Distribution of Soil Nutrients and Ancient Agriculture on Young Volcanic Soils of Ta‘ū, American Samoa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Soil Sampling
2.3. Soil Physical and Chemical Analyses
2.4. Vegetative Survey
2.5. Archaeological Sampling
2.6. Statistical analysis
3. Results
3.1. Soil Properties
3.2. Soil Predictors of Traditional Agricultural Development
3.3. Segmented Regression Analysis
3.4. Vegetative Survey
3.5. Archaeological Vegetation Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stockdale, E.A.; Shepherd, M.A.; Fortune, S.; Cuttle, S.P. Soil Fertility in Organic Farming Systems–Fundamentally Different? Soil Use Manag. 2002, 18, 301–308. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human Domination of Earth’s Ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Bateman, J.B.; Chadwick, O.A. A “Toy” Model of Biogeochemical Dynamics on Climate Gradients. Biogeochemistry 2021, 154, 183–210. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Treseder, K.K.; Howarth, R.W.; Menge, D.N. A “Toy Model” Analysis of Causes of Nitrogen Limitation in Terrestrial Ecosystems. Biogeochemistry 2022, 160, 381–394. [Google Scholar] [CrossRef]
- Kirch, P.V. Hawaii as a Model System for Human Ecodynamics. Am. Anthropol. 2007, 109, 8–26. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Ladefoged, T.N.; Kirch, P.V.; Hartshorn, A.S.; Graves, M.W.; Hotchkiss, S.C.; Tuljapurkar, S.; Chadwick, O.A. Soils, Agriculture, and Society in Precontact Hawaii. Science 2004, 304, 1665–1669. [Google Scholar] [CrossRef]
- Ladefoged, T.N.; Kirch, P.V.; Gon III, S.M.; Chadwick, O.A.; Hartshorn, A.S.; Vitousek, P.M. Opportunities and Constraints for Intensive Agriculture in the Hawaiian Archipelago Prior to European Contact. J. Archaeol. Sci. 2009, 36, 2374–2383. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Chadwick, O.A.; Hilley, G.; Kirch, P.V.; Ladefoged, T.N. Erosion, Geological History, and Indigenous Agriculture: A Tale of Two Valleys. Ecosystems 2010, 13, 782–793. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Chadwick, O.A.; Hotchkiss, S.C.; Ladefoged, T.N.; Stevenson, C.M. Farming the Rock: A Biogeochemical Perspective on Intensive Agriculture in Polynesia. J. Pac. Archaeol. 2014, 5, 51–61. [Google Scholar]
- Quintus, S.; Cochrane, E.E. Pre-Contact Samoan Cultivation Practices in Regional and Theoretical Perspective. J. Isl. Coast. Archaeol. 2018, 13, 474–500. [Google Scholar] [CrossRef]
- Naidu, R.; Morrison, R.J.; Janik, L.; Asghar, M. Clay Mineralogy and Surface Charge Characteristics of Basaltic Soils from Western Samoa. Clay Miner. 1997, 32, 545–556. [Google Scholar] [CrossRef]
- Lincoln, N.K. Agroforestry Form and Ecological Adaptation in Ancient Hawai‘i: Extent of the Pākukui Swidden System of Hāmākua, Hawai‘i Island. Agric. Syst. 2020, 181, 102808. [Google Scholar] [CrossRef]
- Lincoln, N.K.; Vitousek, P. Indigenous Polynesian Agriculture in Hawai‘i. In Oxford Research Encyclopedia of Environmental Science; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Winter, K.; Lincoln, N.; Berkes, F.; Alegado, R.; Kurashima, N.; Frank, K.; Pascua, P.; Rii, Y.; Reppun, F.; Knapp, I. Ecomimicry in Indigenous Resource Management: Optimizing Ecosystem Services to Achieve Resource Abundance, with Examples from Hawai‘i. Ecol. Soc. 2020, 25. [Google Scholar] [CrossRef]
- Lincoln, N.; Chadwick, O.; Vitousek, P. Indicators of Soil Fertility and Opportunities for Precontact Agriculture in Kona, Hawai‘i. Ecosphere 2014, 5, 1–20. [Google Scholar] [CrossRef]
- Kirch, P.V.; Zimmerer, K.S. Roots of Conflict; School of Advanced Research Press: Santa Fe, NM, USA, 2011. [Google Scholar]
- Stice, G.D.; McCoy, F.W., Jr. The Geology of the Manu‘a Islands, Samoa. Pac. Sci. 1968, 22, 427–457. [Google Scholar]
- Nakamura, S. Soil Survey of American Samoa; Soil Conservation Service, USDA: Washington, DC, USA, 1984. [Google Scholar]
- Craig, P. Natural History Guide to American Samoa; National Park of American Samoa, Department of Marine and Wildlife Resouces, American Samoa Community College: Pago, American Samoa, 2009. [Google Scholar]
- McDougall, I.A.N. Age of Volcanism and Its Migration in the Samoa Islands. Geol. Mag. 2010, 147, 705–717. [Google Scholar] [CrossRef]
- Liu, Z.; Gurr, N.E.; Schmaedick, M.A.; Whistler, W.A.; Fischer, L. Vegetation Mapping of American Samoa; United States Department of Agriculture Forest Service American Samoa Community College: Pago, American Samoa, 2011. [Google Scholar]
- Quintus, S.; Day, S.S.; Smith, N.J. The Efficacy and Analytical Importance of Manual Feature Extraction Using Lidar Datasets. Adv. Archaeol. Pract. 2017, 5, 351–364. [Google Scholar] [CrossRef]
- Williams, S.P. Ocean-Island Flank Collapse on the South of Ta‘u, Manu‘a Group, Samoa Islands: Implications for Risk Management. Unpublshed. MSc Thesis, University of Canterbury, Christchurch, New Zealand, 2009. [Google Scholar]
- United States Department of Agriculture (USDA). Olotania Series. 1981. Available online: soilseries.sc.egov.usda.gov/ (accessed on 15 April 2018).
- Petchey, F.J. Radiocarbon Determinations from the Mulifanua Lapita Site, Upolu, Western Samoa. Radiocarbon 2001, 43, 63–68. [Google Scholar] [CrossRef]
- Clark, J.T.; Quintus, S.; Weisler, M.; St Pierre, E.; Nothdurft, L.; Feng, Y. Refining the Chronology for West Polynesian Colonization: New Data from the Samoan Archipelago. J. Archaeol. Sci. Rep. 2016, 6, 266–274. [Google Scholar] [CrossRef]
- Petchey, F.; Kirch, P.V. The Importance of Shell: Redating of the To’aga Site (Ofu Island, Manu‘a) and a Revised Chronology for the Lapita to Polynesian Plainware Transition in Tonga and Sāmoa. PLoS ONE 2019, 14, e0211990. [Google Scholar] [CrossRef]
- Quintus, S.; Huebert, J.; Day, S.; Lincoln, N.; Yoo, K.; Lee, T.; Filimoehala, D.; Autufuga, D. Tempo and Tradjectory of the Built Landscape on Ta‘u Island, Manu‘a Group, American Samoa: Integrating Extensive Radiocarbon Dating with Joint Posterior Modeling. Radiocarbon 2020, 62, 1317–1337. [Google Scholar] [CrossRef]
- Jennings, J.D.; Holmer, R.N. Archaeological Excavations in Western Samoa; Pacific Anthropolological Records, Biship Museum: Honolulu, HI, USA, 1980. [Google Scholar]
- Quintus, S. Historicizing Food Production in Polynesia: A Case Study of 2700 Years of Land Use on Ofu Island, American Samoa. J. Field Archaeol. 2018, 43, 222–235. [Google Scholar] [CrossRef]
- Burt, R. Soil Survey Laboratory Methods Manual; National Resource Conservation Service, USDA: Washington, DC, USA, 1992. [Google Scholar]
- Robertson, S. Direct Estimation of Organic Matter by Loss on Ignition: Methods. SFU Soil Sci. Lab. 2011, 1–11. [Google Scholar]
- Elzinga, C.L.; Salzer, D.W. Measuring & Monitoring Plant Populations; US Department of the Interior, Bureau of Land Management: Washington, DC, USA, 1998. [Google Scholar]
- Schreuder, H.T.; Ernst, R.; Ramirez-Maldonado, H. Statistical Techniques for Sampling and Monitoring Natural Resources; United States Forest Service, US Department of Agriculture: Washington, DC, USA, 2004. [Google Scholar]
- Phillips, S.J.; Dudik, M.; Schapire, R.E. A Maximum Entropy Approach to Species Distribution Modeling. In Proceedings of the Twenty-First International Conference on Machine Learning, Banff, AL, Canada, 4–8 July 2004; pp. 655–662. [Google Scholar]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum Entropy Modeling of Species Geographic Distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A Statistical Explanation of MaxEnt for Ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- R Team. R: A Language and Environment for Statistical Computing. 2013. Available online: gbif.org/tool/81287/r-a-language-and-environment-for-statistical-computing (accessed on 13 November 2018).
- Daly, C.; Smith, J.; Doggett, M.; Halbleib, M.; Gibson, W. High-Resolution Climate Maps for the Pacific Basin Islands, 1971–2000; Report submitted to National Park Service Pacific West Regional Office; PRISM Group, Oregon State University: Corvallis, OR, USA, 2006. [Google Scholar]
- National Park Service (NPS) Geologic Resources Inventory (GRI) Program. Digital Geologic Map of Tau, American Samoa, Adapted from a Geological Society of America Bulletin Map by Winger (Compiler) and Pereira (Prefacer) (1981). Available online: datadiscoverystudio.org/geoportal/rest/metadata/item/fa63cc6e3eeb46baade94feb10bde119 (accessed on 15 April 2018).
- Broennimann, O.; Fitzpatrick, M.C.; Pearman, P.B.; Petitpierre, B.; Pellissier, L.; Yoccoz, N.G.; Thuiller, W.; Fortin, M.-J.; Randin, C.; Zimmermann, N.E. Measuring Ecological Niche Overlap from Occurrence and Spatial Environmental Data. Glob. Ecol. Biogeogr. 2012, 21, 481–497. [Google Scholar] [CrossRef]
- Brown, J.L.; Carnaval, A.C. A Tale of Two Niches: Methods, Concepts, and Evolution. Front. Biogeogr. 2019, 11, 4158. [Google Scholar] [CrossRef]
- Allen, M.S.; Huebert, J.M. Short-Lived Plant Materials, Long-Lived Trees, and Polynesian 14C Dating: Considerations for 14C Sample Selection and Documentation. Radiocarbon 2014, 56, 257–276. [Google Scholar] [CrossRef]
- Ramsey, C.B. Bayesian Analysis of Radiocarbon Dates. Radiocarbon 2009, 51, 337–360. [Google Scholar] [CrossRef]
- Reimer, P.J.; Austin, W.E.; Bard, E.; Bayliss, A.; Blackwell, P.G.; Ramsey, C.B.; Butzin, M.; Cheng, H.; Edwards, R.L.; Friedrich, M. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 Cal KBP). Radiocarbon 2020, 62, 725–757. [Google Scholar] [CrossRef]
- Kurtz, A.C.; Derry, L.A.; Chadwick, O.A.; Alfano, M.J. Refractory Element Mobility in Volcanic Soils. Geology 2000, 28, 683–686. [Google Scholar] [CrossRef]
- Hart, S.R.; Jackson, M.G. Ta‘u and Ofu/Olosega Volcanoes: The “Twin Sisters” of Samoa, Their P, T, X Melting Regime, and Global Implications. Geochem. Geophys. Geosystems. 2014, 15, 2301–2318. [Google Scholar] [CrossRef]
- Jensen, J.L.; Christensen, B.T.; Schjønning, P.; Watts, C.W.; Munkholm, L.J. Converting Loss-on-Ignition to Organic Carbon Content in Arable Topsoil: Pitfalls and Proposed Procedure. Eur. J. Soil Sci. 2018, 69, 604–612. [Google Scholar] [CrossRef]
- Muggeo, V.M. Segmented: An R Package to Fit Regression Models with Broken-Line Relationships. R News 2008, 8, 20–25. [Google Scholar]
- Bateman, J.B.; Chadwick, O.A.; Vitousek, P.M. Quantitative Analysis of Pedogenic Thresholds and Domains in Volcanic Soils. Ecosystems 2019, 22, 1633–1649. [Google Scholar] [CrossRef]
- Quintus, S.; Lincoln, N.K. Integrating Local and Regional in Pre-Contact Hawaiian Agriculture at Kahuku, Hawai‘i Island. Environ. Archaeol. 2020, 25, 53–68. [Google Scholar] [CrossRef]
- Chadwick, O.A.; Gavenda, R.T.; Kelly, E.F.; Ziegler, K.; Olson, C.G.; Elliott, W.C.; Hendricks, D.M. The Impact of Climate on the Biogeochemical Functioning of Volcanic Soils. Chem. Geol. 2003, 202, 195–223. [Google Scholar] [CrossRef]
- Chadwick, O.A.; Chorover, J.; Chadwick, K.D.; Bateman, J.B.; Slessarev, E.W.; Kramer, M.; Thompson, A.; Vitousek, P.M. Constraints of Climate and Age on Soil Development in Hawai‘i. In Biogeochemistry of the Critical Zone; Springer International Publishing: Cham, Switzerland, 2022. [Google Scholar]
- Porder, S.; Hilley, G.E.; Chadwick, O.A. Chemical Weathering, Mass Loss, and Dust Inputs across a Climate by Time Matrix in the Hawaiian Islands. Earth Planet. Sci. Lett. 2007, 258, 414–427. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Chadwick, O.A. Pedogenic Thresholds and Soil Process Domains in Basalt-Derived Soils. Ecosystems 2013, 16, 1379–1395. [Google Scholar] [CrossRef]
- Jobbagy, E.G.; Jackson, R.B. The Distribution of Soil Nutrients with Depth: Global Patterns and the Imprint of Plants. Biogeochemistry 2001, 53, 51–77. [Google Scholar] [CrossRef]
- Vitousek, P.M. Nutrient Cycling and Limitation; Princeton University Press: Priceton, NJ, USA, 2018. [Google Scholar]
- Eger, A.; Yoo, K.; Almond, P.C.; Boitt, G.; Larsen, I.J.; Condron, L.M.; Wang, X.; Mudd, S.M. Does Soil Erosion Rejuvenate the Soil Phosphorus Inventory? Geoderma 2018, 332, 45–59. [Google Scholar] [CrossRef]
- Sanchez, P.A. Properties and Management of Soils in the Tropics. Soil Sci. 1977, 124, 187. [Google Scholar] [CrossRef]
- Uehara, G.; Gillman, G. The Mineralogy, Chemistry, and Physics of Tropical Soils with Variable Charge Clays; Westview Press, Inc.: Boulder, CO, USA, 1981. [Google Scholar]
- Guinto, D.F.; Lauga, S.; Dauara, L.; Walasi, E.; Autufuga, D.; Perera, H.; Seuoti, D.; Tauati, S. Soil Health Assessment of Taro (Colocasia Esculenta) Farms in Samoa; Occasional Report No. 28; Fertilizer and Lime Research Centre, Massey University: Palmerston North, New Zealand, 2015. [Google Scholar]
- Resner, K.; Yoo, K.; Sebestyen, S.D.; Aufdenkampe, A.; Hale, C.; Lyttle, A.; Blum, A. Invasive Earthworms Deplete Key Soil Inorganic Nutrients (Ca, Mg, K, and P) in a Northern Hardwood Forest. Ecosystems 2015, 18, 89–102. [Google Scholar] [CrossRef]
- Palmer, M.A.; Graves, M.; Ladefoged, T.N.; Chadwick, O.A.; Ka ‘eo Duarte, T.; Porder, S.; Vitousek, P.M. Sources of Nutrients to Windward Agricultural Systems in Pre-Contact Hawai‘i. Ecol. Appl. 2009, 19, 1444–1453. [Google Scholar] [CrossRef] [PubMed]
- Jefferson, A.J.; Ferrier, K.L.; Perron, J.T.; Ramalho, R. Controls on the Hydrological and Topographic Evolution of Shield Volcanoes and Volcanic Ocean Islands. Galapagos Nat. Lab. Earth Sci. 2014, 204, 185–213. [Google Scholar]
- Ladefoged, T.N.; Preston, A.; Vitousek, P.M.; Chadwick, O.A.; Stein, J.; Graves, M.W.; Lincoln, N. Soil Nutrients and Pre-European Contact Agriculture in the Leeward Kohala Field System, Island of Hawai‘i. Archaeol. Ocean. 2018, 53, 28–40. [Google Scholar] [CrossRef]
- Marshall, K.; Koseff, C.; Roberts, A.L.; Lindsey, A.; Kagawa-Viviani, A.K.; Lincoln, N.K.; Vitousek, P.M. Restoring People and Productivity to Puanui: Challenges and Opportunities in the Restoration of an Intensive Rain-Fed Hawaiian Field System. Ecol. Soc. 2017, 22, 99. [Google Scholar] [CrossRef]
- Lincoln, N.; Ladefoged, T. Agroecology of Pre-Contact Hawaiian Dryland Farming: The Spatial Extent, Yield and Social Impact of Hawaiian Breadfruit Groves in Kona, Hawai‘i. J. Archaeol. Sci. 2014, 49, 192–202. [Google Scholar] [CrossRef]
- Huebert, J.M.; Allen, M.S. Six Centuries of Anthropogenic Forest Change on a Polynesian High Island: Archaeological Charcoal Records from the Marquesas Islands. Quat. Sci. Rev. 2016, 137, 79–96. [Google Scholar] [CrossRef]
- Lincoln, N.; Zhang, Q.; Chen, Q. State of the State Tree: Historical and Modern Ecology of Kukui (Candlenut, Aleurites Moluccanus) in Hawai‘i. Pac. Sci. 2021, 74, 419–434. [Google Scholar] [CrossRef]
- Quintus, S.; Huebert, J.; Kirch, P.V.; Lincoln, N.K.; Maxwell, J. Qualities and Contributions of Agroforestry Practices and Novel Forests in Pre-European Polynesia and the Polynesian Outliers. Hum. Ecol. 2019, 47, 811–825. [Google Scholar] [CrossRef]
Exchangeable Ca (cmol kg−1) | Base Saturation (%) | pH | Extractable P (μg g−1) | P Remaining (%) | ||
---|---|---|---|---|---|---|
Luatele | Lower | 7.48 (0.47) | 63.44 (2.2) | 6.13 (0.06) | 56.44 (5.78) | 133 (7.7) |
Upper | 3.05 (0.43) | 33.07 (3.4) | 5.55 (0.08) | 33.32 (2.21) | 107 (7.4) | |
Lata | Lower | 8.43 (1.05) | 75.68 (5.17) | 5.69 (0.15) | 39.44 (4.45) | 117 (9.8) |
Upper | 4.54 (1.39) | 43.25 (5.53) | 5.57 (0.15) | 31.98 (1.78) | 103 (25) | |
Fertility Threshold | 10.2 | 29.5 | 5.68 | 50 | 102 |
Soil Property | n | Rainfall |
---|---|---|
Base Saturation (%) | 66 | 4587 *** |
pH | 117 | 4512 *** |
Resin-Extractable P (mg kg−1) | 69 | -- |
Total P (mg kg−1) | 19 | 4127 *** |
Exchangeable Ca (cmol kg−1) | 66 | 4574 ** |
Total Ca (mg kg−1) | 19 | 4437 ** |
Cation-Exchange Capacity (cmol kg−1) | 66 | -- |
Soil Moisture Capacity at 70 kPa (%) | 109 | 4670 *** |
%C | 113 | -- |
Niobium (ppm) | 19 | 4804 * |
Common Name | Scientific Name | Classification | Total Occurrences |
---|---|---|---|
Fau (Sea Hibiscus) | Hibiscus tiliaceus | Resource | 215 |
Ti | Cordyline fruticosa | Resource | 212 |
‘Ulu (Breadfruit) | Artocarpus altilis | Food | 129 |
Niu (Coconut) | Cocos nucifera | Food | 84 |
Nonu (Indian Mulberry) | Morinda citrifolia | Resource | 56 |
Oli’olī (Tree Fern) | Cyathea spp. | Resource | 31 |
Mati (Dye Fig) | Ficus tinctoria | Food | 29 |
Lau maile | Alyxia stellata | Resource | 22 |
Toi | Alphitonia zizyphoides | Resource | 21 |
Tamaligi (Tamarind) | Tamarindus indica | Modern | 14 |
Maota (Ivory Mahogany) | Dysoxylum gaudichaudianum | Resource | 13 |
Ufi (Yam) | Dioscorea spp. | Food | 11 |
Ifi (Tahitian Chestnut) | Inocarpus fagifer | Food | 8 |
Laupata | Macaranga harveyana | Resource | 8 |
Ofe (Polyneisian Bamboo) | Schizostachyum glaucifolium | Resource | 4 |
Fala Screwpine) | Pandanus tectorius | Resource | 3 |
Koko (Cacao) | Theobroma cacao | Modern | 3 |
Lopā (Red Bean Tree) | Adenanthera pavonina | Modern | 3 |
Poumuli | Flueggea flexuosa | Resource | 3 |
Fiu (Shampoo Ginger) | Zingiber zerumbet | Resource | 2 |
Oketi pa’epa’e (Fairy Orchid) | Caladenia marginata | Resource | 2 |
Mango | Mangifera indica | Modern | 1 |
Mosooi (Ylang ylang) | Cananga odorata | Resource | 1 |
Tipolo (Lime) | Citrus aurantifolia | Modern | 1 |
Species | Lower | Upper | Eastern | Central | Western | |
---|---|---|---|---|---|---|
Transects | Hau | 89.3% | 54.5% | 82.4% | 64.7% | 70.6% |
Niu | 35.7% | 0.0% | 11.8% | 29.4% | 17.7% | |
Noni | 39.3% | 18.2% | 58.8% | 23.5% | 5.9% | |
Ti | 78.6% | 54.5% | 82.4% | 58.8% | 58.8% | |
‘Ulu | 71.4% | 4.5% | 58.8% | 29.4% | 29.4% | |
Transect Average | 62.9% | 26.3% | 58.8% | 41.2% | 36.5% | |
Surveys | Hau | 54.4% | 54.4% | 47.0% | 39.4% | 27.0% |
Niu | 25.4% | 1.8% | 25.8% | 23.0% | 7.0% | |
Noni | 14.7% | 0.0% | 0.0% | 3.6% | 1.6% | |
Ti | 57.9% | 38.6% | 36.3% | 44.5% | 28.6% | |
‘Ulu | 42.5% | 1.8% | 36.6% | 27.3% | 14.3% | |
Survey Average | 39.0% | 19.3% | 29.1% | 27.6% | 15.7% | |
Total Average | 50.9% | 22.8% | 44.0% | 34.4% | 26.1% |
Lab Number | Context | Elevation | Material | Conventional | ||
---|---|---|---|---|---|---|
13C/12C | Date | Calendar Dates | ||||
Wk-55019 | Below Terrace | 221 | Artocarpus altilis wood | NA | 1241 ± 20 | AD 681–745, 762–766, 771–779, 785–839, 844–878 |
Wk-55015 | Below Terrace | 188 | Artocarpus altilis wood | NA | 981 ± 20 | AD 1021–1051, 1080–1154 |
Wk-55021 | Firepit on Terrace | 211 | Artocarpus altilis wood | NA | 964 ± 20 | AD 1026–1054, 1075–1157 |
Wk-55017 | Below Terrace | 229 | Inocarpus fagifer wood | NA | 955 ± 20 | AD 1031–1054, 1061–1158 |
AA113186 * | Under Linear Mound | 186 | Cocos nucifera endocarp | −24 | 934 ± 21 | AD 1037–1162 |
UGAMS43805 * | Under Terrace | 211 | Cocos nucifera endocarp | −23.53 | 920 ± 20 | AD 1040–1176, 1195–1198 |
Wk-55022 | Below Terrace | 229 | Artocarpus altilis wood | NA | 771 ± 22 | AD 1225–1279 |
AA112171 * | Below Terrace | 212 | Cocos nucifera endocarp | −24.4 | 696 ± 26 | AD 1271–1308, 1362–1386 |
Wk-55018 | Below Terrace | 212 | Artocarpus altilis wood | NA | 672 ± 19 | AD 1280–1313, 1361–1388 |
AA112178 * | Under Terrace | 180 | Cocos nucifera endocarp | −22.9 | 388 ± 23 | AD 1446–1521, 1582–1623 |
AA112177 * | Under Linear Mound | 180 | Aleurites moluccanus endocarp | −24.3 | 367 ± 29 | AD 1452–1528, 1552–1634 |
Wk-55020 | Buried Terrace Surface | 203 | Artocarpus altilis wood | NA | 371 ± 19 | AD 1455–1523, 1574–1627 |
UGAMS43802 * | Firepit on Terrace | 212 | Hibiscus tiliaceus | −27.77 | 370 ± 20 | AD 1455–1524, 1572–1630 |
AA113193 * | Below Terrace | 228 | Cocos nucifera endocarp | −23.2 | 253 ± 32 | AD 1520–1587, 1622–1680, 1740–1753, 1762–1800, 1940 |
Wk-55016 | Buried Terrace Surface | 229 | Artocarpus altilis wood | NA | 206 ± 19 | AD 1651–1684, 1735–1804, 1929 |
AA112173 * | Below Terrace | 228 | Cocos nucifera endocarp | −23.5 | 146 ± 25 | AD 1669–1711, 1718–1780, 1797–1822, 1831–1894, 1905 |
AA112176 * | Under Terrace | 176 | Cocos nucifera endocarp | −24.5 | 104 ± 37 | AD 1680–1740, 1752–1763, 1800–1940 |
AA113188 * | Under Linear Mound | 213 | Hibiscus tiliaceus | −25.9 | 131 ± 20 | AD 1680–1740, 1752–1763, 1800–1940 |
AA113189 * | Under Linear Mound | 214 | Cocos nucifera endocarp | −24.5 | 129 ± 20 | AD 1681–1740, 1753–1763, 1800–1940 |
AA113190 * | Below Terrace | 260 | Hibiscus tiliaceus | −27.7 | 97 ± 20 | AD 1693–1727, 1811–1918 |
AA113187 * | Under Terrace | 190 | Hibiscus tiliaceus | −25.8 | 90 ± 19 | AD 1694–1726, 1811–1917 |
UGAMS43807 * | Under Linear Mound | 200 | Cocos nucifera wood | −25.11 | 70 ± 20 | AD 1695–1725, 1811–1860, 1869–1871, 1876–1917 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Autufuga, D.; Quintus, S.; Yoo, K.; Day, S.; Huebert, J.; Deenik, J.; Lincoln, N.K. Distribution of Soil Nutrients and Ancient Agriculture on Young Volcanic Soils of Ta‘ū, American Samoa. Soil Syst. 2023, 7, 52. https://doi.org/10.3390/soilsystems7020052
Autufuga D, Quintus S, Yoo K, Day S, Huebert J, Deenik J, Lincoln NK. Distribution of Soil Nutrients and Ancient Agriculture on Young Volcanic Soils of Ta‘ū, American Samoa. Soil Systems. 2023; 7(2):52. https://doi.org/10.3390/soilsystems7020052
Chicago/Turabian StyleAutufuga, Dolly, Seth Quintus, Kyungsoo Yoo, Stephanie Day, Jennifer Huebert, Jonathan Deenik, and Noa Kekuewa Lincoln. 2023. "Distribution of Soil Nutrients and Ancient Agriculture on Young Volcanic Soils of Ta‘ū, American Samoa" Soil Systems 7, no. 2: 52. https://doi.org/10.3390/soilsystems7020052