Soil Texture Explains Soil Sensitivity to C and N Losses from Whole-Tree Harvesting in the Boreal Forest
Abstract
:1. Introduction
- The difference could be related to the existing C and N stocks in the soils;
- The difference could be related to fine particle content.
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Field Sampling
2.4. Laboratory Analyses
2.5. Computations
2.6. Statistical Analysis
3. Results and Discussion
3.1. Soil C and N Stocks with WTH Compared to SOH
3.2. Relationship between Soil C and N Stocks with WTH and Fine Particle Content
3.3. The Role of C and N Fractions
3.4. Relationship between Soil C and N Stocks with WTH and Drainage Conditions
3.5. Management and Policy Implications
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Cambridge, UK; New York, NY, USA, 2022; p. 3056. [Google Scholar]
- Calvin, K.; Cowie, A.; Berndes, G.; Arneth, A.; Cherubini, F.; Portugal-Pereira, J.; Grassi, G.; House, J.; Johnson, F.X.; Popp, A.; et al. Bioenergy for climate change mitigation: Scale and sustainability. GCB Bioenergy 2021, 13, 1346–1371. [Google Scholar] [CrossRef]
- Achat, D.L.; Deleuze, C.; Landmann, G.; Pousse, N.; Ranger, J.; Augusto, L. Quantifying consequences of removing harvesting residues on forest soils and tree growth—A meta-analysis. For. Ecol. Manag. 2015, 348, 124–141. [Google Scholar] [CrossRef]
- Clarke, N.; Kiær, L.P.; Janne Kjønaas, O.; Bárcena, T.G.; Vesterdal, L.; Stupak, I.; Finér, L.; Jacobson, S.; Armolaitis, K.; Lazdina, D.; et al. Effects of intensive biomass harvesting on forest soils in the Nordic countries and the UK: A meta-analysis. For. Ecol. Manag. 2021, 482, 118877. [Google Scholar] [CrossRef]
- James, J.; Page-Dumroese, D.; Busse, M.; Palik, B.; Zhang, J.; Eaton, B.; Slesak, R.; Tirocke, J.; Kwon, H. Effects of forest harvesting and biomass removal on soil carbon and nitrogen: Two complementary meta-analyses. For. Ecol. Manag. 2021, 485, 118935. [Google Scholar] [CrossRef]
- Lal, R. Forest soils and carbon sequestration. For. Ecol. Manag. 2005, 220, 242–258. [Google Scholar] [CrossRef]
- Lugato, E.; Lavallee, J.M.; Haddix, M.L.; Panagos, P.; Cotrufo, M.F. Different climate sensitivity of particulate and mineral-associated soil organic matter. Nat. Geosci. 2021, 14, 295–300. [Google Scholar] [CrossRef]
- Ouimet, R.; Duchesne, L.; Tremblay, S. Long-term soil fertility and site productivity in stem-only and whole-tree harvested stands in boreal forest of Quebec (Canada). Forests 2021, 12, 583. [Google Scholar] [CrossRef]
- James, J.; Harrison, R. The effect of harvest on forest soil carbon: A meta-analysis. Forests 2016, 7, 308. [Google Scholar] [CrossRef]
- Stupak, I.; Lattimore, B.; Titus, B.D.; Tattersall Smith, C. Criteria and indicators for sustainable forest fuel production and harvesting: A review of current standards for sustainable forest management. Biomass Bioenergy 2011, 35, 3287–3308. [Google Scholar] [CrossRef]
- Titus, B.D.; Brown, K.; Helmisaari, H.-S.; Vanguelova, E.; Stupak, I.; Evans, A.M.; Clarke, N.; Guidi, C.; Bruckman, V.J.; Varnagiryte-Kabasinskiene, I.; et al. Sustainable forest biomass: A review of current residue harvesting guidelines. Energy Sustain. Soc. 2021, 11, 10. [Google Scholar] [CrossRef]
- Paré, D.; Banville, J.L.; Garneau, M.; Bergeron, Y. Soil Carbon Stocks and Soil Carbon Quality in the Upland Portion of a Boreal Landscape, James Bay, Quebec. Ecosystems 2011, 14, 533–546. [Google Scholar] [CrossRef]
- De Vos, B.; Cools, N.; Ilvesniemi, H.; Vesterdal, L.; Vanguelova, E.; Carnicelli, S. Benchmark values for forest soil carbon stocks in Europe: Results from a large scale forest soil survey. Geoderma 2015, 251, 33–46. [Google Scholar] [CrossRef]
- Kögel Knabner, I.; Amelung, W. Soil organic matter in major pedogenic soil groups. Geoderma 2021, 384, 114785. [Google Scholar] [CrossRef]
- Jandl, R.; Lindner, M.; Vesterdal, L.; Bauwens, B.; Baritz, R.; Hagedorn, F.; Johnson, D.W.; Minkkinen, K.; Byrne, K.A. How strongly can forest management influence soil carbon sequestration? Geoderma 2007, 137, 253–268. [Google Scholar] [CrossRef]
- Mayer, M.; Prescott, C.E.; Abaker, W.E.A.; Augusto, L.; Cécillon, L.; Ferreira, G.W.D.; James, J.; Jandl, R.; Katzensteiner, K.; Laclau, J.; et al. Tamm Review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. For. Ecol. Manag. 2020, 466, 118127. [Google Scholar] [CrossRef]
- Baldock, J.A.; Broos, K. Soil organic matter. In Handbook of Soil Sciences; Huang, P.M., Li, Y., Sumner, M.E., Eds.; CRC Press: Boca Raton, FL, USA, 2011; Volume 1, pp. 1–37. [Google Scholar]
- Cotrufo, M.F.; Lavallee, J.M. Chapter One—Soil organic matter formation, persistence, and functioning: A synthesis of current understanding to inform its conservation and regeneration. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2022; Volume 172, pp. 1–66. [Google Scholar]
- Lavallee, J.M.; Soong, J.L.; Cotrufo, M.F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Glob. Change Biol. 2020, 26, 261–273. [Google Scholar] [CrossRef]
- Sokol, N.W.; Sanderman, J.; Bradford, M.A. Pathways of mineral-associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry. Glob. Change Biol. 2019, 25, 12–24. [Google Scholar] [CrossRef]
- Hassink, J. The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 1997, 191, 77–87. [Google Scholar] [CrossRef]
- Feng, W.; Plante, A.F.; Six, J. Improving estimates of maximal organic carbon stabilization by fine soil particles. Biogeochemistry 2013, 112, 81–93. [Google Scholar] [CrossRef]
- Hobbie, S.E.; Schimel, J.P.; Trumbore, S.E.; Randerson, J.R. Controls over carbon storage and turnover in high-latitude soils. Glob. Change Biol. 2000, 6, 196–210. [Google Scholar] [CrossRef]
- Freeman, C.; Ostle, N.; Kang, H. An enzymic ‘latch’ on a global carbon store. Nature 2001, 409, 149. [Google Scholar] [CrossRef] [PubMed]
- Lamontagne, L.; Nolin, M.C. Cadre Pédologique de Référence pour la Corrélation des Sols; Équipe Pédologique du Québec, Centre de Recherche et de Développement sur les Sols et les Grandes Cultures, Agriculture et Agroalimentaire Canada: Sainte-Foy, QC, Canada, 1997; p. 69. [Google Scholar]
- Pothier, D. Évolution de la régénération après la coupe de peuplements récoltés selon différents procédés d’exploitation. For. Chron. 1996, 72, 519–527. [Google Scholar] [CrossRef]
- Saucier, J.P.; Berger, J.P.; D’Avignon, H.; Racine, P. Le point D’observation Écologique: Normes Techniques; Service des Inventaires Forestiers, Direction de la Gestion des Stocks Forestiers, Ministère des Ressources Naturelles du Québec: Québec, QC, Canada, 1994; p. 116. [Google Scholar]
- Bouyoucos, G.J. Hydrometer method improved for making particle size analyses of soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Soil Classification Working Group. The Canadian System of Soil Classification, 3rd ed.; Agriculture and Agri-Food Canada: Ottawa, ON, Canada, 1998; p. 187. [Google Scholar]
- Federer, C.A.; Turcotte, D.E.; Smith, C.T. The organic fraction-bulk density relationship and the expression of nutrient content in forest soils. Can. J. For. Res. 1993, 23, 1026–1032. [Google Scholar] [CrossRef]
- Beaudette, D.E.; Roudier, P.; O’Geen, A.T. Algorithms for quantitative pedology: A toolkit for soil scientists. Comput. Geosci. 2013, 52, 258–268. [Google Scholar] [CrossRef]
- Duchesne, L.; Ouimet, R. Digital mapping of soil texture in ecoforest polygons in Quebec, Canada. PeerJ 2021, 9, e11685. [Google Scholar] [CrossRef]
- Lenth, R. Emmeans: Estimated Marginal Means, Aka Least-Squares Means; R Package Version 1.4.2; 2019. Available online: https://github.com/rvlenth/emmeans (accessed on 1 September 2018).
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; R Core team. nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1-137. 2018. Available online: http://cran.r-project.org/package=nlme (accessed on 12 June 2018).
- Correndo, A.A.; Salvagiotti, F.; García, F.O.; Gutiérrez; Boem, F.H. A modification of the arcsine–log calibration curve for analysing soil test value–relative yield relationships. Crop Pasture Sci. 2017, 68, 297–304. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Achat, D.L.; Fortin, M.; Landmann, G.; Ringeval, B.; Augusto, L. Forest soil carbon is threatened by intensive biomass harvesting. Sci. Rep. 2015, 5, 15991. [Google Scholar] [CrossRef]
- Wan, X.; Xiao, L.; Vadeboncoeur, M.A.; Johnson, C.E.; Huang, Z. Response of mineral soil carbon storage to harvest residue retention depends on soil texture: A meta-analysis. For. Ecol. Manag. 2018, 408, 9–15. [Google Scholar] [CrossRef]
- Morris, D.M.; Hazlett, P.W.; Fleming, R.L.; Kwiaton, M.M.; Hawdon, L.A.; Leblanc, J.D.; Primavera, M.J.; Weldon, T.P. Effects of biomass removal levels on soil carbon and nutrient reserves in conifer-dominated, coarse-textured sites in Northern Ontario: 20-year results. Soil Sci. Soc. Am. J. 2019, 83, S116–S132. [Google Scholar] [CrossRef]
- Senez Gagnon, F.; Thiffault, E.; Paré, D.; Achim, A.; Bergeron, Y. Dynamics of detrital carbon pools following harvesting of a humid eastern Canadian balsam fir boreal forest. For. Ecol. Manag. 2018, 430, 33–42. [Google Scholar] [CrossRef]
- Bessaad, A.; Bilger, I.; Korboulewsky, N. Assessing Biomass Removal and Woody Debris in Whole-Tree Harvesting System: Are the Recommended Levels of Residues Ensured? Forests 2021, 12, 807. [Google Scholar] [CrossRef]
- Yole, D. Effect of Alternative site Preparation Treatments on Soil Chemistry, Physical Properties, Climate and Seedling Growth on a Mesic Site in the Northern Interior of British Columbia. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 1996. [Google Scholar]
- Smith, C.T.; Lowe, A.T.; Skinner, M.F.; Beets, P.N.; Schoenholtz, S.H.; Fang, S. Response of radiata pine forests to residue management and fertilisation across a fertility gradient in New Zealand. For. Ecol. Manag. 2000, 138, 203–223. [Google Scholar] [CrossRef]
- Waldrop, M.P.; McColl, J.G.; Powers, R.F. Effects of Forest Postharvest Management Practices on Enzyme Activities in Decomposing Litter. Soil Sci. Soc. Am. J. 2003, 67, 1250–1256. [Google Scholar] [CrossRef]
- Moroni, M.T.; Carter, P.Q.; Ryan, D.A.J. Harvesting and slash piling affects soil respiration, soil temperature, and soil moisture regimes in Newfoundland boreal forests. Can. J. Soil Sci. 2009, 89, 343–355. [Google Scholar] [CrossRef]
- Augusto, L.; Achat, D.L.; Bakker, M.R.; Bernier, F.; Bert, D.; Danjon, F.; Khlifa, R.; Meredieu, C.; Trichet, P. Biomass and nutrients in tree root systems–sustainable harvesting of an intensively managed Pinus pinaster (Ait.) planted forest. GCB Bioenergy 2015, 7, 231–243. [Google Scholar] [CrossRef]
- Mahendrappa, M.K.; Pitt, C.M.; Kingston, D.G.O.; Morehouse, T. Environmental impacts of harvesting white spruce on Prince Edward Island. Biomass Bioenergy 2006, 30, 363–369. [Google Scholar] [CrossRef]
- Mahendrappa, M.K.; Kingston, D.G.O. Intensive harvesting impacts on soil temperature and solution chemistry in the maritimes region of Canada. N. Z. J. For. Sci. 1994, 24, 402–414. [Google Scholar]
- Lavoie, M.; Kellman, L.; Risk, D. The effects of clear-cutting on soil CO2, CH4, and N2O flux, storage and concentration in two Atlantic temperate forests in Nova Scotia, Canada. For. Ecol. Manag. 2013, 304, 355–369. [Google Scholar] [CrossRef]
- Kubin, E.; Kemppainen, L. Effect of soil preparation of boreal spruce forest on air and soil temperature conditions in forest regeneration areas. Acta For. Fenn. 1994, 244, 56. [Google Scholar] [CrossRef]
- Jiménez Esquilín, A.E.; Stromberger, M.E.; Shepperd, W.D. Soil Scarification and Wildfire Interactions and Effects on Microbial Communities and Carbon. Soil Sci. Soc. Am. J. 2008, 72, 111–118. [Google Scholar] [CrossRef]
- Barré, P.; Angers, D.A.; Basile-Doelsch, I.; Bispo, A.; Cécillon, L.; Chenu, C.; Chevallier, T.; Derrien, D.; Eglin, T.K.; Pellerin, S. Ideas and perspectives: Can we use the soil carbon saturation deficit to quantitatively assess the soil carbon storage potential, or should we explore other strategies? Biogeosci. Discuss. 2017, 2017, 1–12. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Ranalli, M.G.; Haddix, M.L.; Six, J.; Lugato, E. Soil carbon storage informed by particulate and mineral-associated organic matter. Nat. Geosci. 2019, 12, 989–994. [Google Scholar] [CrossRef]
- Keiluweit, M.; Wanzek, T.; Kleber, M.; Nico, P.; Fendorf, S. Anaerobic microsites have an unaccounted role in soil carbon stabilization. Nat. Commun. 2017, 8, 1771. [Google Scholar] [CrossRef]
- Tan, Z.X.; Lal, R.; Smeck, N.E.; Calhoun, F.G. Relationships between surface soil organic carbon pool and site variables. Geoderma 2004, 121, 187–195. [Google Scholar] [CrossRef]
- Schlüter, S.; Leuther, F.; Albrecht, L.; Hoeschen, C.; Kilian, R.; Surey, R.; Mikutta, R.; Kaiser, K.; Mueller, C.W.; Vogel, H.; et al. Microscale carbon distribution around pores and particulate organic matter varies with soil moisture regime. Nat. Commun. 2022, 13, 2098. [Google Scholar] [CrossRef]
- Ouimet, R.; Arp, P.A.; Watmough, S.A.; Aherne, J.; DeMerchant, I. Determination and mapping critical loads of acidity and exceedances for upland forest soils in Eastern Canada. Water Air Soil Pollut. 2006, 172, 57–66. [Google Scholar] [CrossRef]
- Gouvernement du Québec. Carte écoforestière à Jour. Données Québec. 2022. Available online: https://www.donneesquebec.ca/recherche/dataset/carte-ecoforestiere-avec-perturbations (accessed on 10 January 2023).
- Sylvain, J.; Daniel; Anctil, F.; Thiffault, É. Using bias correction and ensemble modelling for predictive mapping and related uncertainty: A case study in digital soil mapping. Geoderma 2021, 403, 115153. [Google Scholar] [CrossRef]
- Hume, A.M.; Chen, H.Y.H.; Taylor, A.R. Intensive forest harvesting increases susceptibility of northern forest soils to carbon, nitrogen and phosphorus loss. J. Appl. Ecol. 2018, 55, 246–255. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouimet, R.; Korboulewsky, N.; Bilger, I. Soil Texture Explains Soil Sensitivity to C and N Losses from Whole-Tree Harvesting in the Boreal Forest. Soil Syst. 2023, 7, 39. https://doi.org/10.3390/soilsystems7020039
Ouimet R, Korboulewsky N, Bilger I. Soil Texture Explains Soil Sensitivity to C and N Losses from Whole-Tree Harvesting in the Boreal Forest. Soil Systems. 2023; 7(2):39. https://doi.org/10.3390/soilsystems7020039
Chicago/Turabian StyleOuimet, Rock, Nathalie Korboulewsky, and Isabelle Bilger. 2023. "Soil Texture Explains Soil Sensitivity to C and N Losses from Whole-Tree Harvesting in the Boreal Forest" Soil Systems 7, no. 2: 39. https://doi.org/10.3390/soilsystems7020039