Revealing the Combined Effects of Microplastics, Zn, and Cd on Soil Properties and Metal Accumulation by Leafy Vegetables: A Preliminary Investigation by a Laboratory Experiment
Abstract
:1. Introduction
1.1. Identity and Distinguishing Features of the Most Common Microplastics in Soil Environments
1.2. Effects of Microplastics on Metal Uptake by Plants
2. Materials and Methods
2.1. Sampling Areas and Soil Sample Preparation
2.2. Preparation of Microplastics
2.3. Pot Experiments
2.4. Analyses of Soil
2.5. Chemical Analyses of Lettuce Tissues
2.6. Statistical Analysis, Soil Pollution Indices and Metal Mobility Indicators
3. Results and Discussion
3.1. Influence of Microplastics on Soil Chemical Properties
3.2. Influence of Microplastics on Metal Availability
3.3. Effects of Microplastics on Zn and Cd Levels in Lettuce Plants
3.4. The Impact of Polyethylene Microplastics on Soil Pollution Indices
3.5. The Impact of Polyethylene Microplastics on Soil-to-Plant System Indices
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, X.; Lu, J.; Du, M.; Xu, X.; Beiyuan, J.; Sarkar, B.; Bolan, N.; Xu, W.; Xu, S.; Chen, X.; et al. Particulate Plastics-Plant Interaction in Soil and Its Implications: A Review. Sci. Total Environ. 2021, 792, 148337. [Google Scholar] [CrossRef]
- Allouzi, M.M.A.; Tang, D.Y.Y.; Chew, K.W.; Rinklebe, J.; Bolan, N.; Allouzi, S.M.A.; Show, P.L. Micro (Nano) Plastic Pollution: The Ecological Influence on Soil-Plant System and Human Health. Sci. Total Environ. 2021, 788, 147815. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhang, Y.; Tan, W.; Zhang, Z. Microplastics as an Emerging Environmental Pollutant in Agricultural Soils: Effects on Ecosystems and Human Health. Front. Environ. Sci. 2022, 10, 217. [Google Scholar] [CrossRef]
- Horton, A.A.; Walton, A.; Spurgeon, D.J.; Lahive, E.; Svendsen, C. Microplastics in Freshwater and Terrestrial Environments: Evaluating the Current Understanding to Identify the Knowledge Gaps and Future Research Priorities. Sci. Total Environ. 2017, 586, 127–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, R.C.; Olson, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.G.; McGonigle, D.; Russell, A.E. Lost at Sea: Where Is All the Plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef]
- Akdogan, Z.; Guven, B. Microplastics in the Environment: A Critical Review of Current Understanding and Identification of Future Research Needs. Environ. Pollut. 2019, 254, 113011. [Google Scholar] [CrossRef]
- Wang, F.; Wang, X.; Song, N. Polyethylene Microplastics Increase Cadmium Uptake in Lettuce (Lactuca sativa L.) by Altering the Soil Microenvironment. Sci. Total Environ. 2021, 784, 147133. [Google Scholar] [CrossRef]
- Gharahi, N.; Zamani-Ahmadmahmoodi, R. Effect of Plastic Pollution in Soil Properties and Growth of Grass Species in Semi-Arid Regions: A Laboratory Experiment. Environ. Sci. Pollut. Res. 2022, 29, 59118–59126. [Google Scholar] [CrossRef]
- Lozano, Y.M.; Rillig, M.C. Effects of Microplastic Fibers and Drought on Plant Communities. Environ. Sci. Technol. 2020, 54, 6166–6173. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Q.; Adams, C.A.; Sun, Y.; Zhang, S. Effects of Microplastics on Soil Properties: Current Knowledge and Future Perspectives. J. Hazard. Mater. 2022, 424, 127531. [Google Scholar] [CrossRef]
- Boots, B.; Russell, C.W.; Green, D.S. Effects of Microplastics in Soil Ecosystems: Above and below Ground. Environ. Sci. Technol. 2019, 53, 11496–11506. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Hou, J.; Dang, Q.; Cui, D.; Xi, B.; Tan, W. Decrease in Bioavailability of Soil Heavy Metals Caused by the Presence of Microplastics Varies across Aggregate Levels. J. Hazard. Mater. 2020, 395, 122690. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Wang, Q.; Sun, Y.; Zhang, S.; Wang, F. Microplastics Change Soil Properties, Heavy Metal Availability and Bacterial Community in a Pb-Zn-Contaminated Soil. J. Hazard. Mater. 2022, 424, 127364. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Li, C.; Zhang, C.; Han, B.; Wang, X.; Zhang, J.; Wang, J.; Cao, B.; Zhao, Y.; Chen, Y.; et al. Typical Microplastics in Field and Facility Agriculture Dynamically Affect Available Cadmium in Different Soil Types through Physicochemical Dynamics of Carbon, Iron and Microbes. J. Hazard. Mater. 2022, 440, 129726. [Google Scholar] [CrossRef]
- Shi, R.; Liu, W.; Lian, Y.; Wang, Q.; Zeb, A.; Tang, J. Phytotoxicity of Polystyrene, Polyethylene and Polypropylene Microplastics on Tomato (Lycopersicon esculentum L.). J. Environ. Manag. 2022, 317, 115441. [Google Scholar] [CrossRef]
- Teng, L.; Zhu, Y.; Li, H.; Song, X.; Shi, L. The Phytotoxicity of Microplastics to the Photosynthetic Performance and Transcriptome Profiling of Nicotiana Tabacum Seedlings. Ecotoxicol. Environ. Saf. 2022, 231, 113155. [Google Scholar] [CrossRef]
- Qi, Y.; Yang, X.; Pelaez, A.M.; Huerta Lwanga, E.; Beriot, N.; Gertsen, H.; Garbeva, P.; Geissen, V. Macro- and Micro- Plastics in Soil-Plant System: Effects of Plastic Mulch Film Residues on Wheat (Triticum aestivum) Growth. Sci. Total Environ. 2018, 645, 1048–1056. [Google Scholar] [CrossRef]
- Machado, A.A.D.S.; Lau, C.W.; Kloas, W.; Bergmann, J.; Bachelier, J.B.; Faltin, E.; Becker, R.; Görlich, A.S.; Rillig, M.C. Microplastics Can Change Soil Properties and Affect Plant Performance. Environ. Sci. Technol. 2019, 53, 6044–6052. [Google Scholar] [CrossRef] [Green Version]
- Gan, Q.; Cui, J.; Jin, B. Environmental Microplastics: Classification, Sources, Fates, and Effects on Plants. Chemosphere 2023, 313, 137559. [Google Scholar] [CrossRef]
- He, D.; Guo, T.; Li, J.; Wang, F. Optimize Lettuce Washing Methods to Reduce the Risk of Microplastics Ingestion: The Evidence from Microplastics Residues on the Surface of Lettuce Leaves and in the Lettuce Washing Wastewater. Sci. Total Environ. 2023, 868, 161726. [Google Scholar] [CrossRef]
- Huang, F.; Hu, J.; Chen, L.; Wang, Z.; Sun, S.; Zhang, W.; Jiang, H.; Luo, Y.; Wang, L.; Zeng, Y.; et al. Microplastics May Increase the Environmental Risks of Cd via Promoting Cd Uptake by Plants: A Meta-Analysis. J. Hazard. Mater. 2023, 448, 130887. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Huang, D.; Ouyang, Z.; Guo, X. The Effects of Microplastics on Soil Ecosystem: A Review. Curr. Opin. Environ. Sci. Health 2022, 26, 100344. [Google Scholar] [CrossRef]
- Huang, C.; Ge, Y.; Yue, S.; Zhao, L.; Qiao, Y. Microplastics Aggravate the Joint Toxicity to Earthworm Eisenia Fetida with Cadmium by Altering Its Availability. Sci. Total Environ. 2021, 753, 142042. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, X.; Zhang, S.; Zhang, S.; Adams, C.A.; Sun, Y. Effects of Co-Contamination of Microplastics and Cd on Plant Growth and Cd Accumulation. Toxics 2020, 8, 36. [Google Scholar] [CrossRef]
- Wen, X.; Yin, L.; Zhou, Z.; Kang, Z.; Sun, Q.; Zhang, Y.; Long, Y.; Nie, X.; Wu, Z.; Jiang, C. Microplastics Can Affect Soil Properties and Chemical Speciation of Metals in Yellow-Brown Soil. Ecotoxicol. Environ. Saf. 2022, 243, 113958. [Google Scholar] [CrossRef]
- Hurley, R.R.; Nizzetto, L. Fate and Occurrence of Micro(Nano)Plastics in Soils: Knowledge Gaps and Possible Risks. Curr. Opin. Environ. Sci. Health 2018, 1, 6–11. [Google Scholar] [CrossRef]
- Golia, E.E.; Angelaki, A.; Giannoulis, K.D.; Skoufogianni, E.; Bartzialis, D.; Cavalaris, C.; Vleioras, S. Evaluation of Soil Properties, Irrigation and Solid Waste Application Levels on Cu and Zn Uptake by Industrial Hemp. Agron. Res. 2021, 19, 92–99. [Google Scholar] [CrossRef]
- Golia, E.E.; Chartodiplomenou, M.A.; Papadimou, S.G.; Kantzou, O.D.; Tsiropoulos, N.G. Influence of Soil Inorganic Amendments on Heavy Metal Accumulation by Leafy Vegetables. Environ. Sci. Pollut. Res. 2021, 30, 8617–8632. [Google Scholar] [CrossRef]
- Golia, E.E.; Bethanis, J.; Ntinopoulos, N.; Kaffe, G.-G.; Komnou, A.A.; Vasilou, C. Investigating the Potential of Heavy Metal Accumulation from Hemp. The Use of Industrial Hemp (Cannabis sativa L.) for Phytoremediation of Heavily and Moderated Polluted Soils. Sustain. Chem. Pharm. 2023, 31, 100961. [Google Scholar] [CrossRef]
- Dioses-Salinas, D.C.; Pizarro-Ortega, C.I.; De-la-Torre, G.E. A Methodological Approach of the Current Literature on Microplastic Contamination in Terrestrial Environments: Current Knowledge and Baseline Considerations. Sci. Total Environ. 2020, 730, 139164. [Google Scholar] [CrossRef]
- Ren, X.; Tang, J.; Wang, L.; Liu, Q. Microplastics in Soil-Plant System: Effects of Nano/Microplastics on Plant Photosynthesis, Rhizosphere Microbes and Soil Properties in Soil with Different Residues. Plant Soil. 2021, 462, 561–576. [Google Scholar] [CrossRef]
- Roy, T.; Dey, T.K.; Jamal, M. Microplastic/Nanoplastic Toxicity in Plants: An Imminent Concern. Environ. Monit. Assess. 2023, 195, 1–35. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Wang, Q.; Wei, Z.; Jiang, J.; Deng, J. Effects of Microplastic Type on Growth and Physiology of Soil Crops: Implications for Farmland Yield and Food Quality. Environ. Pollut. 2023, 326, 121512. [Google Scholar] [CrossRef]
- Golia, E.E.; Diakoloukas, V. Soil Parameters Affecting the Levels of Potentially Harmful Metals in Thessaly Area, Greece: A Robust Quadratic Regression Approach of Soil Pollution Prediction. Environ. Sci. Pollut. Res. 2022, 29, 29544–29561. [Google Scholar] [CrossRef] [PubMed]
- Golia, E.E. The Impact of Heavy Metal Contamination on Soil Quality and Plant Nutrition. Sustainable Management of Moderate Contaminated Agricultural and Urban Soils, Using Low Cost Materials and Promoting Circular Economy. Sustain. Chem. Pharm. 2023, 33, 101046. [Google Scholar] [CrossRef]
- Golia, E.E.; Papadimou, S.G.; Cavalaris, C.; Tsiropoulos, N.G. Level of Contamination Assessment of Potentially Toxic Elements in the Urban Soils of Volos City (Central Greece). Sustainability 2021, 13, 2029. [Google Scholar] [CrossRef]
- Zhao, T.; Lozano, Y.M.; Rillig, M.C. Microplastics Increase Soil PH and Decrease Microbial Activities as a Function of Microplastic Shape, Polymer Type, and Exposure Time. Front. Environ. Sci. 2021, 9, 101–114. [Google Scholar] [CrossRef]
- Degryse, F.; da Silva, R.C.; Baird, R.; Cakmak, I.; Yazici, M.A.; McLaughlin, M.J. Comparison and Modelling of Extraction Methods to Assess Agronomic Effectiveness of Fertilizer Zinc. J. Plant Nutr. Soil Sci. 2020, 183, 248–259. [Google Scholar] [CrossRef] [Green Version]
- Alexakis, D.E.; Bathrellos, G.D.; Skilodimou, H.D.; Gamvroula, D.E. Land Suitability Mapping Using Geochemical and Spatial Analysis Methods. Appl. Sci. 2021, 11, 5404. [Google Scholar] [CrossRef]
- Alexakis, D.E.; Bathrellos, G.D.; Skilodimou, H.D.; Gamvroula, D.E. Spatial Distribution and Evaluation of Arsenic and Zinc Content in the Soil of a Karst Landscape. Sustainability 2021, 13, 6976. [Google Scholar] [CrossRef]
- Chen, L.; Han, L.; Feng, Y.; He, J.; Xing, B. Soil Structures and Immobilization of Typical Contaminants in Soils in Response to Diverse Microplastics. J. Hazard. Mater. 2022, 438, 129555. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Liu, R.; Wang, X.; Zhang, J.; Wang, J.; Cao, B.; Zhao, Y.; Xu, L.; Chen, Y.; Zou, G. How Do Controlled-Release Fertilizer Coated Microplastics Dynamically Affect Cd Availability by Regulating Fe Species and DOC Content in Soil? Sci. Total Environ. 2022, 850, 157886. [Google Scholar] [CrossRef] [PubMed]
- Rillig, M.C.; Lehmann, A.; de Souza Machado, A.A.; Yang, G. Microplastic Effects on Plants. New Phytol. 2019, 223, 1066–1070. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Wang, X.; Yin, L.; Chen, S.; Tao, J.; Zhou, W.; Chen, H.; Zhang, G.; Xiao, R. Research Progress of Microplastics in Soil-Plant System: Ecological Effects and Potential Risks. Sci. Total Environ. 2022, 812, 151487. [Google Scholar] [CrossRef]
- Su, R.; Ou, Q.; Wang, H.; Dai, X.; Chen, Y.; Luo, Y.; Yao, H.; Ouyang, D.; Li, Z.; Wang, Z. Organic–Inorganic Composite Modifiers Enhance Restoration Potential of Nerium oleander L. to Lead–Zinc Tailing: Application of Phytoremediation. Environ. Sci. Pollut. Res. 2023, 30, 56569–56579. [Google Scholar] [CrossRef] [PubMed]
- Esposito, M.P.; Domingos, M. Establishing the Redox Potential of Tibouchina pulchra (Cham.) Cogn., a Native Tree Species from the Atlantic Rain Forest, in the Vicinity of an Oil Refinery in SE Brazil. Environ. Sci. Pollut. Res. 2014, 21, 5484–5495. [Google Scholar] [CrossRef]
- Xu, G.; Lin, X.; Yu, Y. Different Effects and Mechanisms of Polystyrene Micro- and Nano-Plastics on the Uptake of Heavy Metals (Cu, Zn, Pb and Cd) by Lettuce (Lactuca sativa L.). Environ. Pollut. 2023, 316, 120656. [Google Scholar] [CrossRef]
- Pinto-Poblete, A.; Retamal-Salgado, J.; López, M.D.; Zapata, N.; Sierra-Almeida, A.; Schoebitz, M. Combined Effect of Microplastics and Cd Alters the Enzymatic Activity of Soil and the Productivity of Strawberry Plants. Plants 2022, 11, 536. [Google Scholar] [CrossRef]
- Su, R.; Xie, T.; Yao, H.; Chen, Y.; Wang, H.; Dai, X.; Wang, Y.; Shi, L.; Luo, Y. Lead Responses and Tolerance Mechanisms of Koelreuteria Paniculata: A Newly Potential Plant for Sustainable Phytoremediation of Pb-Contaminated Soil. Int. J. Environ. Res. Public Health 2022, 19, 14968. [Google Scholar] [CrossRef]
- Dou, C.-M.; Fu, X.-P.; Chen, X.-C.; Shi, J.-Y.; Chen, Y.-X. Accumulation and Detoxification of Manganese in Hyperaccumulator Phytolacca americana. Plant. Biol. 2009, 11, 664–670. [Google Scholar] [CrossRef]
- Sun, H.; Lei, C.; Xu, J.; Li, R. Foliar Uptake and Leaf-to-Root Translocation of Nanoplastics with Different Coating Charge in Maize Plants. J. Hazard. Mater. 2021, 416, 125854. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; He, D.; Zhang, X.; Li, X.; Chen, Y.; Wei, G.; Zhang, Y.; Ok, Y.S.; Luo, Y. National-Scale Distribution of Micro(Meso)Plastics in Farmland Soils across China: Implications for Environmental Impacts. J. Hazard. Mater. 2022, 424, 127283. [Google Scholar] [CrossRef] [PubMed]
pH | EC (Electric Conductivity) (μS/cm) | OM (Organic Matter) (%) | CEC (Cation-Exchange Capacity) (cmolc/kg) | Clay (%) | Texture | Cd (mg/kg) | Zn (mg/kg) | |
---|---|---|---|---|---|---|---|---|
Soil 1 (Agricultural) | 7.4 ± 0.3 | 2234 ± 54 | 2.8 ± 0.2 | 30.4 | 47 ± 1.1 | CL (Clay Loam) | 0.9 ± 0.1 | 74 ± 1.2 |
Soil 2 (Urban) | 8.1 ± 0.5 | 2093 ± 49 | 2.1 ± 0.4 | 26.5 | 46.5 ± 2.1 | CL | 1.1 ± 0.3 | 79 ± 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bethanis, J.; Golia, E.E. Revealing the Combined Effects of Microplastics, Zn, and Cd on Soil Properties and Metal Accumulation by Leafy Vegetables: A Preliminary Investigation by a Laboratory Experiment. Soil Syst. 2023, 7, 65. https://doi.org/10.3390/soilsystems7030065
Bethanis J, Golia EE. Revealing the Combined Effects of Microplastics, Zn, and Cd on Soil Properties and Metal Accumulation by Leafy Vegetables: A Preliminary Investigation by a Laboratory Experiment. Soil Systems. 2023; 7(3):65. https://doi.org/10.3390/soilsystems7030065
Chicago/Turabian StyleBethanis, John, and Evangelia E. Golia. 2023. "Revealing the Combined Effects of Microplastics, Zn, and Cd on Soil Properties and Metal Accumulation by Leafy Vegetables: A Preliminary Investigation by a Laboratory Experiment" Soil Systems 7, no. 3: 65. https://doi.org/10.3390/soilsystems7030065
APA StyleBethanis, J., & Golia, E. E. (2023). Revealing the Combined Effects of Microplastics, Zn, and Cd on Soil Properties and Metal Accumulation by Leafy Vegetables: A Preliminary Investigation by a Laboratory Experiment. Soil Systems, 7(3), 65. https://doi.org/10.3390/soilsystems7030065