Soil Microbial Composition and Soil Health of Reverse-Osmosis-Concentrate and Brackish-Groundwater Irrigated Soils in Southern New Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Plant Material
2.2. Experimental Design and Treatments
2.3. Soil Samples Preparation
2.4. Samples Drying and Lipid Extraction
2.5. Lipids Separation
2.6. Fatty Acids Transesterification
2.7. PLFA Analysis
2.8. Data and Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moebius-Clune, B.N.; Moebius-Clune, D.J.; Gugino, B.K.; Idowu, O.J.; Schindelbeck, R.R.; Schindelbeck, A.J.; Ristow, H.M.; van Es, J.E.; Thies, H.A.; Shayler, M.B.; et al. Comprehensive Assessment of Soil Health; The Cornell Framework Manual; Crnell University: Geneva, Switzerland, 2016. [Google Scholar]
- De Souza Silva, A.M.; Fay, E.F. Effect of salinity on soil microorganisms. In Soil Health and Land Use Management; IntechOpen: London, UK, 2012; Volume 10, pp. 177–198. [Google Scholar]
- Tajik, S.; Ayoubi, S.; Lorenz, N. Soil Microbial Communities Affected by Vegetation, Topography and Soil Properties in a Forest Ecosystem. Appl. Soil Ecol. 2020, 149, 103514. [Google Scholar] [CrossRef]
- Rath, K.M.; Rousk, J. Salt Effects on the Soil Microbial Decomposer Community and Their Role in Organic Carbon Cycling: A Review. Soil Biol. Biochem. 2015, 81, 108–123. [Google Scholar] [CrossRef]
- Empadinhas, N.; da Costa, M.S. Osmoadaptation Mechanisms in Prokaryotes: Distribution of Compatible Solutes. Int. Microbiol. 2008, 11, 151–161. [Google Scholar]
- Chaudhary, D.R.; Rathore, A.P.; Jha, B. Effects of Seawater Irrigation on Soil Microbial Community Structure and Physiological Function. Int. J. Environ. Sci. Technol. 2016, 13, 2199–2208. [Google Scholar] [CrossRef]
- Pankhurst, C.E.; Yu, S.; Hawke, B.G.; Harch, B.D. Capacity of Fatty Acid Profiles and Substrate Utilization Patterns to Describe Differences in Soil Microbial Communities Associated with Increased Salinity or Alkalinity at Three Locations in South Australia. Biol. Fertil. Soils 2001, 33, 204–217. [Google Scholar] [CrossRef]
- Pan, C.; Liu, C.; Zhao, H.; Wang, Y. Changes of Soil Physico-Chemical Properties and Enzyme Activities in Relation to Grassland Salinization. Eur. J. Soil Biol. 2013, 55, 13–19. [Google Scholar] [CrossRef]
- Egamberdieva, D.; Davranov, K.; Wirth, S.; Hashem, A.; Abd_Allah, E.F. Impact of Soil Salinity on the Plant-Growth–Promoting and Biological Control Abilities of Root Associated Bacteria. Saudi J. Biol. Sci. 2017, 24, 1601–1608. [Google Scholar] [CrossRef]
- Zhang, W.; Chong, W.; Rui, X.; Wang, L. Effects of Salinity on the Soil Microbial Community and Soil Fertility. J. Integr. Agric. 2019, 18, 1360–1368. [Google Scholar] [CrossRef]
- Zhang, K.; Shi, Y.; Cui, X.; Yue, P.; Li, K.; Liu, X.; Tripathi, B.M.; Chu, H. Salinity Is a Key Determinant for Soil Microbial Communities in a Desert Ecosystem. mSystems 2019, 4, e00225-18. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, N.; Marschner, P.; Burns, R. Response of Microbial Activity and Community Structure to Decreasing Soil Osmotic and Matric Potential. Plant Soil 2011, 344, 241–254. [Google Scholar] [CrossRef]
- Baumann, K.; Marschner, P. Effects of Salinity on Microbial Tolerance to Drying and Rewetting. Biogeochemistry 2013, 112, 71–80. [Google Scholar] [CrossRef]
- Chambers, L.G.; Guevara, R.; Boyer, J.N.; Troxler, T.G.; Davis, S.E. Effects of Salinity and Inundation on Microbial Community Structure and Function in a Mangrove Peat Soil. Wetlands 2016, 36, 361–371. [Google Scholar] [CrossRef]
- Tunç, E.; Gul, O. Analysis of Phospholipid Fatty Acids (PLFA) as a Soil Bioindicator in Karkamis/Gaziantep Pistachio Orchards. Fresenius Environ. Bull. 2014, 23, 385. [Google Scholar]
- Zheng, Q.; Hu, Y.; Zhang, S.; Noll, L.; Böckle, T.; Dietrich, M.; Herbold, C.W.; Eichorst, S.A.; Woebken, D.; Richter, A.; et al. Soil Multifunctionality Is Affected by the Soil Environment and by Microbial Community Composition and Diversity. Soil Biol. Biochem. 2019, 136, 107521. [Google Scholar] [CrossRef]
- Kamble, P.N.; Gaikwad, V.B.; Kuchekar, S.R.; Baath, E. Microbial Growth, Biomass, Community Structure and Nutrient Limitation in High PH and Salinity Soils from Pravaranagar (India). Eur. J. Soil Biol. 2014, 65, 87–95. [Google Scholar] [CrossRef]
- Nunes, M.R.; Veum, K.S.; Parker, P.A.; Holan, S.H.; Karlen, D.L.; Amsili, J.P.; van Es, H.M.; Wills, S.A.; Seybold, C.A.; Moorman, T.B. The Soil Health Assessment Protocol and Evaluation Applied to Soil Organic Carbon. Soil Sci. Soc. Am. J. 2021, 85, 1196–1213. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, S.; Mukherjee, A.; Rastogi, R.P.; Verma, J.P. Salt-Tolerant Plant Growth-Promoting Bacillus Pumilus Strain JPVS11 to Enhance Plant Growth Attributes of Rice and Improve Soil Health under Salinity Stress. Microbiol. Res. 2021, 242, 126616. [Google Scholar] [CrossRef]
- Mbodj, D.; Effa-Effa, B.; Kane, A.; Manneh, B.; Gantet, P.; Laplaze, L.; Diedhiou, A.; Grondin, A. Arbuscular Mycorrhizal Symbiosis in Rice: Establishment, Environmental Control and Impact on Plant Growth and Resistance to Abiotic Stresses. Rhizosphere 2018, 8, 12–26. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, S.; Gaurav, A.K.; Srivastava, S.; Verma, J.P. Plant Growth-Promoting Bacteria: Biological Tools for the Mitigation of Salinity Stress in Plants. Front. Microbiol. 2020, 11, 1216. [Google Scholar] [CrossRef]
- Nautiyal, C.S.; Srivastava, S.; Chauhan, P.S. Rhizosphere Colonization: Molecular Determinants from Plant-Microbe Coexistence Perspective. In Molecular Mechanisms of Plant and Microbe Coexistence; Springer: Berlin/Heidelberg, Germany, 2008; pp. 99–123. [Google Scholar]
- Jaiswal, D.K.; Verma, J.P.; Prakash, S.; Meena, V.S.; Meena, R.S. Potassium as an Important Plant Nutrient in Sustainable Agriculture: A State of the Art. In Potassium Solubilizing Microorganisms for Sustainable Agriculture; Springer: New Delhi, India, 2016; pp. 21–29. [Google Scholar]
- Bhise, K.K.; Bhagwat, P.K.; Dandge, P.B. Synergistic Effect of Chryseobacterium Gleum Sp. SUK with ACC Deaminase Activity in Alleviation of Salt Stress and Plant Growth Promotion in Triticum aestivum L. 3 Biotech 2017, 7, 105. [Google Scholar] [CrossRef] [PubMed]
- Zahid, M.; Abbasi, M.K.; Hameed, S.; Rahim, N. Isolation and Identification of Indigenous Plant Growth Promoting Rhizobacteria from Himalayan Region of Kashmir and Their Effect on Improving Growth and Nutrient Contents of Maize (Zea mays L.). Front. Microbiol. 2015, 6, 207. [Google Scholar] [CrossRef]
- Kumawat, K.C.; Sharma, P.; Nagpal, S.; Gupta, R.K.; Sirari, A.; Nair, R.M.; Bindumadhava, H.; Singh, S. Dual Microbial Inoculation, a Game Changer?—Bacterial Biostimulants with Multifunctional Growth Promoting Traits to Mitigate Salinity Stress in Spring Mungbean. Front. Microbiol. 2021, 11, 3491. [Google Scholar] [CrossRef] [PubMed]
- Gr, S.; Yadav, R.K.; Chatrath, A.; Gerard, M.; Tripathi, K.; Govindsamy, V.; Abraham, G. Perspectives on the Potential Application of Cyanobacteria in the Alleviation of Drought and Salinity Stress in Crop Plants. J. Appl. Phycol. 2021, 33, 3761–3778. [Google Scholar] [CrossRef]
- Ben Ali, A.R.; Shukla, M.K.; Schutte, B.J.; Gard, C.C. Irrigation with RO Concentrate and Brackish Groundwater Impacts Pecan Tree Growth and Physiology. Agric. Water Manag. 2020, 240, 106328. [Google Scholar] [CrossRef]
- Ben Ali, A.R.; Yang, H.; Shukla, M. Brackish Groundwater and Reverse Osmosis Concentrate Influence Soil Physical and Thermal Properties and Pecan Evapotranspiration. Soil Sci. Soc. Am. J. 2021, 85, 1519–1533. [Google Scholar] [CrossRef]
- Gavlak, R.G.; Horneck, D.A.; Miller, R.O. Plant, Soil, and Water Reference Methods for the Western Region; Western Rural Development Center: Logan, UT, USA, 1994. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1996; pp. 961–1010. ISBN 978-0-89118-866-7. [Google Scholar]
- Buyer, J.S.; Sasser, M. High Throughput Phospholipid Fatty Acid. Appl. Soil Ecol. 2012, 61, 127–130. [Google Scholar] [CrossRef]
- Christie, W.W. Lipid Analysis: Isolation, Separation, Identification and Structural Analysis of Lipids; Oily Press: Bridgewater, UK, 2003. [Google Scholar]
- Rios-Velazquez, C.; Malave-Orengo, J.; Borglin, S.; Hazen, T. A Modified Cell Extraction Method to Access Microbial Community Structure in Soil Samples by Phospholipid Fatty Acid Analysis. Curr. Res. Technol. Educ. Top. Appl. Microbiol. Microb. Biotechnol. 2011, 2, 1562–1568. [Google Scholar]
- Provin, T.; Pitt, J.L. Managing Soil Salinity. In Texas Farmer Collection; Texas A&M University: College Station, TX, USA, 2001; pp. 1–7. [Google Scholar]
- Mohamed, D.J.; Martiny, J.B. Patterns of Fungal Diversity and Composition along a Salinity Gradient. ISME J. 2011, 5, 379–388. [Google Scholar] [CrossRef]
- Zhang, S.; Zheng, Q.; Noll, L.; Hu, Y.; Wanek, W. Environmental Effects on Soil Microbial Nitrogen Use Efficiency Are Controlled by Allocation of Organic Nitrogen to Microbial Growth and Regulate Gross N Mineralization. Soil Biol. Biochem. 2019, 135, 304–315. [Google Scholar] [CrossRef]
- Hoorman, J.J. The Role of Soil Bacteria. Fact sheet, Agriculture and Natural Resources; Ohio State University: Columbus, OH, USA, 2011; pp. 1–4. [Google Scholar]
- Estrada, B.; Aroca, R.; Maathuis, F.J.; Barea, J.M.; Ruiz-Lozano, J.M. Arbuscular Mycorrhizal Fungi Native from a Mediterranean Saline Area Enhance Maize Tolerance to Salinity through Improved Ion Homeostasis. Plant Cell Environ. 2013, 36, 1771–1782. [Google Scholar] [CrossRef]
- Min, W.; Guo, H.; Zhang, W.; Zhou, G.; Ma, L.; Ye, J.; Liang, Y.; Hou, Z. Response of Soil Microbial Community and Diversity to Increasing Water Salinity and Nitrogen Fertilization Rate in an Arid Soil. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2016, 66, 117–126. [Google Scholar] [CrossRef]
- Wichern, J.; Wichern, F.; Joergensen, R.G. Impact of Salinity on Soil Microbial Communities and the Decomposition of Maize in Acidic Soils. Geoderma 2006, 137, 100–108. [Google Scholar] [CrossRef]
- Xie, L.-N.; Ge, Z.-M.; Li, Y.-L.; Li, S.-H.; Tan, L.-S.; Li, X.Z. Effects of Waterlogging and Increased Salinity on Microbial Communities and Extracellular Enzyme Activity in Native and Exotic Marsh Vegetation Soils. Soil Sci. Soc. Am. J. 2020, 84, 82–98. [Google Scholar] [CrossRef]
- Lynch, J.M.; Whipps, J.M. Substrate Flow in the Rhizosphere. Plant Soil 1990, 129, 1–10. [Google Scholar] [CrossRef]
- Kankarla, V.; Shukla, M.K.; VanLeeuwen, D.; Schutte, B.J.; Picchioni, G.A. Growth, Evapotranspiration, and Ion Uptake Characteristics of Alfalfa and Triticale Irrigated with Brackish Groundwater and Desalination Concentrate. Agronomy 2019, 9, 789. [Google Scholar] [CrossRef]
- Ahmadi, M.; Souri, M.K. Growth and Mineral Content of Coriander (Coriandrum sativum L.) Plants under Mild Salinity with Different Salts. Acta Physiol. Plant. 2018, 40, 1–8. [Google Scholar] [CrossRef]
- Doran, J.W.; Parkin, T.B. Defining and Assessing Soil Quality. In Defining Soil Quality for a Sustainable Environment; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1994; pp. 1–21. ISBN 978-0-89118-930-5. [Google Scholar]
- Doran, J.W.; Zeiss, M.R. Soil Health and Sustainability: Managing the Biotic Component of Soil Quality. Appl. Soil Ecol. 2000, 15, 3–11. [Google Scholar] [CrossRef]
- Ikemura, Y.; Shukla, M.K. Soil Quality in Organic and Conventional Farms of New Mexico, USA. J. Org. Syst. 2009, 4, 34–47. [Google Scholar]
- Rekaby, S.A.; Awad, M.Y.; Hegab, S.A.; Eissa, M.A. Effect of Some Organic Amendments on Barley Plants under Saline Condition. J. Plant Nutr. 2020, 43, 1840–1851. [Google Scholar] [CrossRef]
- Mahmoud, E.; Ibrahim, M.; Ali, N.; Ali, H. Effect of Biochar and Compost Amendments on Soil Biochemical Properties and Dry Weight of Canola Plant Grown in Soil Contaminated with Heavy Metals. Commun. Soil Sci. Plant Anal. 2020, 51, 1561–1571. [Google Scholar] [CrossRef]
- Gunarathne, V.; Senadeera, A.; Gunarathne, U.; Biswas, J.K.; Almaroai, Y.A.; Vithanage, M. Potential of Biochar and Organic Amendments for Reclamation of Coastal Acidic-Salt Affected Soil. Biochar 2020, 2, 107–120. [Google Scholar] [CrossRef]
- Liu, D.; Ding, Z.; Ali, E.F.; Kheir, A.M.S.; Eissa, M.A.; Ibrahim, O.H.M. Biochar and Compost Enhance Soil Quality and Growth of Roselle (Hibiscus sabdariffa L.) under Saline Conditions. Sci. Rep. 2021, 11, 8739. [Google Scholar] [CrossRef] [PubMed]
- Porcel, R.; Aroca, R.; Ruiz-Lozano, J.M. Salinity Stress Alleviation Using Arbuscular Mycorrhizal Fungi. A Review. Agron. Sustain. Dev. 2012, 32, 181–200. [Google Scholar] [CrossRef]
- Paul, D.; Lade, H. Plant-Growth-Promoting Rhizobacteria to Improve Crop Growth in Saline Soils: A Review. Agron. Sustain. Dev. 2014, 34, 737–752. [Google Scholar] [CrossRef]
- Al-Nabulsi, Y.A. Saline Drainage Water, Irrigation Frequency and Crop Species Effects on Some Physical Properties of Soils. J. Agron. Crop Sci. 2001, 186, 15–20. [Google Scholar] [CrossRef]
- Aiello, R.; Cirelli, G.L.; Consoli, S. Effects of Reclaimed Wastewater Irrigation on Soil and Tomato Fruits: A Case Study in Sicily (Italy). Agric. Water Manag. 2007, 93, 65–72. [Google Scholar] [CrossRef]
- Flores, A.M.; Shukla, M.K.; Daniel, D.; Ulery, A.L.; Schutte, B.J.; Picchioni, G.A.; Fernald, S. Evapotranspiration Changes with Irrigation Using Saline Groundwater and RO Concentrate. J. Arid. Environ. 2016, 131, 35–45. [Google Scholar] [CrossRef]
- Adhikari, P.; Shukla, M.K.; Mexal, J.G. Spatial Variability of Hydraulic Conductivity and Sodium Content of Desert Soils: Implications for Management of Irrigation Using Treated Wastewater. Trans. ASABE 2012, 55, 1711–1721. [Google Scholar] [CrossRef]
- Duan, R.; Fedler, C.B.; Sheppard, C.D. Field Study of Salt Balance of a Land Application System. Water Air Soil Pollut. 2011, 215, 43–54. [Google Scholar] [CrossRef]
Treatment EC (dS/m) | Mg (meq/L) | Ca (meq/L) | Na (meq/L) | Cl (meq/L) | P (meq/L) | K (meq/L) | S (meq/L) | SAR | pH |
---|---|---|---|---|---|---|---|---|---|
Control 0.8 | 0.61 | 1.90 | 1.35 | 2.91 | 0.197 | 0.19 | 4.00 | 1.20 | 8.1 |
BGW 4.0 | 7.70 | 9.73 | 7.36 | 9.65 | 0.001 | 0.22 | 50.23 | 2.49 | 7.9 |
RO 8.0 | 18.39 | 15.71 | 21.00 | 12.07 | 0.020 | 0.24 | 132.00 | 5.08 | 8.2 |
Season | Treatment (dS/m) | EC (dS/m) | pH | OM (%) |
---|---|---|---|---|
2017 | Control EC 0.8 | 1.61 ± 0.01 c | 8.60 ± 0.10 a | 1.30 ± 0.05 a |
BGW EC 4.0 | 4.80 ± 0.02 b | 8.36 ± 0.17 a | 0.93 ± 0.18 a | |
RO EC 8.0 | 6.60 ± 0.03 a | 8.00 ± 0.25 a | 0.86 ± 0.31 a | |
2018 | Control EC 0.8 | 1.59 ± 0.02 c | 7.93 ± 0.13 a | 1.66 ± 0.41 a |
BGW EC 4.0 | 4.81 ± 0.01 b | 7.73 ± 0.06 a | 2.13 ± 0.90 a | |
RO EC 8.0 | 7.30 ± 0.03 a | 7.53 ± 0.14 a | 0.76 ± 0.14 a |
Season | Treatment dS/m | PLFA Biomarkers | ||||
---|---|---|---|---|---|---|
Bacteria Gram− | Bacteria Gram+ | AM Fungi | Fungi | Actinomycete | ||
2017 | Control EC 0.8 | 16:1w5c 18:1w7c | 15:0iso 15:0anteiso 16:0iso 16:0 10-methyl | 16:1w5c | 16:1w5c 18:2w6c | 16:0 10-methyl |
BGW EC 4.0 | 16:1 w5c 18:1w7c | 15:0iso 15:0anteiso 16:0 10-methyl 17:0anteiso | 16:1w5c | 16:1w5c | 16:0 10-methyl | |
RO EC 8.0 | 16:1w5c 17:1w8c 18:1w7c | 15:0iso 15:0anteiso 16:0iso 16:0 10-methyl 17:0anteiso | 16:1w5c | 16:1w5c | 16:0 10-methyl 18:0 10-methyl | |
2018 | Control EC 0.8 | 18:0iso | ||||
BGW EC 4.0 | 18:0iso | 18:2 w6c 20:1 w9c | ||||
RO EC 8.0 | 18:0iso |
Season | Treatment (dS/m) | Na (meq/L) | Mg (meq/L) | Ca (meq/L) | SAR |
---|---|---|---|---|---|
Mean ± SE | |||||
Control EC 0.8 | 11.58 ± 1.45 b | 16.11 ± 2.85 b | 125.42 ± 26.97 b | 1.36 ± 0.13 b | |
2017 | BGW EC 4.0 | 12.50 ± 1.91 b | 22.47 ± 6.62 b | 131.60 ± 31.77 b | 1.38 ± 0.17 b |
RO EC 8.0 | 26.16 ± 3.43 a | 32.23 ± 13.15 a | 164.15 ± 38.31 a | 2.59 ± 0.29 a | |
Control EC 0.8 | 11.78 ± 1.05 b | 15.12 ± 0.53 b | 126.57 ± 6.66 b | 0.98 ± 0.07 b | |
2018 | BGW EC 4.0 | 15.33 ± 2.19 b | 22.14 ± 2.13 b | 141.43 ± 10.50 ab | 1.18 ± 0.16 b |
RO EC 8.0 | 25.44 ± 4.26 a | 32.11 ± 4.83 a | 181.30 ± 25.15 a | 1.69 ± 0.20 a |
Season | Treatment (ds/m) | S (meq/L) | K (meq/L) | Zn (meq/L) | Cl (meq/L) |
---|---|---|---|---|---|
Mean ± SE | |||||
Control EC 0.8 | 7.92 ± 5.88 b | 9.00 ± 1.20 a | 0.23 ± 0.05 a | 6.47 ± 0.92 b | |
2017 | BGW EC 4.0 | 26.46 ± 21.19 b | 6.69 ± 0.68 ab | 0.21 ± 0.07 a | 12.86 ± 3.32 b |
RO EC 8.0 | 52.88 ± 36.62 a | 5.93 ± 0.56 b | 0.27 ± 0.11 a | 32.54 ± 9.70 a | |
Control EC 0.8 | 8.30 ± 2.32 b | 5.91 ± 0.50 a | 0.35 ± 0.04 a | 4.97 ± 0.57 b | |
2018 | BGW EC 4.0 | 26.92 ± 7.59 ab | 5.41 ± 0.39 a | 0.34 ± 0.07 a | 13.21 ± 2.94 ab |
RO EC 8.0 | 56.62 ± 16.48 a | 5.49 ± 0.38 a | 0.32 ± 0.07 a | 24.26 ± 7.39 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Ali, A.R.; Holguin, F.F.O.; Shukla, M.K. Soil Microbial Composition and Soil Health of Reverse-Osmosis-Concentrate and Brackish-Groundwater Irrigated Soils in Southern New Mexico. Soil Syst. 2023, 7, 37. https://doi.org/10.3390/soilsystems7020037
Ben Ali AR, Holguin FFO, Shukla MK. Soil Microbial Composition and Soil Health of Reverse-Osmosis-Concentrate and Brackish-Groundwater Irrigated Soils in Southern New Mexico. Soil Systems. 2023; 7(2):37. https://doi.org/10.3390/soilsystems7020037
Chicago/Turabian StyleBen Ali, Akram R., Francisco F. Omar Holguin, and Manoj K. Shukla. 2023. "Soil Microbial Composition and Soil Health of Reverse-Osmosis-Concentrate and Brackish-Groundwater Irrigated Soils in Southern New Mexico" Soil Systems 7, no. 2: 37. https://doi.org/10.3390/soilsystems7020037
APA StyleBen Ali, A. R., Holguin, F. F. O., & Shukla, M. K. (2023). Soil Microbial Composition and Soil Health of Reverse-Osmosis-Concentrate and Brackish-Groundwater Irrigated Soils in Southern New Mexico. Soil Systems, 7(2), 37. https://doi.org/10.3390/soilsystems7020037