Variability of Hydraulic Properties and Hydrophobicity in a Coarse-Textured Inceptisol Cultivated with Maize in Central Chile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Study Design
2.3. Soil Property Measurements
2.4. Statistical Analysis
3. Results
3.1. State of Soil Compaction and Related Physical Soil Properties
3.1.1. Penetration Resistance (PR)
3.1.2. Texture
3.1.3. Bulk Density (BD)
3.1.4. Soil Organic Matter (OM)
3.2. Hydraulic Functionality of the Soil
3.2.1. Unsaturated Hydraulic Conductivity (Kh)
3.2.2. Saturated Hydraulic Conductivity (Ksat)
3.2.3. Water Repellency Index (R)
4. Discussion
4.1. State of Soil Compaction and Related Physical Soil Properties
4.1.1. Penetration Resistance (PR)
4.1.2. Texture
4.1.3. Bulk Density (BD)
4.1.4. Soil Organic Matter (OM)
4.2. Hydraulic Functionality of the Soil
4.2.1. Unsaturated Hydraulic Conductivity (Kh)
4.2.2. Saturated Hydraulic Conductivity (Ksat)
4.2.3. Water Repellency Index (R)
4.2.4. Correlation between Hydraulic Conductivity (K) and Hydrophobicity (R)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ODEPA. Maíz: Producción, Precios y Comercio Exterior. Avance a Julio de 2013. Available online: http://www.odepa.gob.cl//odepaweb/serviciosinformacion/Boletines/BMaiz0713.pdf (accessed on 23 September 2013).
- Pioneer. Catálogo de Híbridos de Maíz. Available online: https://www.pioneer.com/CMRoot/International/Latin_America_Central/Chile/Productos/Catalogos/catalogo2017web.pdf (accessed on 2 November 2022).
- Fischer, T.; Byerlee, D.; Edmeades, G. Crop Yields and Global Food Security: Will Yield Increase Continue to Feed the World? Australian Centre for International Agricultural Research: Canberra, Australia, 2014.
- Taylor, H.M.; Brar, G.S. Effect of Soil Compaction on Root Development. Soil Tillage Res. 1991, 19, 111–119. [Google Scholar] [CrossRef]
- Hamza, M.A.; Anderson, W.K. Soil compaction in cropping systems—A review of the nature, causes and possible solutions. Soil Tillage Res. 2005, 82, 121–145. [Google Scholar] [CrossRef]
- Salazar, O.; Rojas, C.; Soto, C. Diagnóstico Sectorial y Propuesta de Producción Limpia: Productores de Maíz de la Región del Libertador Bernardo O’Higgins; Cooperativa Campesina Intercomunal de Peumo (COOPEUMO): O’Higgins, Chile, 2013. [Google Scholar]
- Seitz, S.; Prasuhn, V.; Scholten, T. Controlling Soil Erosion Using No-Till Farming Systems. In No-Till Farming Systems for Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2020; pp. 195–211. [Google Scholar]
- Hausherr Lüder, R.-M.; Qin, R.; Richner, W.; Stamp, P.; Streit, B.; Noulas, C. Effect of Tillage Systems on Spatial Variation in Soil Chemical Properties and Winter Wheat (Triticum aestivum L.) Performance in Small Fields. Agronomy 2019, 9, 182. [Google Scholar] [CrossRef] [Green Version]
- Seguel, O.; Diaz, D.; Acevedo, E.; Silva, P.; Homer, I.; Seitz, S. Hydraulic Conductivity in a Soil Cultivated with Wheat-Rapeseed Rotation Under Two Tillage Systems. J. Soil Sci. Plant Nutr. 2020, 20, 2304–2315. [Google Scholar] [CrossRef]
- Nissen, J.; Quiroz, C.; Seguel, O.; Mac Donald, R.; Ellies, A. Flujo Hídrico no Saturado en Andisoles. Rev. De La Cienc. Del Suelo Y Nutr. Veg. 2006, 6, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Warrick, A.W. Soil Physics Companion; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Piccolo, A.; Mbagwu, J.S.C. Role of hydrophobic components of soil organic matter in soil aggregate stability. Soil Sci. Soc. Am. J. 1999, 63, 1801–1810. [Google Scholar] [CrossRef]
- Urbanek, E.; Hallett, P.; Feeney, D.; Horn, R. Water repellency and distribution of hydrophilic and hydrophobic compounds in soil aggregates from different tillage systems. Geoderma 2007, 140, 147–155. [Google Scholar] [CrossRef]
- Hallett, P. An introduction to soil water repellency. In Proceedings of the 8th International Symposium on Adjuvants for Agrochemicals (ISAA2007), Columbus, OH, USA, 6–9 August 2007; p. 13. [Google Scholar]
- Cuevas Becerra, J. Efecto de la materia orgánica y el manejo sobre la hidrofobicidad de suelos volcánicos. Rev. De La Cienc. Del Suelo Y Nutr. Veg. 2006, 6, 13–27. [Google Scholar] [CrossRef] [Green Version]
- Horton, R.; Ankeny, M.; Allmaras, R. Effects of compaction on soil hydraulic properties. In Developments in Agricultural Engineering; Elsevier: Amsterdam, The Netherlands, 1994; Volume 11, pp. 141–165. [Google Scholar]
- Buczko, U.; Bens, O. Assessing soil hydrophobicity and its variability through the soil profile using two different methods. Soil Sci. Soc. Am. J. 2006, 70, 718–727. [Google Scholar] [CrossRef]
- CIREN. Estudio Agrológico VI Región: Descripción de Suelos Materiales y Símbolos. (Pub. CIREN N° 114); Centro de Información de Recursos Naturales: Santiago, Chile, 1996; p. 570. [Google Scholar]
- Salazar, O.; Vargas, J.; Nájera, F.; Seguel, O.; Casanova, M. Monitoring of nitrate leaching during flush flooding events in a coarse-textured floodplain soil. Agric. Water Manag. 2014, 146, 218–227. [Google Scholar] [CrossRef]
- Uribe, J.; Cabrera, R.; de la Fuente, A.; Paneque, M. Atlas Bioclimático de Chile; Universidad de Chile: Santiago, Chile, 2012. [Google Scholar]
- Salazar, O.; Najera, F.; Tapia, W.; Casanova, M. Evaluation of the DAISY model for predicting nitrogen leaching in coarse-textured soils cropped with maize in the Mediterranean zone of Chile. Agric. Water Manag. 2017, 182, 77–86. [Google Scholar] [CrossRef]
- Sandoval, M.; Dörner, J.; Seguel, O.; Cuevas, J.; Rivera, D. Métodos de Análisis Físicos de Suelos; Departamento de Suelos y Recursos Naturales: Chillán, Chile, 2012. [Google Scholar]
- Sadzawka, A.; Carrasco, M.A.; Grez, R.; Mora, M.d.l.L.; Flores, H.; Neaman, A. Métodos de Análisis Recomendados para los Suelos Chilenos. Revisión 2006. Available online: https://hdl.handle.net/20.500.14001/8541 (accessed on 1 November 2022).
- Zhang, R.D. Determination of soil sorptivity and hydraulic conductivity from the disk infiltrometer. Soil Sci. Soc. Am. J. 1997, 61, 1024–1030. [Google Scholar] [CrossRef]
- Carsel, R.F.; Parrish, R.S. Developing Joint Probability-Distributions of Soil-Water Retention Characteristics. Water Resour. Res. 1988, 24, 755–769. [Google Scholar] [CrossRef] [Green Version]
- Devices, D. Minidisk Infiltrometer User’s Manual Version 10; Decagon Devices: Pullman, WA, USA, 2012. [Google Scholar]
- Tillman, R.W.; Scotter, D.R.; Wallis, M.G.; Clothier, B.E. Water-Repellency and Its Measurement by Using Intrinsic Sorptivity. Aust. J. Soil Res. 1989, 27, 637–644. [Google Scholar] [CrossRef]
- Leeds-Harrison, P.B.; Youngs, E.G.; Uddin, B. A device for determining the sorptivity of soil aggregates. Eur. J. Soil Sci. 1994, 45, 269–272. [Google Scholar] [CrossRef]
- Hallett, P.D.; Young, I.M. Changes to water repellence of soil aggregates caused by substrate-induced microbial activity. Eur. J. Soil Sci. 1999, 50, 35–40. [Google Scholar] [CrossRef]
- Gräler, B.; Pebesma, E.J.; Heuvelink, G.B. Spatio-temporal interpolation using gstat. R J. 2016, 8, 204–218. [Google Scholar] [CrossRef]
- Di Rienzo, J.; Robledo, C.; Balzarini, M.; Casanoves, F.; González, L.; Tablada, M. InfoStat Software Estadístico. Available online: http//www.infostat.com.ar (accessed on 20 June 2015).
- Badiella, L. Modelos lineales generalizados mixtos: Algunos casos prácticos. In Proceedings of the X Congreso Galego de Estatística e Investigación de Operacións, Pontevedra, Spain, 3–5 November 2011; pp. 1–6. [Google Scholar]
- Team, R.C. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online: https://www.r-project.org/ (accessed on 14 November 2020).
- Strudley, M.W.; Green, T.R.; Ascough, J.C. Tillage effects on soil hydraulic properties in space and time: State of the science. Soil Tillage Res. 2008, 99, 4–48. [Google Scholar] [CrossRef]
- Casanova, M.; Messing, I.; Joel, A. Influence of aspect and slope gradient on hydraulic conductivity measured by tension infiltrometer. Hydrol. Process. 2000, 14, 155–164. [Google Scholar] [CrossRef]
- Harper, R.J.; McKissock, I.; Gilkes, R.J.; Carter, D.J.; Blackwell, P.S. A multivariate framework for interpreting the effects of soil properties, soil management and landuse on water repellency. J. Hydrol. 2000, 231, 371–383. [Google Scholar] [CrossRef]
- Usowicz, B.; Lipiec, J. Spatial distribution of soil penetration resistance as affected by soil compaction: The fractal approach. Ecol. Complex. 2009, 6, 263–271. [Google Scholar] [CrossRef]
- Horn, R.; Vossbrink, J.; Peth, S.; Becker, S. Impact of modern forest vehicles on soil physical properties. For. Ecol. Manag. 2007, 248, 56–63. [Google Scholar] [CrossRef]
- Schoeneberger, P.J.; Wysocki, D.A.; Benham, E.C. Field Book for Describing and Sampling Soils; National Soil Survey Center: Lincoln, NE, USA, 2012.
- Horn, R. Stress-strain effects in structured unsaturated soils on coupled mechanical and hydraulic processes. Geoderma 2003, 116, 77–88. [Google Scholar] [CrossRef]
- Horn, R.; Fleige, H. Risk assessment of subsoil compaction for arable soils in Northwest Germany at farm scale. Soil Tillage Res. 2009, 102, 201–208. [Google Scholar] [CrossRef]
- Pérez, L.D.; Millán, H.; González-Posada, M. Spatial complexity of soil plow layer penetrometer resistance as influenced by sugarcane harvesting: A prefractal approach. Soil Tillage Res. 2010, 110, 77–86. [Google Scholar] [CrossRef]
- Hadas, A. Soil tilth—The desired soil structural state obtained through proper soil fragmentation and reorientation processes. Soil Tillage Res. 1997, 43, 7–40. [Google Scholar] [CrossRef]
- Feldman, L. The maize root. In The Maize Handbook; Freeling, M., Walbot, V., Eds.; Springer: New York, NY, USA, 1994; pp. 29–37. [Google Scholar]
- FAO. Guía para la Descripción de Suelos—Cuarta Edición; FAO: Roma, Italy, 2009; p. 110. [Google Scholar]
- Horn, R.; Lebert, M. Soil Compactability and Compressibility. In Soil Compaction in Crop Production; Soane, B.D., van Ouwerkerk, C., Eds.; Developments in Agricultural Engineering; Elsevier: Amsterdam, The Netherlands, 1994; Volume 11, pp. 45–69. [Google Scholar]
- Hillel, D.J. Fundamentals of Soil Physics; Elsevier Science: Amsterdam, The Netherlands, 1980. [Google Scholar]
- Osunbitan, J.A.; Oyedele, D.J.; Adekalu, K.O. Tillage effects on bulk density, hydraulic conductivity and strength of a loamy sand soil in southwestern Nigeria. Soil Tillage Res. 2005, 82, 57–64. [Google Scholar] [CrossRef]
- Blume, H.-P.; Brümmer, G.W.; Horn, R.; Kandeler, E.; Kögel-Knabner, I.; Kretzschmar, R.; Stahr, K.; Wilke, B.-M.; Scheffer, F.; Schachtschabel, P.; et al. Scheffer/Schachtschabel Lehrbuch der Bodenkunde, 16. Auflage, (Nachdruck) ed.; Springer Spektrum: Berlin/Heidelberg, Germany, 2010; Volume 14, p. 569. [Google Scholar]
- Seguel, O.; Horn, R. Structure properties and pore dynamics in aggregate beds due to wetting-drying cycles. J. Plant Nutr. Soil Sc. 2006, 169, 221–232. [Google Scholar] [CrossRef]
- Stolt, M.H.; Drohan, P.J.; Richardson, M.J. Insights and Approaches for Mapping Soil Organic Carbon as a Dynamic Soil Property. Soil Sci. Soc. Am. J. 2010, 74, 1685–1689. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Franzluebbers, A.J. Soil organic matter stratification ratio as an indicator of soil quality. Soil Tillage Res. 2002, 66, 95–106. [Google Scholar] [CrossRef]
- Ortega, R.; Díaz, K. Análisis de fertilidad de suelos y recomendación de fertilizantes. In Agricultura de Precisión. Introducción al Manejo Sitio-Específico; INIA, Ed.; Serie Quilamapu: Chillán, Chile, 1999; Volume 129, pp. 135–146. [Google Scholar]
- Dörner, J.; Dec, D.; Zúñiga, F.; Sandoval, P.; Horn, R. Effect of land use change on Andosol’s pore functions and their functional resilience after mechanical and hydraulic stresses. Soil Tillage Res. 2011, 115–116, 71–79. [Google Scholar] [CrossRef]
- Dexter, A.R.; Czyz, E.A.; Gate, O.P. Soil structure and the saturated hydraulic conductivity of subsoils. Soil Tillage Res. 2004, 79, 185–189. [Google Scholar] [CrossRef]
- Bhattacharyya, R.; Prakash, V.; Kundu, S.; Gupta, H.S. Effect of tillage and crop rotations on pore size distribution and soil hydraulic conductivity in sandy clay loam soil of the Indian Himalayas. Soil Tillage Res. 2006, 86, 129–140. [Google Scholar] [CrossRef]
- Fuentes, I.; Casanova, M.; Seguel, O.; Nájera, F.; Salazar, O. Morphophysical pedotransfer functions for groundwater pollution by nitrate leaching in Central Chile. Chil. J. Agric. Res. 2014, 74, 340–348. [Google Scholar] [CrossRef] [Green Version]
- Alletto, L.; Coquet, Y. Temporal and spatial variability of soil bulk density and near-saturated hydraulic conductivity under two contrasted tillage management systems. Geoderma 2009, 152, 85–94. [Google Scholar] [CrossRef]
- Chenu, C.; Le Bissonnais, Y.; Arrouays, D. Organic matter influence on clay wettability and soil aggregate stability. Soil Sci. Soc. Am. J. 2000, 64, 1479–1486. [Google Scholar] [CrossRef]
- Hallett, P.D.; Baumgartl, T.; Young, I.M. Subcritical water repellency of aggregates from a range of soil management practices. Soil Sci. Soc. Am. J. 2001, 65, 184–190. [Google Scholar] [CrossRef]
- Pathak, P.; Wani, S.; Sudi, R. Long-term effects of management systems on crop yield and soil physical properties of semi-arid tropics of Vertisols. Agric. Sci. 2011, 2, 435–442. [Google Scholar] [CrossRef] [Green Version]
- Seguel, O.; Sagardía, S.; Casanova, M. Efecto del exudado de Chaitophorus leucomelas sobre las propiedades hidráulicas del suelo. Agro Sur. 2013, 41, 1–7. [Google Scholar] [CrossRef]
Zone | Treatment | Position | Depth | Texture a | Textural Class | ||
---|---|---|---|---|---|---|---|
Sand | Silt | Clay | |||||
------------(%)----------- | (USDA) b | ||||||
High PR | T1 | −M | topsoil | 57.6 ± 2.2 | 34.9 ± 1.9 | 7.5 ± 1.8 | SL |
T2 | −M | subsoil | 64.7 ± 2.1 | 28.8 ± 17.2 | 6.5 ± 3.9 | SL | |
T3 | +M | topsoil | 57.0 ± 5.6 | 35.9 ± 10.2 | 7.2 ± 2.2 | SL | |
T4 | +M | subsoil | 64.6 ± 15.9 | 30.5 ± 9.2 | 4.9 ± 0.6 | SL | |
61.0 ± 4.3 a | 32.5 ± 3.4 a | 6.5 ± 1.1 b | SL | ||||
Low PR | T1 | −M | topsoil | 51.8 ± 5.1 | 40.4 ± 2.9 | 7.9 ± 2.7 | SL |
T2 | −M | subsoil | 57.0 ± 7.9 | 35.2 ± 6.1 | 7.8 ± 2.1 | SL | |
T3 | +M | topsoil | 50.5 ± 2.1 | 40.4 ± 2.8 | 9.2 ± 1.3 | SL | |
T4 | +M | subsoil | 55.2 ± 4.9 | 36.4 ± 4.3 | 8.4 ± 0.9 | SL | |
53.6 ± 3.0 b | 38.1 ± 2.7 a | 8.3 ± 0.6 a | SL |
Zone | Treat. | Position | Depth | Kh | p-Value | t-Test |
---|---|---|---|---|---|---|
(cm min−1) | ||||||
High | T1 | −M | topsoil | T1 = −0.017x + 0.145 | 0.1459 | ab |
PR | T2 | −M | subsoil | T2 = −0.027x + 0.218 | 0.0065 | a |
T3 | +M | topsoil | T3 = −0.011x + 0.083 | 0.0003 | b | |
T4 | +M | subsoil | T4 = −0.017x + 0.171 | 0.1693 | ab | |
Low | T1 | −M | topsoil | T1 = −0.007x + 0.055 | 0.0409 | ab |
PR | T2 | −M | subsoil | T2 = −0.007x + 0.062 | 0.0007 | a |
T3 | +M | topsoil | T3 = −0.004x + 0.043 | 0.1329 | b | |
T4 | +M | subsoil | T4 = −0.006x + 0.060 | 0.0323 | ab |
Position | Ksat (cm min−1) | ||
---|---|---|---|
Depth (cm) | High PR (UL; LL) | Low PR (UL; LL) | |
+M | topsoil | 0.083 (−0.021; 0.191) | 0.043 (−0.028; 0.116) |
subsoil | 0.171 (0.069; 0.281) | 0.060 (0.031; 0.092) | |
−M | topsoil | 0.144 (0.073; 0.224) | 0.055 (0.005; 0.107) |
subsoil | 0.218 (0.117; 0.329) | 0.061 (−0.009; 0.135) |
Zone | Treat. | Position | Depth | R-Index |
---|---|---|---|---|
(cm) | ||||
High | T1 | −M | topsoil | 1.33 (±0.37) |
PR | T2 | −M | subsoil | 1.57 (±0.38) |
T3 | +M | topsoil | 1.64 (±0.42) | |
T4 | +M | subsoil | 1.39 (±0.40) | |
Low | T1 | −M | topsoil | 1.70 (±0.63) |
PR | T2 | −M | subsoil | 1.58 (±0.69) |
T3 | +M | topsoil | 2.02 (±0.70) | |
T4 | +M | subsoil | 1.70 (±0.26) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riveras-Muñoz, N.; Silva, C.; Salazar, O.; Scholten, T.; Seitz, S.; Seguel, O. Variability of Hydraulic Properties and Hydrophobicity in a Coarse-Textured Inceptisol Cultivated with Maize in Central Chile. Soil Syst. 2022, 6, 83. https://doi.org/10.3390/soilsystems6040083
Riveras-Muñoz N, Silva C, Salazar O, Scholten T, Seitz S, Seguel O. Variability of Hydraulic Properties and Hydrophobicity in a Coarse-Textured Inceptisol Cultivated with Maize in Central Chile. Soil Systems. 2022; 6(4):83. https://doi.org/10.3390/soilsystems6040083
Chicago/Turabian StyleRiveras-Muñoz, Nicolás, Carla Silva, Osvaldo Salazar, Thomas Scholten, Steffen Seitz, and Oscar Seguel. 2022. "Variability of Hydraulic Properties and Hydrophobicity in a Coarse-Textured Inceptisol Cultivated with Maize in Central Chile" Soil Systems 6, no. 4: 83. https://doi.org/10.3390/soilsystems6040083
APA StyleRiveras-Muñoz, N., Silva, C., Salazar, O., Scholten, T., Seitz, S., & Seguel, O. (2022). Variability of Hydraulic Properties and Hydrophobicity in a Coarse-Textured Inceptisol Cultivated with Maize in Central Chile. Soil Systems, 6(4), 83. https://doi.org/10.3390/soilsystems6040083