Soil Health Assessment to Evaluate Conservation Practices in SemiArid Cotton Systems at Producer Site Scale
Abstract
1. Introduction
2. Materials and Methods
2.1. Sites Description
2.2. Soil Health Indicators
2.3. Statistical Analyses
3. Results and Discussion
3.1. Role of Management Practices on Soil Health and Functions in a Water-Limited Region
3.2. Challenges to No-Tillage and Cover Crop Management in Semiarid Cropping Systems
3.3. Ecological Implications of the Results of This Study in Commercial Fields: Knowledge Gaps and Limitations for Future Research
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Claassen, R.; Bowman, M.; McFadden, J.; Smith, D.; Wallander, S. Tillage Intensity and Conservation Cropping in the United States; United States Department of Agriculture, Economic Research Service: Washington, DC, USA, 2018.
- IPCC (Intergovernmental Panel on Climate Change). Climate Change 2007: Synthesis Report; Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Reisinger, A., Eds.; IPCC: Geneva, Switzerland, 2007; p. 104.
- Deines, J.M.; Schipanski, M.E.; Golden, B.; Zipper, S.C.; Nozari, S.; Rottler, C.; Guerrero, B.; Sharda, V. Transitions from irrigated to dryland agriculture in the Ogallala Aquifer: Land use suitability and regional economic impacts. Agric. Water Manag. 2020, 233, 106061. [Google Scholar] [CrossRef]
- Acosta-Martínez, V.; Cotton, J.; Gardner, T.; Moore-Kucera, J.; Zak, J.; Wester, D.; Cox, S. Predominant bacterial and fungal assemblages in agricultural soils during a record drought/heat wave and linkages to enzyme activities of biogeochemical cycling. Appl. Soil Ecol. 2014, 84, 69–82. [Google Scholar] [CrossRef]
- Acosta-Martinez, V.; Moore-Kucera, J.; Cotton, J.; Gardner, T.; Wester, D. Soil enzyme activities during the 2011 Texas record drought/heat wave and implications to biogeochemical cycling and organic matter dynamics. Appl. Soil Ecol. 2014, 75, 43–51. [Google Scholar] [CrossRef]
- Pérez-Guzmán, L.; Acosta-Martínez, V.; Phillips, L.A.; Mauget, S.A. Resilience of the microbial communities of semiarid agricultural soils during natural climatic variability events. Appl. Soil Ecol. 2020, 149, 103487. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B. Limited effect of organic matter on soil available water capacity. Eur. J. Soil Sci. 2018, 69, 39–47. [Google Scholar] [CrossRef]
- Chen, L.; Sun, S.; Yao, B.; Peng, Y.; Gao, C.; Qin, T.; Zhou, Y.; Sun, C.; Quan, W. Effects of straw return and straw biochar on soil properties and crop growth: A review. Front. Plant Sci. 2022, 13, 986763. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Fultz, L.M.; Moore-Kucera, J.; Acosta-Martínez, V.; Horita, J.; Strauss, R.; Zak, J.; Calderón, F.; Weindorf, D. Soil carbon sequestration potential in semi-arid grasslands in the Conservation Reserve Program. Geoderma 2017, 294, 80–90. [Google Scholar] [CrossRef]
- Nilahyane, A.; Ghimire, R.; Acharya, B.S.; Schipanski, M.E.; West, C.P.; Obour, A.K. Overcoming agricultural sustainability challenges in water-limited environments through soil health and water conservation: Insights from the Ogallala Aquifer Region, USA. Int. J. Agric. Sustain. 2023, 21, 2211484. [Google Scholar] [CrossRef]
- Bhandari, K.B.; Acosta-Martínez, V.; Pérez-Guzmán, L.; West, C.P. Soil health within transitions from irrigation to limited irrigation and dryland management. Agric. Environ. Lett. 2022, 7, e20077. [Google Scholar] [CrossRef]
- Ghimire, R.; Norton, J.B.; Stahl, P.D.; Norton, U. Soil Microbial Substrate Properties and Microbial Community Responses under Irrigated Organic and Reduced-Tillage Crop and Forage Production Systems. PLoS ONE 2014, 9, e103901. [Google Scholar] [CrossRef]
- Kallenbach, C.M.; Frey, S.D.; Grandy, A.S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. 2016, 7, 13630. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Martínez, V.; Dowd, S.E.; Bell, C.W.; Lascano, R.; Booker, J.D.; Zobeck, T.M.; Upchurch, D.R. Microbial Community Composition as Affected by Dryland Cropping Systems and Tillage in a Semiarid Sandy Soil. Diversity 2010, 2, 910–931. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. Mechanisms of Carbon Sequestration in Soil Aggregates. Crit. Rev. Plant Sci. 2004, 23, 481–504. [Google Scholar] [CrossRef]
- Li, C.; Fultz, L.M.; Moore-Kucera, J.; Acosta-Martínez, V.; Kakarla, M.; Weindorf, D.C. Soil microbial community restoration in Conservation Reserve Program semi-arid grasslands. Soil Biol. Biochem. 2018, 118, 166–177. [Google Scholar] [CrossRef]
- Pérez-Guzmán, L.; Phillips, L.A.; Seuradge, B.J.; Agomoh, I.; Drury, C.F.; Acosta-Martínez, V. An evaluation of biological soil health indicators in four long-term continuous agroecosystems in Canada. Agrosyst. Geosci. Environ. 2021, 4, e20164. [Google Scholar] [CrossRef]
- Acosta-Martínez, V.; Lascano, R.; Calderón, F.; Booker, J.D.; Zobeck, T.M.; Upchurch, D.R. Dryland cropping systems influence the microbial biomass and enzyme activities in a semiarid sandy soil. Biol. Fertil. Soils 2011, 47, 655–667. [Google Scholar] [CrossRef]
- Thapa, V.R.; Ghimire, R.; Duval, B.D.; Marsalis, M.A. Conservation Systems for Positive Net Ecosystem Carbon Balance in Semiarid Drylands. Agrosyst. Geosci. Environ. 2019, 2, 190022. [Google Scholar] [CrossRef]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate-smart soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Ghimire, R.; Norton, U.; Bista, P.; Obour, A.K.; Norton, J.B. Soil organic matter, greenhouse gases and net global warming potential of irrigated conventional, reduced-tillage and organic cropping systems. Nutr. Cycl. Agroecosyst. 2016, 107, 49–62. [Google Scholar] [CrossRef]
- Hendrickson, J.; Liebig, M.; Sassenrath, G. Environment and integrated agricultural systems. Renew. Agric. Food Syst. 2008, 23, 304–313. [Google Scholar] [CrossRef]
- Liebig, M.A.; Tanaka, D.L.; Krupinsky, J.M.; Merrill, S.D.; Hanson, J.D. Dynamic cropping systems: Contributions to improve agroecosystem sustainability. Agron. J. 2007, 99, 899–903. [Google Scholar] [CrossRef]
- Ghimire, R.; Ghimire, B.; Mesbah, A.O.; Sainju, U.M.; Idowu, O.J. Soil Health Response of Cover Crops in Winter Wheat–Fallow System. Agron. J. 2019, 111, 2108–2115. [Google Scholar] [CrossRef]
- Thapa, V.R.; Ghimire, R.; VanLeeuwen, D.; Acosta-Martínez, V.; Shukla, M. Response of soil organic matter to cover cropping in water-limited environments. Geoderma 2022, 406, 115497. [Google Scholar] [CrossRef]
- Schroeder, J.L.; Burgett, W.S.; Haynie, K.B.; Sonmez, I.; Skwira, G.D.; Doggett, A.L.; Lipe, J.W. The West Texas Mesonet: A Technical Overview. J. Atmos. Ocean. Technol. 2005, 22, 211–222. [Google Scholar] [CrossRef]
- Schutter, M.E.; Dick, R.P. Microbial community profiles and activities among aggregates of winter fallow and cover-cropped soil. Soil Sci. Soc. Am. J. 2002, 66, 142–153. [Google Scholar] [CrossRef]
- Li, C.; Cano, A.; Acosta-Martinez, V.; Veum, K.S.; Moore-Kucera, J. A comparison between fatty acid methyl ester profiling methods (PLFA and EL-FAME) as soil health indicators. Soil Sci. Soc. Am. J. 2020, 84, 1153–1169. [Google Scholar] [CrossRef]
- Zelles, L. Fatty acid patterns of microbial phospholipids and lipopolysaccharides. In Methods in Soil Biology; Schinner, F., Öhlinger, R., Kandeler, E., Margesin, R., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 80–93. [Google Scholar]
- Weil, R.R.; Islam, K.R.; Stine, M.A.; Gruver, J.B.; Samson-Liebig, S.E. Estimating active carbon for soil quality assessment: A simplified method for laboratory and field use. Am. J. Altern. Agric. 2003, 18, 3–17. [Google Scholar] [CrossRef]
- Culman, S.W.; Freeman, M.; Snapp, S.S. Procedure for the Determination of Permanganate Oxidizable Carbon. Kellogg Biological Station-Long Term Ecological Research Protocols, Hickory Corners, MI. 2012. Available online: http://lter.kbs.msu.edu/protocols/133 (accessed on 8 June 2016).
- Brookes, P.C.; Landman, A.; Pruden, G.; Jenkinson, D.S. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 1985, 17, 837–842. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Wu, J.; Joergensen, R.G.; Pommerening, B.; Chaussod, R.; Brookes, P.C. Measurement of soil microbial biomass C by fumigation extraction—An autoclaved procedure. Soil. Biol. Biochem. 1990, 22, 1167–1169. [Google Scholar] [CrossRef]
- Jenkinson, D.S. Determination of microbial biomass carbon and nitrogen in soil. In Advances in Nitrogen Cycling in Agricultural Ecosystems; Wilson, J.R., Ed.; CAB International: Wallingford, UK, 1988; pp. 368–386. [Google Scholar]
- Acosta-Martínez, V.; Pérez-Guzmán, L.; Johnson, J.M. Simultaneous determination of β-glucosidase, β-glucosaminidase, acid phosphomonoesterase, and arylsulfatase activities in a soil sample for a biogeochemical cycling index. Appl. Soil Ecol. 2019, 142, 72–80. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Version 4.1.1. Available online: https://www.r-project.org/ (accessed on 12 June 2023).
- Cano, A.; Núñez, A.; Acosta-Martinez, V.; Schipanski, M.; Ghimire, R.; Rice, C.; West, C. Current knowledge and future research directions to link soil health and water conservation in the Ogallala Aquifer region. Geoderma 2018, 328, 109–118. [Google Scholar] [CrossRef]
- Halvorson, A.D.; Wienhold, B.J.; Black, A.L. Tillage, Nitrogen, and Cropping System Effects on Soil Carbon Sequestration. Soil Sci. Soc. Am. J. 2002, 66, 906–912. [Google Scholar] [CrossRef]
- Thapa, V.R.; Ghimire, R.; Acosta-Martínez, V.; Marsalis, M.A.; Schipanski, M.E. Cover crop biomass and species composition affect soil microbial community structure and enzyme activities in semiarid cropping systems. Appl. Soil Ecol. 2021, 157, 103735. [Google Scholar] [CrossRef]
- Calderón, F.J.; Nielsen, D.; Acosta-Martínez, V.; Vigil, M.F.; Lyon, D. Cover Crop and Irrigation Effects on Soil Microbial Communities and Enzymes in Semiarid Agroecosystems of the Central Great Plains of North America. Pedosphere 2016, 26, 192–205. [Google Scholar] [CrossRef]
- Rosenzweig, S.T.; Stromberger, M.E.; Schipanski, M.E. Intensified dryland crop rotations support greater grain production with fewer inputs. Agric. Ecosyst. Environ. 2018, 264, 63–72. [Google Scholar] [CrossRef]
- Frey, S.D. Mycorrhizal fungi as mediators of soil organic matter dynamics. Annu. Rev. Ecol. Evol. Syst. 2019, 50, 237–259. [Google Scholar] [CrossRef]
- Morris, E.K.; Morris, D.J.P.; Vogt, S.; Gleber, S.-C.; Bigalke, M.; Wilcke, W.; Rillig, M.C. Visualizing the dynamics of soil aggregation as affected by arbuscular mycorrhizal fungi. ISME J. 2019, 13, 1639–1646. [Google Scholar] [CrossRef]
- Allen, V.G.; Brown, C.P.; Kellison, R.; Segarra, E.; Green, C.J.; Wheeler, T.A.; Dotray, P.A.; Conkwright, J.C.; Green, C.J.; Acosta-Martinez, V. Integrating cotton and beef production to reduce water withdrawal from the Ogallala Aquifer in the Southern High Plains. Agron. J. 2005, 97, 556–567. [Google Scholar] [CrossRef]
- Allen, V.G.; Brown, C.P.; Segarra, E.; Green, C.J.; Wheeler, T.A.; AcostaMartinez, V.; Zobeck, T.M. In search of sustainable agricultural systems for the Llano Estacado of the U.S. Southern High Plains. Agric. Ecosyst. Environ. 2008, 124, 3–12. [Google Scholar] [CrossRef]
- Allen, V.G.; Brown, C.P.; Kellison, R.; Green, P.; Zilverberg, C.J.; Johnson, P.; Weinheimer, J.; Wheeler, T.; Segarra, E.; Acosta-Martinez, V.; et al. Integrating Cotton and Beef Production in the Texas Southern High Plains: I. Water Use and Measures of Productivity. Agron. J. 2012, 104, 1625–1642. [Google Scholar] [CrossRef]
- Burke, J.A.; Lewis, K.L.; DeLaune, P.B.; Cobos, C.J.; Keeling, J.W. Soil Water Dynamics and Cotton Production following Cover Crop Use in a Semi-Arid Ecoregion. Agronomy 2022, 12, 1306. [Google Scholar] [CrossRef]
- Paye, W.S.; Ghimire, R.; Acharya, P.; Nilahyane, A.; Mesbah, A.O.; Marsalis, M.A. Cover crop water use and corn silage production in -semi-arid irrigated conditions. Agric. Water Manag. 2022, 260, 107275. [Google Scholar] [CrossRef]
- Paye, W.S.; Acharya, P.; Ghimire, R. Water productivity of forage sorghum in response to winter cover crops in semi-arid irrigated conditions. Field Crop. Res. 2022, 283, 108552. [Google Scholar] [CrossRef]
- Acharya, P.; Ghimire, R.; Acosta-Martinez, V. Mechanisms of cover crop-mediated soil carbon storage in a semi-arid irrigated cropping. 2023; under review. [Google Scholar]
- Rinot, O.; Levy, G.J.; Steinberger, Y.; Svoray, T.; Eshel, G. Soil health assessment: A critical review of current methodologies and a proposed new approach. Sci. Total. Environ. 2019, 648, 1484–1491. [Google Scholar] [CrossRef]
- Wade, J.; Culman, S.W.; Gasch, C.K.; Lazcano, C.; Maltais-Landry, G.; Margenot, A.J.; Martin, T.K.; Potter, T.S.; Roper, W.R.; Ruark, M.D.; et al. Rigorous, empirical, and quantitative: A proposed pipeline for soil health assessments. Soil Biol. Biochem. 2022, 170, 108710. [Google Scholar] [CrossRef]
- Stott, D.E.; Andrews, S.S.; Liebig, M.A.; Wienhold, B.J.; Karlen, D.L. Evaluation of β-Glucosidase Activity as a Soil Quality Indicator for the Soil Management Assessment Framework. Soil Sci. Soc. Am. J. 2010, 74, 107–119. [Google Scholar] [CrossRef]
- Veum, K.S.; Goyne, K.W.; Kremer, R.J.; Miles, R.J.; Sudduth, K.A. Biological indicators of soil quality and soil organic matter characteristics in an agricultural management continuum. Biogeochemistry 2014, 117, 81–99. [Google Scholar] [CrossRef]
- Pérez-Guzmán, L.; Phillips, L.A.; Acevedo, M.A.; Acosta-Martínez, V. Comparing biological methods for soil health assessments: EL-FAME, enzyme activities, and qPCR. Soil Sci. Soc. Am. J. 2021, 85, 636–653. [Google Scholar] [CrossRef]
- Bandick, A.K.; Dick, R.P. Field management effects on soil enzyme activities. Soil Biol. Biochem. 1999, 31, 1471–1479. [Google Scholar] [CrossRef]
- Cotton, J.; Acosta-Martínez, V.; Moore-Kucera, J.; Burow, G. Early changes due to sorghum biofuel cropping systems in soil microbial communities and metabolic functioning. Biol. Fertil. Soils 2013, 49, 403–413. [Google Scholar] [CrossRef]
- Cotton, J.; Acosta-Martínez, V. Intensive Tillage Converting Grassland to Cropland Immediately Reduces Soil Microbial Community Size and Organic Carbon. Agric. Environ. Lett. 2018, 3, 180047. [Google Scholar] [CrossRef]
- Stewart, R.D.; Jian, J.; Gyawali, A.J.; Thomason, W.E.; Badgley, B.D.; Reiter, M.S.; Strickland, M.S. What We Talk about When We Talk about Soil Health. Agric. Environ. Lett. 2018, 3, 180033. [Google Scholar] [CrossRef]
- Frankenberger, W.T., Jr.; Dick, W.A. Relationships Between Enzyme Activities and Microbial Growth and Activity Indices in Soil. Soil Sci. Soc. Am. J. 1983, 47, 945–951. [Google Scholar] [CrossRef]
- Ladoni, M.; Basir, A.; Robertson, P.G.; Kravchenko, A.N. Scaling-up: Cover crops differentially influence soil carbon in agricultural fields with diverse topography. Agric. Ecosyst. Environ. 2016, 225, 93–103. [Google Scholar] [CrossRef]
Tillage and Water Management | Cropping History | Soil Properties (Determined in 2019) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Field Size (ha) | Year No-Till Began | Soil Series | Sand | Silt | Clay | EC 1 | Total C | |||||||
Site | Irrigation | 2019 | 2020 | 2021 | 2022 | --------(%)------- | pH | (mS cm−3) | g kg−1 Soil | |||||
1 | 109.6 | 2017 | Dryland | Ct (Wt) | Ct (Wt) | Ct (Wt) | Ct (Wt) | Acuff | 71.3 | 14.7 | 14.0 | 7.7 | 227 | 3.5 |
2 | 12.4 | Ct (Wt) | Ct (Wt) | Ct (Wt) | Ct (Wt) | Amarillo | 62.3 | 20.0 | 17.7 | 7.4 | 256 | 4.8 | ||
3 | 16.5 | Ct (Wt) | Ct (Wt) | Ct (Wt) | Ct (Wt) | Olton | 62.3 | 19.3 | 18.3 | 7.3 | 246 | 4.8 | ||
4 | 13.8 | Ct (Wt) | -- | -- | -- | Estacado | 47.0 | 26.0 | 27.0 | 7.1 | 285 | 8.4 | ||
5 | 24.9 | Ct(Wt) | -- | -- | -- | Olton | 53.7 | 22.0 | 24.3 | 7.9 | 581 | 8.9 | ||
6 | 49.1 | Ct (Wt) | Ct (Wt) | Ct (Wt) | Ct (Wt) | Acuff | 69.0 | 15.3 | 15.7 | 7.4 | 169 | 4.6 | ||
7 | 9.6 | Ct (Wt) | Ct (Wt) | Ct (Wt) | Ct (Wt) | Estacado | 61.0 | 18.0 | 21.0 | 7.2 | 159 | 4.7 | ||
8 | 50.3 | 2017 | Center Pivot | Ct (Wt) | Ct (Wt) | Ct (Wt) | Ct (Wt) | Amarillo | 61.7 | 19.3 | 19.0 | 7.8 | 675 | 6.5 |
9 | 50.3 | Ct (Wt) | -- | -- | -- | Olton | 57.7 | 19.3 | 23.0 | 7.4 | 432 | 6.3 | ||
10 | 22.8 | Ct (Wt) | Ct (Wt) | Ct (Wt) | Ct (Wt) | Olton | 61.0 | 18.7 | 20.3 | 7.9 | 487 | 6.9 | ||
11 | 28.6 | 2017 | Subsurface Drip | Ct (Wt) | Ct (Wt) | Ct (Wt) | Ct (Wt) | Estacado | 53.7 | 21.3 | 25.0 | 7.3 | 453 | 8.2 |
12 | 21.8 | Ct (Wt) | Ct (Wt) | Ct (Wt) | Ct (Wt) | Estacado | 45.0 | 21.3 | 33.7 | 7.0 | 523 | 10.4 | ||
13 | 61.1 | 2019 | Dryland | Conv. Ct | Ct (Wt) | Ct (Wt) | Ct (Wt) | Acuff | 64.3 | 18.0 | 17.7 | 7.9 | 211 | 3.6 |
14 | 25.4 | Conv. Ct | Ct (Wt) | Ct (Wt) | Ct (Wt) | Estacado | 49.0 | 21.3 | 29.7 | 8.0 | 391 | 6.5 | ||
15 | 23.9 | Conv. Till | Dryland | Conv. Ct | Conv. Ct | Conv. Ct | Conv. Ct | Estacado | 55.3 | 22.0 | 22.7 | 7.5 | 214 | 4.8 |
16 | 9.3 | Grassland | Dryland | CRP | CRP | CRP | CRP | Estacado | 69.0 | 16.0 | 15.0 | 7.7 | 443 | 12.0 |
17 | 14.4 | Grassland | Dryland | CRP | CRP | -- | -- | Amarillo | 62.0 | 18.0 | 20.0 | 7.4 | 313 | 8.2 |
18 | 65.2 | Grassland | Dryland | CRP | CRP | -- | -- | Olton | 45.7 | 28.0 | 26.3 | 7.4 | 368 | 14.9 |
Cotton Agroecosystems | |||||
---|---|---|---|---|---|
Tilled | No-Till and Winter Wheat Cover Crop | CRP | |||
Soil Property | Dryland | Dryland | Center Pivot | Drip | Grassland |
(mg kg−1 soil) | |||||
Microbial Biomass C | 39.6 (9.5) | 42.0 (7.0) | 41.2 (8.8) | 29.4 (7.7) | 37.6 (8.7) |
Microbial Biomass N | 1.97 (0.24) b | 2.41 (0.26) b | 2.88 (0.26) ab | 2.37 (0.37) b | 3.69 (0.46) a |
POXC | 35.7 (1.4) | 39.0 (1.6) | 41.3 (1.2) | 42.9 (1.5) | 39.8 (1.3) |
(mg p-nitrophenol kg−1 soil h−1) | |||||
CNPS Activity | 16.6 (3.4) | 28.5 (3.1) | 24.2 (2.5) | 23.5 (3.8) | 23.4 (4.9) |
FAME | (nmol g−1 soil) | ||||
Total | 14.8 (0.6) c | 21.9 (0.6) b | 22.2 (2.2) ab | 23.6 (1.0) ab | 28.6 (4.6) a |
Bacterial Sum | 6.8 (0.3) b | 10.1 (0.4) a | 10.6 (1.0) a | 10.3 (0.4) a | 10.8 (1.6) a |
Saprophytic Fungi (18:2ω6c) | 0.70 (0.08) b | 1.35 (0.10) a | 1.21 (0.18) a | 1.37 (0.12) a | 1.01 (0.25) ab |
AMF (16:1ω5c) | 0.36 (0.04) b | 0.44 (0.03) b | 0.54 (0.11) b | 0.45 (0.05) b | 5.09 (1.37) a |
Soil Property | 2019 | 2020 | 2021 | 2022 |
---|---|---|---|---|
Year 1 | Year 2 | Year 3 | ||
POXC | (mg kg−1 soil) | |||
Value | 172 (46) | 178 (48) | 170 (35) | 222 (17) |
% Change | - | 3 | −1 | 29 |
CNPS Activity | (mg p-nitrophenol kg−1 soil h−1) | |||
Value | 74 (6) | 65 (14) | 108 (16) | 119 (17) |
% Change | - | −12 | 46 | 61 |
FAME Total | (nmol g−1 soil) | |||
Value | 71 (19) | 55 (12) | 114 (20) | 115 (40) |
% Change | - | −23 | 61 | 62 |
Bacterial Sum | ||||
Value | 32.7 (10.0) | 26.5 (6.3) | 56.7 (11.1) | 56.2 (21.3) |
% Change | - | −19 | 73 | 72 |
Saprophytic Fungi (18:2ω6c) | ||||
Value | 3.75 (1.76) | 2.12 (0.44) | 5.72 (0.41) | 5.98 (2.75) |
% Change | - | −43 | 53 | 59 |
AMF (16:1ω5c) | ||||
Value | 1.68 (0.17) | 1.28 (0.15) | 3.61 (0.11) | 3.33 (0.42) |
% Change | - | −24 | 115 ** | 98 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acosta-Martinez, V.; Cotton, J.; Slaughter, L.C.; Ghimire, R.; Roper, W. Soil Health Assessment to Evaluate Conservation Practices in SemiArid Cotton Systems at Producer Site Scale. Soil Syst. 2023, 7, 72. https://doi.org/10.3390/soilsystems7030072
Acosta-Martinez V, Cotton J, Slaughter LC, Ghimire R, Roper W. Soil Health Assessment to Evaluate Conservation Practices in SemiArid Cotton Systems at Producer Site Scale. Soil Systems. 2023; 7(3):72. https://doi.org/10.3390/soilsystems7030072
Chicago/Turabian StyleAcosta-Martinez, Veronica, Jon Cotton, Lindsey C. Slaughter, Rajan Ghimire, and Wayne Roper. 2023. "Soil Health Assessment to Evaluate Conservation Practices in SemiArid Cotton Systems at Producer Site Scale" Soil Systems 7, no. 3: 72. https://doi.org/10.3390/soilsystems7030072
APA StyleAcosta-Martinez, V., Cotton, J., Slaughter, L. C., Ghimire, R., & Roper, W. (2023). Soil Health Assessment to Evaluate Conservation Practices in SemiArid Cotton Systems at Producer Site Scale. Soil Systems, 7(3), 72. https://doi.org/10.3390/soilsystems7030072