; Delonge, M.S. Comparing infiltration rates in soils managed with conventional and alternative farming methods: A meta-analysis. PLoS ONE 2019, 14, e0215702. [Google Scholar] [CrossRef]
- Fuentes-Llanillo, R.; Telles, T.S.; Junior, D.S.; De Melo, T.R.; Friedrich, T.; Kassam, A. Expansion of no-tillage practice in conservation agriculture in Brazil. Soil Tillage Res. 2021, 208, e104877. [Google Scholar] [CrossRef]
- Sone, J.S.; Oliveira, P.T.S.; Euclides, V.P.B.; Montagner, D.B.; De Araujo, A.R.; Zamboni, P.A.P.; Sobrinho, T.A. Cienceationtrogen fertilization and stocking rates on soil erosion and water infiltration in a Brazilian Cerrado farm. Agric. Ecosyst. Environ. 2020, 304, e107159. [Google Scholar] [CrossRef]
- Andrade, E.M.; Guerreiro, M.J.S.; Palácio, H.A.Q.; Campos, D.A. Ecohydrology in a Brazilian tropical dry forest: Thinned vegetation impact on hydrological functions and ecosystem services. J. Hydrol. Reg. Stud. 2020, 27, e100649. [Google Scholar] [CrossRef]
- Chari, M.M.; Poozan, M.T.; Afrasiab, P. Modelling soil water infiltration variability using scaling. Biosyst. Eng. 2020, 196, 56–66. [Google Scholar] [CrossRef]
- Sidiras, N.; Roth, C.H. Infiltration measurements with double-ring infiltrometers and a rainfall simulator under different surface conditions on an Oxisol. Soil Tillage Res. 1987, 9, 161–168. [Google Scholar] [CrossRef]
- Alves Sobrinho, T.; Gómez-Macpherson, H.; Gómez, J.A. A portable integrated rainfall and overland flow simulator. Soil Use Manag. 2008, 24, 163–170. [Google Scholar] [CrossRef]
- Panachuki, E.; Bertol, I.; Alves Sobrinho, T.; Oliveira, P.T.S.D.; Rodrigues, D.B.B. Perdas de solo e de água e infiltração de água em Latossolo Vermelho sob sistemas de manejo. Rev. Bras. Ciência Solo 2011, 35, 1777–1786. [Google Scholar] [CrossRef]
- Falcão, K.D.S.; Panachuki, E.; Monteiro, F.D.N.; Silva, R.; Rodrigues, D.B.; Sone, J.S.; Oliveira, P.T.S. Surface runoff and soil erosion in a natural regeneration area of the Brazilian Cerrado. Int. Soil Water Conserv. Res. 2020, 8, 124–130. [Google Scholar] [CrossRef]
- Alves, M.A.B.; Souza, A.P.; Almeida, F.T.; Hoshide, A.K.; Araújo, H.B.; Silva, A.F.; Carvalho, D.F. Effects of Land Use and Cropping on Soil Erosion in Agricultural Frontier Areas in the Cerrado-Amazon Ecotone, Brazil, Using a Rainfall Simulator Experiment. Sustainability 2023, 15, 4954. [Google Scholar] [CrossRef]
- Johnson, R.A.; Wichern, D.W. Applied Multivariate Statistical Analysis, 4th ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 1999; 815p. [Google Scholar]
- Fox, G.A.; Metl, A.R. Soil property analysis using principal components analysis, soil line, and regression models. Soil Sci. Soc. Am. J. 2005, 69, 1782–1788. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, e20150202. [Google Scholar] [CrossRef]
- Tajik, S.; Ayoubi, S.; Khajehali, J.; Shataee, S. Effects of tree species composition on soil properties and invertebrates in a deciduous forest. Arab. J. Geosci. 2019, 12, 368. [Google Scholar] [CrossRef]
- Abdel-Fattah, M.K.; Abd-Elmabod, S.K.; Aldosari, A.A.; Elrys, A.S.; Mohamed, E.S. Multivariate analysis for assessing irrigation water quality: A case study of the Bahr Mouise Canal, Eastern Nile Delta. Water 2020, 12, 2537. [Google Scholar] [CrossRef]
- Abdel-Fattah, M.K.; Mohamed, E.S.; Wagdi, E.M.; Shahin, S.A.; Aldosari, A.A.; Lasaponara, R.; Alnaimy, M.A. Quantitative evaluation of soil quality using Principal Component Analysis: The case study of El-Fayoum depression Egypt. Sustainability 2021, 13, 1824. [Google Scholar] [CrossRef]
- Martín-Sanz, J.P.; De Santiago-Martín, A.; Valverde-Asenjo, I.; Quintana-Nieto, J.R.; González-Huecas, C.; López-Lafuente, A.L. Comparison of soil quality indexes calculated by network and principal component analysis for carbonated soils under different uses. Ecol. Indic. 2022, 143, e109374. [Google Scholar] [CrossRef]
- Moratelli, F.A.; Alves, M.A.B.; Borella, D.R.; Kraeski, A.; Almeida, F.T.D.; Zolin, C.A.; Hoshide, A.K.; Souza, A.P. Effects of Land Use on Soil Physical-Hydric Attributes in Two Watersheds in the Southern Amazon, Brazil. Soil Syst. 2023, 7, 103. [Google Scholar] [CrossRef]
- Alves, M.A.B.; Borella, D.R.; Silva Luz, C.C.; Castagna, D.; Da Silva, W.C.; Silva, A.F.; Souza, A.P. Classes de solos nas bacias hidrográficas dos rios Caiabi e Renato, afluentes do rio Teles Pires, no sul da Amazônia. Nativa 2022, 10, 348–431. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- Sabino, M.; Souza, A.P.; Uliana, E.M.; Lisboa, L.; Almeida, F.T.; Zolin, C.A. Intensity-duration-frequency of maximum rainfall in Mato Grosso State. Revista Ambiente Água 2020, 15, e2373. [Google Scholar] [CrossRef]
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual de Métodos de Análise de Solo, 3rd ed.; Embrapa Solos: Rio de Janeiro, Brazil, 2017; 573p.
- Kostiakov, A.N. On the dynamics of the coefficient of water percolation in soils and on the necessity of studying it from a dynamic point of view for purposes of amelioration. Trans. Sixth Comm. Int. Soc. Soil Sci. 1932, 6(Part A), 17–21. [Google Scholar]
- Lewis, M.R. The rate of infiltration of water in irrigation practice. Trans. Am. Geophys. Union 1937, 18, 361–368. [Google Scholar]
- Horton, R.E. Analysis of runoff plat experiments with varying infiltration capacity. Trans. Am. Geophys. Union 1939, 20, 693–711. [Google Scholar]
- Horton, R.E. The role of infiltration in the hydrological cycle. Trans. Am. Geophys. Union 1933, 14, 446–460. [Google Scholar]
- Philip, J.R. Theory of infiltration. Adv. Hydrosci. 1969, 5, 215–296. [Google Scholar]
- Philip, J.R. The theory of infiltration Sorptivity and algebraic infiltration equations. Soil Sci. 1957, 84, 257–264. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models: Part 1. A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- IBGE_Instituto Brasileiro de Geografia e Estatística. Estado do Mato Grosso: Pedologia (Mapa Exploratório de Solos). 2009. Available online: https://geoftp.ibge.gov.br/informacoes_ambientais/pedologia/mapas/unidades_da_federacao/mt_pedologia.pdf (accessed on 29 December 2023).
- EPE_Empresa de Pesquisa Energética. Avaliação Ambiental Integrada da Bacia Hidrográfica do Rio Teles Pires. 2009; 67p. Available online: https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-248/topico-292/AAI%20Teles%20Pires%20-%20Relat%C3%B3rio%20Final%20-%20Sum%C3%A1rio%20Executivo[1].pdf#search=teles%20pires> (accessed on 29 December 2023).
- Centeri, C. Effects of grazing on water erosion, compaction and infiltration on Grasslands. Hydrology 2022, 9, e34. [Google Scholar] [CrossRef]
- Baronti, S.; Ungaro, F.; Maienza, A.; Ugolini, F.; Lagomarsino, A.; Agnelli, A.E.; Calzolari, C.; Pisseri, F.; Robbiati, G.; Vaccari, F.P. Rotational pasture management to increase the sustainability of mountain livestock farms in the Alpine region. Reg. Environ. Change 2022, 22, e50. [Google Scholar] [CrossRef]
- Castro, L.G.; Cogo, N.P.; Volk, L.B.D.S. Alterations in soil surface roughness by tillage and rainfall in relation to water erosion. Rev. Bras. Ciência Solo 2006, 30, 339–352. [Google Scholar] [CrossRef]
- Santos, M.A.D.N.D.; Panachuki, E.; Alves Sobrinho, T.; Oliveira, P.T.S.D.; Rodrigues, D.B.B. Water infiltration in na ultisol after cultivation of common bean. Rev. Bras. Ciência Solo 2014, 38, 1612–1620. [Google Scholar] [CrossRef]
- Fernandes, B.B.; Marasca, I.; Martins, M.B.; Sandi, J.; Da Silva, K.G.P.; Lanças, K.P. Effect of traffic in agricultural soil water infiltration and the physical atributes of the soil. Irriga 2022, 27, 343–356. [Google Scholar] [CrossRef]
- Döbert, T.F.; Bork, E.W.; Apfelbaum, S.; Carlyle, C.N.; Chang, S.X.; KhaI-Chhetri, U.; Silva Sobrinho, L.; Thompson, R.; Boyce, M.S. Adaptive multi-paddock grazing improves water infiltration in Canadian grassland soils. Geoderma 2021, 401, e115314. [Google Scholar] [CrossRef]
- Carvalho, D.F.; Eduardo, E.N.; Almeida, W.S.; Santos, L.A.; Alves Sobrinho, T. Water erosion and soil water infiltration in different stages of corn development and tillage systems. Rev. Bras. Eng. Agrícola e Ambient. 2015, 19, 1072–1078. [Google Scholar] [CrossRef]
Sub-Basin | Trat | Upper | Middle | Lower | |||
---|---|---|---|---|---|---|---|
Rio | Rif | Rio | Rif | Rio | Rif | ||
Caiabi | Cultivated | ||||||
CS | 66.46 Aa | 31.57 Ab | 65.31 Aa | 45.64 Aa | 65.31 Aa | 35.16 Bb | |
WCS | 61.82 Aa | 15.04 Bb | 63.51 Aa | 35.67 Aa | 44.77 Bb | 32.41 Ba | |
SD | 68.54 Aa | 34.39 Ab | 61.34 Aa | 30.98 Bb | 71.06 Aa | 60.22 Aa | |
Pasture | |||||||
CS | 34.57 Ba | 2.67 Bb | 40.62 Ba | 15.64 Ba | 42.90 Ba | 12.23 Aba | |
WCS | 44.14 Ba | 3.96 Bb | 55.57 Aa | 21.29 Ba | 40.59 Ba | 5.94 Bb | |
SD | 69.86 Aa | 56.71 Aa | 61.34 Aa | 30.98 Ab | 61.20 Aa | 18.70 Ac | |
Renato | Cultivated | ||||||
CS | 61.63 Aa | 17.92 Aa | 39.00 Bb | 11.77 Ab | 58.38 Aa | 18.35 Aa | |
WCS | 61.93 Aa | 19.40 Aa | 17.40 Cb | 11.83 Ab | 22.37 Bb | 8.00 Bb | |
SD | 63.21 Aa | 11.2 ABa | 67.11 Aa | 5.43 Ab | 63.43 Aa | 13.43 Ba | |
Pasture | |||||||
CS | 68.14 Aa | 38.64 Ba | 26.79 Cb | 4.19 Bc | 54.01 Aa | 12.46 Bb | |
WCS | 63.30 Aa | 23.30 Ba | 42.43 Bb | 1.00 Bc | 61.61 Aa | 9.76 Bb | |
SD | 69.86 Aa | 62.51 Aa | 62.57 Aa | 37.29 Ab | 68.43 Aa | 36.26 Ab |
Land Cover | Soil Management | Model | R2 | RMSE | NSE | |
---|---|---|---|---|---|---|
Cultivated (soybean) | Upper | |||||
CS | Ri = 31.57 + (66.46 − 31.57) e−0.14 T | Horton | 0.84 | 3.79 | 0.85 | |
WCS | Ri = 4.55 + 116.70 T −0.5 | Philip | 0.86 | 3.27 | 0.86 | |
SD | Ri = 34.39 + (68.54 − 34.39) e −7.52T | Horton | 0.51 | 15.68 | −0.66 | |
Middle | ||||||
CS | Ri = 42.39 + 46.77 T−0.5 | Philip | 0.78 | 1.37 | 0.79 | |
WCS | Ri = 29.24 + 69.06 T−0.5 | Philip | 0.90 | 1.27 | 0.90 | |
SD | Ri = 24.16 + 80.08 T−0.5 | Philip | 0.78 | 2.90 | 0.78 | |
Lower | ||||||
CS | Ri = 26.98 + 70.23 T−0.5 | Philip | 0.83 | 1.78 | 0.83 | |
WCS | Ri = 28.58 + 18 T−0.5 | Philip | 0.66 | 1.91 | 0.66 | |
SD | ------- | ------ | ||||
Pasture | Upper | |||||
CS | Ri = 2.67 + (34.57 − 2.67) e−0.15 T | Horton | 0.90 | 2.83 | 0.90 | |
WCS | Ri = 3.96 + (2.70). 145.19 T−2.701 | KL | 0.85 | 3.79 | 0.84 | |
SD | Ri = 56.71 + (69.86 − 56.71) e−0.13 T | Horton | 0.77 | 2.12 | 0.77 | |
Middle | ||||||
CS | Ri = 10.73 + 57.47 T−0.5 | Philip | 0.76 | 3.01 | 0.76 | |
WCS | Ri = 13.80 + 84.91 T−0.5 | Philip | 082 | 3.71 | 0.82 | |
SD | Ri = 30.98 + (61.34 − 30.98) e−0.15 T | Horton | 0.79 | 3.86 | 0.79 | |
Lower | ||||||
CS | Ri = 0.82 + 121.34 T−0.5 | Philip | 0.87 | 3.56 | 0.87 | |
WCS | Ri = 5.45 + 125.68 T−0.5 | Philip | 0.91 | 2.93 | 0.92 | |
SD | Ri = 18.70 + (61.20 − 18.70) e−0.18 T | Horton | 0.91 | 2.47 | 0.91 |
Land Cover | Soil Management | Model | R2 | RMSE | NSE | |
---|---|---|---|---|---|---|
Cultivated (corn) | Upper | |||||
CS | Ri = 17.92 + (61.63 − 17.92) e −0.11T | Horton | 0.72 | 6.77 | 0.72 | |
WCS | Ri = 19.40 + (61.93 − 19.40) e −0.85 T | Horton | 0.85 | 6.60 | 0.55 | |
SD | Ri = 11.20 + (63.21 − 11.20) e −0.90 T | Horton | 0.90 | 13.68 | 0.20 | |
Middle | ||||||
CS | Ri = 6.95 + 62.40 T−0.5 | Philip | 0.83 | 2.57 | 0.84 | |
WCS | Ri = 9.96 + 12.74 T−0.5 | Philip | 0.23 | 2.12 | 0.24 | |
SD | Ri = 11.35 + 116.40 T−0.5 | Philip | 0.87 | 5.07 | 0.90 | |
Lower | ||||||
CS | Ri = 11.26 + 101.87 T−0.5 | Philip | 0.94 | 2.38 | 0.94 | |
WCS | Ri = 3.66 + 71.69 T−0.5 | Philip | 0.83 | 2.63 | 0.87 | |
SD | Ri = 13.43 (63.43 − 13.43) e−0.10 T | Horton | 0.92 | 4.13 | 0.92 | |
Pasture | Upper | |||||
CS | Ri = 38.64 + (68.14 − 38.64) e −0.27 T | Horton | 0.81 | 3.03 | 0.81 | |
WCS | Ri = 23.30 + (0.05) 756.35 T−0.051 | KL | 0.91 | 2.42 | 0.92 | |
SD | Ri = 62.51 + (69.86 − 62.51) e−0.04 T | Horton | 0.45 | 1.86 | 0.47 | |
Middle | ||||||
CS | Ri = 4.19 + (26.79 − 4.19) e−0.13 T | Horton | 0.82 | 2.50 | 0.82 | |
WCS | Ri = 1.00 + (42.43 − 1.00) e−0.13 T | Horton | 0.82 | 4.48 | 0.85 | |
SD | Ri = 37.29 + (0.38)79.05 T−0.381 | KL | 0.60 | 5.94 | 0.97 | |
Lower | ||||||
CS | Ri = 12.46 + (0.08) 509.14 T−0.081 | KL | 0.89 | 2.88 | 0.95 | |
WCS | Ri = 9.76 + (61.61 − 9.76) e−0.24 T | Horton | 0.88 | 4.67 | 0.86 | |
SD | Ri = 36.26 + (68.43 − 36.26) e−0.10 T | Horton | 0.84 | 4.69 | 0.84 |
Principal Component | CCSoy | CCPast | CWSoy | CWPast | ||||
---|---|---|---|---|---|---|---|---|
PC 1 | PC 2 | PC 1 | PC 2 | PC 1 | PC 2 | PC 1 | PC 2 | |
Eigenvalues | 4.910 | 2.080 | 3.750 | 3.240 | 5.350 | 1.640 | 4.310 | 2.680 |
Variation % | 70.160 | 29.830 | 53.610 | 46.390 | 76.510 | 23.490 | 61.600 | 38.390 |
Attribute | Correlation | |||||||
Sand | −0.984 * | 0.178 | −0.258 * | −0.076 | −0.999 * | 0.051 | −0.186 * | 0.031 |
Silt | 0.993 * | −0.121 | 0.264 * | 0.040 | 0.990 * | 0.007 | 0.187 * | 0.004 |
Clay | 0.956 * | −0.295 | 0.254 * | 0.092 | 0.985 * | −0.170 | 0.184 | −0.104 |
Micro | −0.274 | 0.962 * | 0.135 | −0.265 * | −0.395 | 0.919 * | −0.074 | 0.559 * |
Macro | −0.609 | −0.794 | −0.205 | 0.197 | −0.502 | −0.865 * | −0.094 | −0.526 * |
Bd | −0.991 * | 0.130 | −0.072 | −0.297 * | −0.990 * | 0.003 | −0.187 * | 0.002 |
Rif | −0.785 * | −0.620 | −0.004 | −0.308* | −0.990 * | −0.144 | −0.185 * | −0.088 |
Principal Component | RCCorn | RCPast | RWCorn | RWPast | ||||
---|---|---|---|---|---|---|---|---|
PC 1 | PC 2 | PC 1 | PC 2 | PC 1 | PC 2 | PC 1 | PC 2 | |
Eigenvalues | 5.720 | 1.270 | 4.47 | 2.520 | 4.880 | 2.110 | 4.480 | 2.510 |
Variation % | 81.810 | 18.190 | 63.990 | 33.010 | 69.830 | 30.170 | 64.030 | 35.960 |
Attribute | Correlation | |||||||
Sand | 0.975 * | 0.223 | −0.984 * | −0.177 | 0.930 * | 0.367 | −0.728 * | −0.068 |
Silt | −0.936 * | 0.352 | −0.242 | −0.970 * | −0.978 * | 0.207 | −0.112 | −0.626 * |
Clay | −0.821 * | −0.570 | 0.938 * | 0.347 | −0.726 | −0.688 | 0.638 * | 0.176 |
Micro | −0.528 * | 0.849 | 0.629 | −0.777 | −0.650 | 0.760 | 0.597 * | −0.236 |
Macro | −0.996 * | −0.092 | −0.971 * | −0.237 | −0.971 * | −0.241 | −0.495 * | −0.767* |
Bd | −0.989 * | 0.150 | −0.485 | 0.874 * | −0.990 * | −0.001 | −0.359 | 0.803 * |
Rif | −0.989 * | −0.150 | 0.999 * | −0.052 | −0.417 | 0.909 * | 0.089 | –0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves, M.A.B.; Borella, D.R.; Paulista, R.S.D.; Almeida, F.T.d.; Souza, A.P.d.; Carvalho, D.F.d. Water Infiltration in Different Soil Covers and Management in the Cerrado–Amazon Ecotone, Brazil. Soil Syst. 2024, 8, 31. https://doi.org/10.3390/soilsystems8010031
Alves MAB, Borella DR, Paulista RSD, Almeida FTd, Souza APd, Carvalho DFd. Water Infiltration in Different Soil Covers and Management in the Cerrado–Amazon Ecotone, Brazil. Soil Systems. 2024; 8(1):31. https://doi.org/10.3390/soilsystems8010031
Chicago/Turabian StyleAlves, Marco Aurélio Barbosa, Daniela Roberta Borella, Rhavel Salviano Dias Paulista, Frederico Terra de Almeida, Adilson Pacheco de Souza, and Daniel Fonseca de Carvalho. 2024. "Water Infiltration in Different Soil Covers and Management in the Cerrado–Amazon Ecotone, Brazil" Soil Systems 8, no. 1: 31. https://doi.org/10.3390/soilsystems8010031
APA StyleAlves, M. A. B., Borella, D. R., Paulista, R. S. D., Almeida, F. T. d., Souza, A. P. d., & Carvalho, D. F. d. (2024). Water Infiltration in Different Soil Covers and Management in the Cerrado–Amazon Ecotone, Brazil. Soil Systems, 8(1), 31. https://doi.org/10.3390/soilsystems8010031