Soil and Land Cover Interrelationships: An Analysis Based on the Jenny’s Equation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area: Summary of Soil Forming Factors
2.2. Sampling Points: Soil Profiles and on-Ground Information on Soil Forming Factors
2.3. Statistical Analyses: Definition of the Components of the Clorpt Equation
2.4. Statistical Analyses: Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Florinsky, I.V. The Dokuchaev Hypothesis as a Basis for Predictive Digital Soil Mapping (On the 125th Anniversary of Its Publication). Eurasian Soil Sci. 2012, 45, 445–451. [Google Scholar] [CrossRef]
- Jenny, H. Factors of Soil Formation; McGraw-Hill: New York, NY, USA, 1941; p. 281. [Google Scholar] [CrossRef]
- Wilding, L.P.; Smeck, N.E.; Hall, G.F. Developments in Soil Science. In Pedogenesis and Soil Taxonomy. I. Concepts and Interactions; Wilding, L.P., Smeck, N.E., Hall, G.F., Eds.; Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1983; pp. 117–140. ISBN 978-0-444-42100-5. [Google Scholar]
- Stockmann, U.; Minasny, B.; MacBratney, A.B. Quantifying Processes of Pedogenesis. Adv. Agron. 2011, 113, 293–323. [Google Scholar] [CrossRef]
- Bockheim, J.G.; Gennadiyev, A.N.; Hammer, R.D.; Tandarich, J.P. Historical development of key concepts in pedology. Geoderma 2005, 124, 23–36. [Google Scholar] [CrossRef]
- Phillips, J.D. Stability implications of the state factor model of soils as a nonlinear dynamical system. Geoderma 1993, 58, 1–15. [Google Scholar] [CrossRef]
- Giupponi, L.; Leoni, V.; Pedrali, D.; Zuccolo, M.; Cislaghi, A. Plant cover is related to vegetation and soil features in limestone screes colonization: A case study in the Italian Alps. Plant Soil. 2022, 483, 495–513. [Google Scholar] [CrossRef]
- Porder, S. How Plants Enhance Weathering and How Weathering is Important to Plants. Elements 2019, 15, 241–246. [Google Scholar] [CrossRef]
- Grunwald, S. Future of Soil Science. In The Future of Soil Science; Hartemink, A., Ed.; IUSS International Union of Soil Sciences: Wageningen, The Netherlands, 2006; pp. 51–53. ISBN 90-71556-16-6. [Google Scholar]
- Fitzpatrick, E.A. Soils, Their Formation, Classification and Distribution; Longman Inc.: New York, NY, USA, 1983; ISBN 978-0-582-30116-0. [Google Scholar]
- Fanning, D.S.; Fanning, M.C.B. Soil: Morphology, Genesis and Classification; John Wiley & Sons: New York, NY, USA, 1989; p. 416. ISBN 978-0-471-89248-9. [Google Scholar]
- Jenny, H. The Soil Resource, Origin and Behaviour; Springer: New York, NY, USA, 1980; p. 368. [Google Scholar] [CrossRef]
- Ugolini, F.C.; Edmonds, R.L. Soil Biology. In Pedogenesis and Soil Taxonomy. I. Concepts and Interactions; Wilding, L.P., Smeck, N.E., Hall, G.F., Eds.; Elsevier Science Publishers B.V.: Amsterdam., The Netherlands, 1983; Chapter 7; pp. 193–231. ISBN 978-0-444-42100-5. [Google Scholar]
- Jenny, H. Role of the Plant Factor in the Pedogenic Functions. Ecology 1958, 39, 5–16. [Google Scholar] [CrossRef]
- Hironaka, M.; Fosberg, M.A.; Neiman, K.E., Jr. The relationship between soils and vegetation. In Proceedings of the Symposium on Management and Productivity of Western-Montane Forest Soils, Boise, ID, USA, 10–12 April 1990; pp. 29–31. [Google Scholar]
- Roy, P.S.; Dwivedi, R.S.; Vijayan, D. Remote Sensing Applications. Government of India, National Remote Sensing Centre. Indian Space Research Organisation. Available online: https://www.nrsc.gov.in/sites/default/files/pdf/ebooks/Chap_2_LULC.pdf (accessed on 24 January 2023).
- Rossiter, D.G. Soil mapping today: Computer-generated predictive soil maps–their role in soil survey and land evaluation. Agric. Dev. 2021, 44. Available online: https://www.isric.org/sites/default/files/Ag4Dev44-Article5.pdf (accessed on 24 January 2023).
- IUSS Working Group-WRB. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2014; p. 181. ISBN 978-92-5-108369-7. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA—Natural Resources Conservation Service: Washington, DC, USA, 2014; p. 362. [Google Scholar]
- Bockheim, J.G. Soil Geography of the USA: A Diagnostic-Horizon Approach; Springer International Publishing: Cham, Switzerland, 2014; p. 320. ISBN 978-3-319-06668-4. [Google Scholar]
- Rodríguez-Rastrero, M. Los suelos de Asturias (España): Un enfoque basado en las relaciones entre factores formadores y horizontes de diagnóstico. Ph.D. Thesis, Autonomous University of Madrid, Madrid, Spain, January 2016. (In Spanish). Available online: https://repositorio.uam.es/handle/10486/671738 (accessed on 3 August 2022).
- Chazarra, A.; Flórez-García, E.; Peraza, B.; Tohá-Rebull, T.; Lorenzo-Mariño, B.; Criado, E.; Moreno-García, J.V.; Romero-Fresneda, R.; Botey, M.R. Mapas climáticos de España (1981–2010) y ETo (1996–2016). 2018. Available online: http://www.aemet.es/es/conocermas/recursos_en_linea/publicaciones_y_estudios/publicaciones/detalles/MapasclimaticosdeEspana19812010 (accessed on 18 September 2022).
- Field Book for Describing and Sampling Soils, Version 2.0; Schoeneberger, P.J.; Wysocki, D.A.; Benham, E.C.; Broderson, W.D. (Eds.) Natural Resources Conservation Service, National Soil Survey Center: Lincoln, NE, USA, 2002. [Google Scholar]
- Buol, S.W.; Southard, R.J.; Graham, R.J.; McDaniel, P.A. Soil Genesis and Classification, 6th ed.; Wiley-Blackwell: Oxford, UK, 2011; p. 527. [Google Scholar] [CrossRef]
- Nater, E.A.; Jelinski, N.A. Temperate Region Soils. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2014; Reference Collection. [Google Scholar] [CrossRef]
- Huggett, R.J. Soil chronosequences, soil development, and soil evolution: A critical review. Catena 1998, 32, 155–172. [Google Scholar] [CrossRef]
- European Union. Copernicus Land Monitoring Service. European Environment Agency (EEA). Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed on 20 September 2022).
- Ferrer, C.; San Miguel, A.; Olea, L. Nomenclátor básico de pastos en España. Pastos 2001, 2, 7–44. Available online: http://polired.upm.es/index.php/pastos/article/view/1694 (accessed on 21 December 2017).
- Martínez-Fernández, A.; Argamentería, A.; De la Roza, B. Manejo de Forrajes Para Ensilar; Servicio Regional de Investigación y Desarrollo Agroalimentaria (SERIDA) del Principado de Asturias: Villaviciosa, Spain, 2014; p. 280. ISBN 978-84-617-3224-0. [Google Scholar]
- Blanco, E.; Casado, M.A.; Costa, M.; Escribano, R.; García, M.; Génova, M.; Gómez, A.; Gómez, F.; Moreno, J.C.; Morla, C.; et al. Los Bosques Ibéricos; Una Interpretación Geobotánica, Ed.; Planeta: Barcelona, Spain, 2005; p. 597. ISBN 978-8-408-05820-5. [Google Scholar]
- Ortega, M.E.; De la Mano, D.; Fernández, S.; Garrido, B. El Monte en Asturias. Consejería de Medio Rural y Pesca. Dirección General de Política Forestal. Gobierno del Principado de Asturias, Spain. 2011. Available online: https://www.asturias.es/Asturias/descargas/PDF_TEMAS/Agricultura/Politica%20Forestal/el_monte_en_asturias.pdf (accessed on 21 December 2017).
- González-Taboada, F.; Anadón-Álvarez, R. Análisis de Escenarios de Cambio Climático en Asturias (Roqueñi y Orviz, Coord.); Gobierno del Principado de Asturias: Oviedo, Spain, 2011; ISBN 978-84-694-2848-1. [Google Scholar]
- Abdi, H.; Valentin, D. Multiple Correspondence Analysis. In Encyclopedia of Measurement and Statistics; Salkind, N., Ed.; University of Texas: Dallas, TX, USA, 2007; Available online: https://personal.utdallas.edu/~herve/Abdi-MCA2007-pretty.pdf (accessed on 20 February 2023).
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef] [Green Version]
- STHDA. Statistical Tools for High-Throughput Data Analysis. Available online: http://www.sthda.com/english/articles/31-principal-component-methods-in-r-practical-guide/114-mca-multiple-correspondence-analysis-in-r-essentials/ (accessed on 2 February 2023).
- Carballas, T.; Rodríguez-Rastrero, M.; Artieda, O.; Gumuzzio, J.; Díaz-Raviña, M.; Martin, Á. Soils of the temperate humid zone. In The Soils of Spain; Gallardo, J.F., Ed.; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Sun, L.; Guo, H.; Liu, B.; Wu, S.; Weckler, P.R.; Yang, J. Characterizing erosion processes on a convex slope based on 3D reconstruction method. Geoderma 2021, 402, 115364. [Google Scholar] [CrossRef]
- Duchaufour, P.; Souchier, B. Edafología. I: Edafogénesis y Clasificación (Spanish versión by Carballas, T. y Carballas, M.); Editorial Masson: Barcelona, Spain, 1984; p. 483. ISBN 84-311-0344-2. [Google Scholar]
- Zhou, Y.; Boutton, T.W.; Wu, X.B. Subsurface soil horizons drive landscape patterns of woody patches in a subtropical savanna. In Proceedings of the Society for Range Management (SRM), Conference Proceedings, 2016, Corpus Christi, TX, USA, 31 January–4 February 2016. [Google Scholar]
- Kosmas, C.; Danalatos, N.; Cammeraat, L.; Chabart, M.; Diamantopoulos, J.; Farand, R.; Gutiérrez, L.; Jacob, A.; Marques, H.; Martínez-Fernández, J.; et al. The effect of land use on runoff and soil erosion rates under Mediterranean conditions. Catena 1997, 29, 45–59. [Google Scholar] [CrossRef]
- Verheye, W.; Koohafkan, P.; Nachtergaele, F. The FAO Guidelines for Land Evaluation-Land Use, Land Cover and Soil Sciences-Vol. II. 2003. UNESCO-EOLSS. Available online: http://eolss.net/Sample-Chapters/C19/E1-05-02-03.pdf (accessed on 21 February 2023).
- Fernández, C.; Vega, J.A.; Gras, J.M.; Fonturbel, T.; Cuiñas, P.; Dambrine, E.; Alonso, M. Soil erosion after Eucalyptus globulus clearcutting: Differences between logging slash disposal treatments. For. Ecol. Manag. 2004, 195, 85–95. [Google Scholar] [CrossRef]
- Álvarez, E.; Martínez, A.; Veiga, A. Composición iónica de la disolución de suelos de Galicia: Relación con el tipo de cubierta arbórea y material de partida. Ecología 1992, 6, 17–27. [Google Scholar]
- Calvo de Anta, R.M.; Díaz-Fierros, F. Consideraciones acerca de la acidificación de los suelos de la zona húmeda española a través de la vegetación. An. Edaf. Agrob. 1981, 40, 411–425. [Google Scholar]
- Calvo de Anta, R.M.; Paz, A.; Díaz-Fierros, F. Nuevos datos sobre la influencia de la vegetación en la formación del suelo en Galicia (I). An. Edaf. Agrobiol. 1979, 38, 1675–1691. [Google Scholar]
- Eswaran, H.; Reich, P.F. World soil map. In Encyclopedia of Soils in the Environment; Four-Volume set; Hillel, D., Ed.; Elsevier: New York, NY, USA, 2005; pp. 352–365. ISBN 978-0-123-48530-4. [Google Scholar]
- Kögel-Knaber, I.; Amelung, W. Dynamics, Chemistry, and Preservation of Organic Matter in Soils. pp. 157–215; In Treatise on Geochemistry, 2nd ed.; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Oxford, UK, 2014; p. 12. ISBN 978-0-080-95975-7. [Google Scholar]
- Hillel, D. Soil in the Environment; Elsevier Academic Press: Burlington, MA, USA, 2008; p. 307. [Google Scholar] [CrossRef]
- Sauer, D.; Schülli-Maurer, I.; Sperstad, R.; Sørensen, R.; Stahr, K. Albeluvisol development with time in loamy marine sediments of southern Norway. Quat. Int. 2009, 209, 31–43. [Google Scholar] [CrossRef]
- Vidic, N.J. Soil-age relationships and correlations: Comparison of chronosequences in the Ljubljana Basin, Slovenia and USA. Catena 1998, 34, 113–129. [Google Scholar] [CrossRef]
- Papiernik, S.K.; Lindstrom, M.J.; Schumacher, T.E.; Schumacher, J.A.; Malo, D.D.; Lobb, D.A. Characterization of soil profiles in a landscape affected by long term tillage. Soil Tillage Res. 2007, 93, 335–345. [Google Scholar] [CrossRef]
- Sanborn, P.; Lamontagne, L.; Hendershot, W. Podzolic soils of Canada: Genesis, distribution, and classification. Can. J. Soil Sci. 2011, 91, 843–880. [Google Scholar] [CrossRef]
- Buurman, P.; Jongmans, A.G. Podzolization–An additional paradigm. Edafología 2002, 9, 107–114. [Google Scholar]
- Schaetzl, R.J.; Isard, S.A. Regional-scale relationships between climate and strength of podzolization in the Great Lakes Region, North America. Catena 1996, 28, 47–69. [Google Scholar] [CrossRef]
- Lundström, U.S.; Van Breemen, N.; Bain, D. The podsolization process. A review. Geoderma 2000, 94, 91–107. [Google Scholar] [CrossRef]
CORINE Land Cover (CLC) Classes | CORINE Code | Class Definitions | |
---|---|---|---|
According to CLC (*) | Specifications for the Territory of Asturias | ||
Non-irrigated arable land | 211 | Cultivated land under rainfed agricultural uses, for non-permanent crops of annual harvest, normally under crop rotation. It includes cereals, tubers, legumes, oilseeds, as well as forages (alfalfa, grass for silage or hay production). | Regularly tilled soils, commonly used as monophyte forage crops by mowing [28], with horticultural crops and orchards (frequently kiwifruit orchards). |
Pastures, meadows and other permanent grasslands under agricultural use | 231 | Permanent grasslands characterized by agricultural use or heavy human disturbance, dominated by grasses. Normally, for grazing (pastures) or mechanical grass harvesting (meadows). | Sown polyphyte grasslands, evergreen mixtures of grasses and legumes, used by mowing or grazing [28], depending on whether general slopes are greater than 14% or not, which determines mechanization capacity [29]. |
Broad-leaved forest | 311 | Pure or mixed stands of beech, oak, hornbeam, lime, maple, ash, poplar or birch species, as well as riparian and gallery woodlands; chestnut trees and plantations of Eucalyptus. | Mature and dense forest formations, mostly of beech, oak and mixed Atlantic forests according to Blanco et al. [30]. Plantations of Eucalyptus, mainly constituted by E. globulus [31], are considered apart given its anthropic character, which frequently supposes a profound alteration of natural soils. |
Coniferous forest | 312 | Include mature coniferous (needle-leaved) forests of natural or anthropogenic origin, as well as young plantations of coniferous trees reaching 5 m height. | Conifer plantations, mainly constituted by Pinus radiata and P. sylvestris [31]. |
Natural grassland | 321 | Low productivity grasslands under no or moderate human influence. Often situated in steep slopes; frequently including rocky areas or patches of other (semi-)natural vegetation, with sporadically (<30% surface) occurring ligneous vegetation including shrubs. | Semi-natural herbaceous communities of variable density, mainly used for grazing [28]. |
Moors and heathland | 322 | Dense vegetation covers of shrubs (heathers, brooms, gorse and others) and herbaceous in Atlantic, sub-Atlantic and sub-continental areas. | Shrubby formations less than 2 m, included in Cytisetea scopario-striati, and Calluno-Ulicetea communities [28]. It includes high altitude grasslands and natural herbaceous communities mixed with shrubs, exclusively dedicated to seasonal grazing. |
Clorpt Components | Variables | Categories | MCA Code | n |
---|---|---|---|---|
SOIL (S) | Surface horizons (nominal) | Mollic | MOL | 62 |
Ochric | OCH | 230 | ||
Umbric | UMB | 132 | ||
Subsurface horizons (nominal) | Argillic | ARG | 40 | |
Cambic | CAM | 140 | ||
no subsurface horizon | NOT | 231 | ||
Spodic | SPO | 13 | ||
CLIMATE (Cl) | Altitude (interval) | >50 | AL1 | 61 |
50–200 | AL2 | 92 | ||
200–600 | AL3 | 110 | ||
600–1000 | AL4 | 99 | ||
>1000 | AL5 | 62 | ||
ORGANISMS (o) | Land cover (nominal) | crops | CRO | 99 |
Eucalyptus plantations | EUC | 24 | ||
pasturelands | PAS | 87 | ||
pine plantations | PIN | 28 | ||
prairies | PRA | 58 | ||
mixed pasture/shrublands | PSH | 43 | ||
shrublands | SHR | 51 | ||
natural woodlands | WOO | 34 | ||
RELIEF (r) | Slope value (interval) | <2% | SL1 | 44 |
3–16% | SL2 | 154 | ||
17–50% | SL3 | 180 | ||
>50% | SL4 | 46 | ||
Slope shape (nominal) | concave slope | SLC | 225 | |
convex slope | SLX | 85 | ||
straight slope | SLS | 114 | ||
Relative position (nominal) | floodplains | POF | 68 | |
high slopes | POH | 132 | ||
low slopes | POL | 182 | ||
summits | POS | 42 | ||
PARENT MATERIAL (p) | Lithology (nominal) | mixed alluvium | PMA | 70 |
clayey materials | PMC | 68 | ||
mixed colluvium | PMK | 51 | ||
limestones | PML | 65 | ||
quartzitic sandy materials | PMQ | 124 | ||
slates | PMS | 46 |
Surf_HOR Categories | Land Cover Categories (CORINE Equivalences) | ||||||||
---|---|---|---|---|---|---|---|---|---|
CRO (211) | EUC (311) | PAS (321) | PIN (312) | PRA (231) | PSH (322) | SHR (322) | WOO (311) | ||
OCH n = 230 | Count | 66 a | 10 bc | 57 a | 5 d | 39 a | 15 c | 17 cd | 21 ab |
Expected count | 52 | 14 | 46 | 18 | 32 | 20 | 29 | 18 | |
% Within Surf_HOR | 30 | 4 | 24 | 2 | 17 | 7 | 7 | 9 | |
% Within Land_cover | 83 | 45 | 75 | 18 | 78 | 47 | 37 | 72 | |
% Total | 19 | 3 | 15 | 1 | 11 | 4 | 5 | 6 | |
UMB n = 132 | Count | 14 a | 12 bc | 19 a | 23 d | 11 a | 17 c | 28 cd | 8 ab |
Expected count | 30 | 8 | 27 | 10 | 18 | 12 | 17 | 11 | |
% Within Surf_HOR | 11 | 9 | 14 | 17 | 8 | 13 | 22 | 6 | |
% Within Land_cover | 17 | 55 | 25 | 82 | 22 | 53 | 63 | 28 | |
% Total | 4 | 3 | 5 | 6 | 3 | 5 | 8 | 2 |
SubSurf_HOR Categories | Land Cover Categories (CORINE Equivalences) | ||||||||
---|---|---|---|---|---|---|---|---|---|
CRO (211) | EUC (311) | PAS (321) | PIN (312) | PRA (231) | PSH (322) | SHR (322) | WOO (311) | ||
ARG n = 40 | Count | 6 ab | 3 bc | 7 ab | 0 a | 14 c | 4 abc | 4 ab | 2 ab |
Expected count | 10 | 2 | 8 | 3 | 6 | 4 | 4 | 3 | |
% Within SubSurf_HOR | 15 | 8 | 18 | 0 | 35 | 10 | 10 | 5 | |
% Within Land_cover | 6 | 14 | 8 | 0 | 24 | 9 | 9 | 6 | |
% Total | 2 | 1 | 2 | 0 | 3 | 1 | 1 | 1 | |
CAM n = 139 | Count | 43 a | 8 abc | 37 a | 3 d | 21 ac | 9 bcd | 8 bd | 10 abcd |
Expected count | 33 | 8 | 29 | 9 | 20 | 15 | 15 | 11 | |
% Within SubSurf_HOR | 31 | 6 | 27 | 2 | 15 | 7 | 6 | 7 | |
% Within Land_cover | 44 | 36 | 43 | 11 | 36 | 21 | 18 | 31 | |
% Total | 11 | 2 | 9 | 1 | 5 | 2 | 2 | 2 | |
NOT n = 231 | Count | 49 ab | 11 abc | 42 ab | 24 d | 23 b | 30 cd | 32 cd | 20 ac |
Expected count | 55 | 12 | 49 | 15 | 33 | 24 | 25 | 18 | |
% Within SubSurf_HOR | 21 | 5 | 18 | 10 | 10 | 13 | 14 | 9 | |
% Within Land_cover | 50 | 50 | 49 | 89 | 40 | 70 | 73 | 63 | |
% Total | 12 | 3 | 10 | 6 | 6 | 7 | 8 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Rastrero, M.; Ortega-Martos, A.; Cicuéndez, V. Soil and Land Cover Interrelationships: An Analysis Based on the Jenny’s Equation. Soil Syst. 2023, 7, 31. https://doi.org/10.3390/soilsystems7020031
Rodríguez-Rastrero M, Ortega-Martos A, Cicuéndez V. Soil and Land Cover Interrelationships: An Analysis Based on the Jenny’s Equation. Soil Systems. 2023; 7(2):31. https://doi.org/10.3390/soilsystems7020031
Chicago/Turabian StyleRodríguez-Rastrero, Manuel, Almudena Ortega-Martos, and Víctor Cicuéndez. 2023. "Soil and Land Cover Interrelationships: An Analysis Based on the Jenny’s Equation" Soil Systems 7, no. 2: 31. https://doi.org/10.3390/soilsystems7020031
APA StyleRodríguez-Rastrero, M., Ortega-Martos, A., & Cicuéndez, V. (2023). Soil and Land Cover Interrelationships: An Analysis Based on the Jenny’s Equation. Soil Systems, 7(2), 31. https://doi.org/10.3390/soilsystems7020031