Tracing Soil Contamination from Pre-Roman Slags at the Monte Romero Archaeological Site, Southwest Spain
Abstract
:1. Introduction
2. The Archeological Site of Monte Romero
3. Materials and Methods
3.1. Sampling and Sample Preparation
3.2. Soil Texture and Electrochemical Properties
3.3. Bulk Chemical Analysis
3.4. High-Resolution Microscopy and Microchemical Analysis
3.5. Indices of Contamination and Potential Ecological Risk
4. Results and Discussion
4.1. Slag Description
4.2. Soil Properties and Total Trace Element Concentrations
4.3. Trace Elements of Concern and Potential Ecological Risk
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kibblewhite, M.; Toth, G.; Hermann, T. Predicting the preservation of cultural artefacts and buried materials in soil. Sci. Total Environ. 2015, 529, 249–263. [Google Scholar] [CrossRef] [PubMed]
- Maskall, J.; Withehead, K.; Gee, C.; Thornton, I. Long-term migration of metals at historical smelting sites. Appl. Geochem. 1996, 11, 43–51. [Google Scholar] [CrossRef]
- Amnai, A.; Radola, D.; Choulet, F.; Buatier, M.; Gimbert, F. Impact of ancient iron smelting wastes on current soils: Legacy contamination, environmental availability and fractionation of metals. Sci. Total Environ. 2021, 776, 145929. [Google Scholar] [CrossRef] [PubMed]
- Asare, M.O.; Afriyie, J.O. Ancient mining and metallurgy as the origin of Cu, Ag, Pb, Hg, and Zn contamination in soils: A review. Water Air Soil Pollut. 2021, 232, 240. [Google Scholar] [CrossRef]
- Gee, C.; Ramsey, M.H.; Maskall, J.; Thornton, I. Mineralogy and weathering processes in historical smelting slags and their effect on the mobilisation of lead. J. Geochem. Explor. 1997, 58, 249–257. [Google Scholar] [CrossRef]
- Camizuli, E.; Scheifler, R.; Garnier, S.; Monna, F.; Losno, R.; Gourault, C.; Hamm, G.; Lachiche, C.; Delivet, G.; Chateau, C.; et al. Trace metals from historical mining sites and past metallurgical activity remain bioavailable to wildlife today. Sci. Rep. 2018, 8, 3436. [Google Scholar] [CrossRef] [PubMed]
- Lottermoser, B.G. Mobilization of heavy metals from historical smelting slag dumps, north Queensland, Australia. Min. Mag. 2002, 66, 475–490. [Google Scholar] [CrossRef]
- Kennedy, S.A.; Kelloway, S.J. Heavy metals in archaeological soils. The application of portable X-ray fluorescence (pXRF) spectroscopy for assessing risk to human health at industrial sites. Adv. Archaeol. Pract. 2021, 9, 145–159. [Google Scholar] [CrossRef]
- Costagliola, P.; Benvenuti, M.; Chiarantini, L.; Bianchi, S.; Di Benedetto, F.; Paolieri, M.; Rossato, L. Impact of ancient metal smelting on arsenic pollution in the Pecora River Valley, Southern Tuscany, Italy. Appl. Geochem. 2008, 23, 1241–1259. [Google Scholar] [CrossRef]
- Lottermoser, B.G. Evaporative mineral precipitates from a historical smelting slag dump, Río Tinto, Spain. Neues Jb. Miner. Abh. 2005, 181, 183–190. [Google Scholar] [CrossRef]
- Chopin, E.I.B.; Alloway, B.J. Trace element partitioning and soil particle characterisation around mining and smelting areas at Tharsis, Ríotinto and Huelva, SW Spain. Sci. Total Environ. 2007, 373, 488–500. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Landero, S.; Fernández-Caliani, J.C.; Giráldez, I.; Morales, E.; Barba-Brioso, C.; González, I. Soil contaminated with hazardous waste materials at Rio Tinto mine (Spain) is a persistent secondary source of acid and heavy metals to the environment. Minerals 2023, 13, 456. [Google Scholar] [CrossRef]
- Pérez Macías, J.A. Metalurgia Extractiva Prerromana en Huelva; Universidad de Huelva: Huelva, Spain, 1996; pp. 79–169. [Google Scholar]
- Pérez Macías, J.A. Las Minas de Huelva en la Antigüedad; Diputación Provincial de Huelva: Huelva, Spain, 1998; pp. 48–96. [Google Scholar]
- Strauss, G.K.; Madel, J.; Fernández Alonso, F. Exploration practice for strata-bound volcanogenic sulphide deposits in the Spanish-Portuguese Pyrite Belt: Geology, Geophysics, and Geochemistry. In Time- and Strata-Bound Ore Deposits; Klemm, D.D., Schneider, H.J., Eds.; Springer: Berlin, Germany, 1977; pp. 55–93. [Google Scholar]
- Fernández Jurado, J.; Ruiz Mata, D. La metalurgia de la plata en época tartésica en Huelva. Pyrenae 1985, 21, 23–44. [Google Scholar]
- Rothenberg, B.; García-Palomero, F. The Rio Tinto enigma—No more. Institute for Archaeo-Metallurgical Studies (IAMS). Newsletter 1986, 8, 3–5. [Google Scholar]
- Matos, J.X.; Martins, A.; Rego, M.; Mateus, A.; Pinto, A.; Figueiras, J.; Silva, E. Roman slag distribution in the Portuguese sector of the Iberian Pyrite Belt. In Proceedings of the Actas V Congreso Internacional sobre Minería y Metalurgia Históricas en el Suroeste Europeo, León, Spain, 19–21 June 2008; pp. 567–576. [Google Scholar]
- Álvarez-Valero, A.M.; Pérez-López, R.; Nieto, J.M. Prediction of the environmental impact of modern slags: A petrological and chemical comparative study with Roman age slags. Am. Min. 2009, 94, 1417–1427. [Google Scholar] [CrossRef]
- Van Geen, A.; Adkins, J.F.; Boyle, E.A.; Nelson, C.H.; Palanqués, A. A 120-yr record of widespread contamination from mining of the Iberian Pyrite Belt. Geology 1997, 25, 291–294. [Google Scholar] [CrossRef]
- Fernández-Caliani, J.C. La contaminación del suelo por la minería metálica de la Faja Pirítica Ibérica. Macla 2022, 26, 1–2. [Google Scholar]
- Fernández-Caliani, J.C.; Barba-Brioso, C.; González, I.; Galán, E. Heavy metal pollution in soils around the abandoned mine sites of the Iberian Pyrite Belt (South-West Spain). Water Air Soil Pollut. 2009, 200, 211–226. [Google Scholar] [CrossRef]
- Conde, C.; Tornos, F. Geochemistry and architecture of the host sequence of the massive sulfides in the northern Iberian Pyrite Belt. Ore Geol. Rev. 2020, 127, 103042. [Google Scholar] [CrossRef]
- Pinedo Vara, I. Piritas de Huelva. Su Historia, Minería y Aprovechamiento; Summa: Madrid, Spain, 1963; pp. 403–409. [Google Scholar]
- Junta de Andalucía. Mapa de Suelos de Andalucía a Escala 1:400,000; Instituto Andaluz de Reforma Agraria y Consejo Superior de Investigaciones Científicas: Madrid, Spain, 1989.
- Rothenberg, B.; Blanco, A. Studies in Ancient Mining and Metallurgy in South-West Spain: Explorations and Excavations in the Province of Huelva; Institute for Archaeo-Metallurgical Studies (IAMS): London, UK, 1981. [Google Scholar]
- Rothenberg, B.; Andrews, P.; Keesman, I. Monte Romero September 1986—The discovery of a unique Phoenician silver smelting workshop in south west-Spain. Institute for Archaeo-Metallurgical Studies (IAMS). Newsletter 1986, 9, 1–4. [Google Scholar]
- Pérez Macías, J.A. Las minas de Tarteso, Tartesos. In El Emporio del Metal; Campos, J.M., Alvar, J., Eds.; Almuzara: Córdoba, Spain, 2013; pp. 449–472. [Google Scholar]
- Junta de Andalucía. Resolución de 28 de julio de 2005, de la Dirección General de Bienes Culturales, por la que se resuelve inscribir colectivamente, con carácter genérico, en el Catálogo General del Patrimonio Histórico Andaluz, treinta y siete yacimientos arqueológicos y poblados amurallados de la Sierra de Aracena y Picos de Aroche, provincia de Huelva. Bol. Off. Junta Andal. 2005, 166, 46–57. [Google Scholar]
- Kassianidou, V. The production of silver in Monte Romero, a 7th Century B.C. workshop in Huelva, Spain. Pap. Inst. Archaeol. 1993, 4, 37–47. [Google Scholar] [CrossRef]
- Kassianidou, V. Early extraction of silver from complex polymetallic ores. In Mining and Metal Production through the Ages; Craddock, P., Lang, J., Eds.; The British Museum Press: London, UK, 2003; pp. 198–206. [Google Scholar]
- Pérez Macías, J.A. La fundición protohistórica de Monte Romero en Almonaster la Real, Huelva. Cuad. Suroeste 1991, 2, 99–131. [Google Scholar]
- ISO/IEC 17025:2017; General Requirements for the Competence of Testing and Calibration Laboratories. International Organization for Standardization (ISO): Geneva, Switzerland, 2017.
- Häkanson, L. An ecological risk index for aquatic pollution control: A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Tomlinson, D.L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgol. Mar. Res. 1980, 33, 566–575. [Google Scholar] [CrossRef]
- Abrahim, G.M.S.; Parker, R.J. Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environ. Monit. Assess. 2008, 136, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Salkield, L.V. Ancient slag in the south west of the Iberian Peninsula. In La Minería Hispana e Iberoamericana. Contribución a su estudio; Cátedra de San Isidoro: León, Spain, 1970; pp. 85–99. [Google Scholar]
- Rovira, S.; Hunt, M.A. “Free silica” type slags of silver production in the Iberian Peninsula. In Proceedings of the 34th International Symposium on Archaeometry, Zaragoza, Spain, 3–7 May 2004; Diputación de Zaragoza: Zaragoza, Spain, 2006; pp. 217–222. [Google Scholar]
- Álvarez-Valero, A.; Pérez-López, R.; Matos, J.; Capitán, M.A.; Nieto, J.M.; Sáez, R.; Delgado, J.; Caraballo, M. Potential environmental impact at São Domingos mining district (Iberian Pyrite Belt, SW Iberian Peninsula): Evidence from a chemical and mineralogical characterization. Environ. Geol. 2008, 55, 1797–1809. [Google Scholar] [CrossRef]
- Ettler, V.; Johan, Z.; Kríbek, B.; Sebek, O.; Mihaljevic, M. Mineralogy and environmental stability of slags from the Tsumeb smelter, Namibia. Appl. Geochem. 2009, 24, 1–15. [Google Scholar] [CrossRef]
- Nelson, H.; Shchukarev, A.; Sjöberg, S.; Lövgren, L. Composition and solubility of precipitated copper(II) arsenates. Appl. Geochem. 2011, 26, 696–704. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements from Soils to Humans; Springer: Berlin, Germany, 2007; p. 42. [Google Scholar]
Element | Analysis Number | ||||||
---|---|---|---|---|---|---|---|
wt% | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
O | 32.5 ± 0.5 | 26.5 ± 0.4 | 34.6 ± 0.5 | 35.3 ± 0.6 | 20.4 ± 0.6 | 29.4 ± 0.5 | 35.6 ± 0.6 |
As | 24.0 ± 0.5 | 8.0 ± 0.2 | 27.4 ± 0.6 | 26.1 ± 0.6 | 21.2 ± 0.7 | 26.9 ± 0.6 | 18.5 ± 0.4 |
Cu | 18.6 ± 0.4 | 8.2 ± 0.2 | 36.9 ± 0.6 | 27.2 ± 0.5 | 56.1 ± 0.8 | 42.5 ± 0.6 | 4.5 ± 0.3 |
Fe | 20.1 ± 0.3 | 2.9 ± 0.1 | 1.1 ± 0.2 | 5.1 ± 0.2 | 2.3 ± 0.2 | 1.1 ± 0.2 | 1.3 ± 0.2 |
Pb | 2.4 ± 0.4 | 23.8 ± 0.4 | - | 4.1 ± 0.5 | - | - | 25.1 ± 0.6 |
Sb | 0.6 ± 0.2 | 20.4 ± 0.3 | - | 0.9 ± 0.2 | - | - | 9.5 ± 0.3 |
Bi | - | 5.5 ± 0.5 | - | - | - | - | - |
Sn | - | 2.9 ± 0.1 | - | - | - | - | - |
Al | - | - | - | - | - | - | 4.8 ± 0.2 |
Sample | MR-1 | MR-2 | MR-3 | Mean | BJ-0 (Control) |
---|---|---|---|---|---|
Soil texture | Silt loam | Silt loam | Silt loam | Silt loam | Silt loam |
pH (in water) | 6.61 | 6.09 | 6.17 | 6.29 ± 0.28 | 6.72 |
EC (µS cm−1) | 276 | 286 | 255 | 272 ± 16 | 194 |
Element (mg kg−1) | |||||
Ag | 32.6 | 40.9 | 29.4 | 34 ± 5.9 | 0.4 |
As | 285 | 445 | 378 | 369 ± 80 | 68 |
Be | 3 | 3 | 3 | 3.0 ± 0.0 | 2 |
Bi | 3 | 4 | 7 | 4.7 ± 2.1 | 1 |
Cd | 1.6 | 2.5 | 2.1 | 2.1 ± 0.5 | 1.0 |
Co | 10 | 11 | 14 | 12 ± 2.1 | 22 |
Cr | 41 | 42 | 65 | 49 ± 14 | 33 |
Cu | 2500 | 2210 | 2730 | 2480 ± 261 | 383 |
Ga | 22 | 20 | 24 | 22 ± 2.0 | 18 |
Li | 63 | 65 | 69 | 65.7 ± 3.1 | 30 |
Mo | 1 | 2 | 2 | 1.7 ± 0.6 | 1 |
Ni | 23 | 20 | 30 | 24 ± 5.1 | 23 |
Pb * | >5000 | >5000 | >5000 | >5000 | 266 |
Sb | 64 | 72 | 81 | 72 ± 8.5 | 2.5 |
Sc | 19 | 18 | 24 | 20 ± 3.2 | 33 |
Sr | 68 | 79 | 73 | 73 ± 5.5 | 129 |
Te | 2 | 5 | 5 | 3.7 ± 2.3 | 3 |
V | 48 | 74 | 80 | 67 ± 17 | 49 |
W | 7 | 9 | 8 | 8.0 ± 1.0 | 6 |
Y | 58 | 52 | 63 | 58 ± 5.5 | 40 |
Zn | 505 | 705 | 640 | 617 ± 102 | 517 |
Element | MR-1 | MR-2 | MR-3 | Mean |
---|---|---|---|---|
Contamination factor (Cf) | ||||
Ag | 81.5 | 102 | 73.5 | 85.8 ± 14.8 |
As | 4.19 | 6.54 | 5.56 | 5.43 ± 1.2 |
Be | 1.50 | 1.50 | 1.50 | 1.50 ± 0.0 |
Bi | 3.00 | 4.00 | 7.00 | 4.67 ± 2.1 |
Cd | 1.60 | 2.50 | 2.10 | 2.07 ± 0.5 |
Co | 0.45 | 0.50 | 0.64 | 0.53 ± 0.1 |
Cr | 1.24 | 1.27 | 1.97 | 1.49 ± 0.4 |
Cu | 6.53 | 5.77 | 7.13 | 6.48 ± 0.7 |
Ga | 1.22 | 1.11 | 1.33 | 1.22 ± 0.1 |
Li | 2.10 | 2.16 | 2.30 | 2.19 ± 0.1 |
Mo | 1 | 2 | 2 | 1.6 ± 0.6 |
Ni | 1.00 | 0.87 | 1.30 | 1.06 ± 0.2 |
Pb | >18.8 | >18.8 | >18.8 | >18.8 |
Sb | 25.6 | 28.8 | 32.4 | 28.9 ± 3.4 |
Sc | 0.58 | 0.55 | 0.73 | 0.62 ± 0.1 |
Sr | 0.53 | 0.61 | 0.57 | 0.57 ± 0.0 |
Te | 0.67 | 1.67 | 1.67 | 1.33 ± 0.6 |
V | 0.98 | 1.51 | 1.63 | 1.37 ± 0.3 |
W | 1.17 | 1.50 | 1.33 | 1.33 ± 0.2 |
Y | 1.45 | 1.30 | 1.58 | 1.44 ± 0.1 |
Zn | 0.98 | 1.36 | 1.24 | 1.19 ± 0.2 |
Contamination index | ||||
Cd | >141 | >168 | >147 | >152 |
PLI | >9.1 | >11.1 | >11.5 | >10.6 |
ERI | >216 | >263 | >248 | >242 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Caliani, J.C.; Pérez-Macías, J.A. Tracing Soil Contamination from Pre-Roman Slags at the Monte Romero Archaeological Site, Southwest Spain. Soil Syst. 2024, 8, 78. https://doi.org/10.3390/soilsystems8030078
Fernández-Caliani JC, Pérez-Macías JA. Tracing Soil Contamination from Pre-Roman Slags at the Monte Romero Archaeological Site, Southwest Spain. Soil Systems. 2024; 8(3):78. https://doi.org/10.3390/soilsystems8030078
Chicago/Turabian StyleFernández-Caliani, Juan Carlos, and Juan Aurelio Pérez-Macías. 2024. "Tracing Soil Contamination from Pre-Roman Slags at the Monte Romero Archaeological Site, Southwest Spain" Soil Systems 8, no. 3: 78. https://doi.org/10.3390/soilsystems8030078
APA StyleFernández-Caliani, J. C., & Pérez-Macías, J. A. (2024). Tracing Soil Contamination from Pre-Roman Slags at the Monte Romero Archaeological Site, Southwest Spain. Soil Systems, 8(3), 78. https://doi.org/10.3390/soilsystems8030078