Deep Drainage Lowers Methane and Nitrous Oxide Emissions from Rice Fields in a Semi-Arid Environment in Rwanda
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design
2.3. Experimental Procedure
2.4. Irrigation and Drainage Management
2.5. Fluxes of CH4 and N2O from Soil
2.6. Groundwater Level and Temperature Measurements
2.7. Data Analysis
3. Results
3.1. Treatment Effects on Groundwater Level
3.2. Soil Temperature
3.3. Treatment Effects on CH4 and N2O Fluxes
3.4. No Significant Diurnal Pattern in CH4 and N2O Fluxes
3.5. Accumulated GHG Fluxes
4. Discussion
4.1. Drain Depth and CH4 Emissions
4.2. Groundwater Level and N2O Emissions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | Analysis of variance |
CH4 | Methane |
CO2 | Carbon dioxide |
D4: | 1.2 m deep drain, weir open four times per week |
D2 | 1.2 m deep drain, weir open two times per week |
FAO | Food and Agriculture Organization |
GHG | Greenhouse gas |
GWP | Global warming potential |
IPCC | Intergovernmental Panel on Climate Change |
K | Potassium |
N | Nitrogen |
N2O | Nitrous oxide |
P | Phosphorus |
SSA | sub-Saharan Africa |
S4 | 0.6 m deep drain, weir open four times per week |
References
- IPCC, S.P. Climate change and land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. In International Consensus Regarding Land System Impacts of Climate Change as of 2019; Shukla, P.R., Ed.; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Myhre, G.; Shindell, D.; Bréon, F.-M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.-F.; Lee, D.; Mendoza, B.; et al. Anthropogenic and Natural Radiative Forcing; 1107415322; Cambridge University Press: Cambridge, UK, 2013; Available online: http://www.climatechange2013.org/images/report/WG1AR5_Chapter08_FINAL.pdf (accessed on 11 September 2022).
- Carlson, K.M.; Gerber, J.S.; Mueller, N.D.; Herrero, M.; MacDonald, G.K.; Brauman, K.A.; Havlik, P.; O’Connell, C.S.; Johnson, J.A.; Saatchi, S. Greenhouse gas emissions intensity of global croplands. Nat. Clim. Chang. 2017, 7, 63–68. [Google Scholar] [CrossRef]
- Win, E.P.; Win, K.K.; Bellingrath-Kimura, S.D.; Oo, A.Z. Greenhouse gas emissions, grain yield and water productivity: A paddy rice field case study based in Myanmar. Greenh. Gases Sci. Technol. 2020, 10, 884–897. [Google Scholar] [CrossRef]
- Fagodiya, R.; Pathak, H.; Kumar, A.; Bhatia, A.; Jain, N. Global temperature change potential of nitrogen use in agriculture: A 50-year assessment. Sci. Rep. 2017, 7, 44928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Zhou, T.; Liu, Y.; Zhang, X.; Li, L.; Pan, G. Effect of mid-season drainage on CH4 and N2O emission and grain yield in rice ecosystem: A meta-analysis. Agric. Water Manag. 2019, 213, 1028–1035. [Google Scholar] [CrossRef]
- Shang, Z.; Abdalla, M.; Xia, L.; Zhou, F.; Sun, W.; Smith, P. Can cropland management practices lower net greenhouse emissions without compromising yield? Glob. Chang. Biol. 2021, 27, 4657–4670. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change; C.W. Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2013; p. 151. [Google Scholar]
- Conrad, R. Methane production in soil environments—Anaerobic biogeochemistry and microbial life between flooding and desiccation. Microorganisms 2020, 8, 881. [Google Scholar] [CrossRef]
- Wang, C.; Amon, B.; Schulz, K.; Mehdi, B. Factors that influence nitrous oxide emissions from agricultural soils as well as their representation in simulation models: A Review. Agronomy 2021, 11, 770. [Google Scholar] [CrossRef]
- Li, Z.; Qi, Z.; Jiang, Q.; Sima, N. An economic analysis software for evaluating best management practices to mitigate greenhouse gas emissions from cropland. Agric. Syst. 2021, 186, 102950. [Google Scholar] [CrossRef]
- Luo, G.; Kiese, R.; Wolf, B.; Butterbach-Bahl, K. Effects of soil temperature and moisture on methane uptake and nitrous oxide emissions across three different ecosystem types. Biogeosciences 2013, 10, 3205. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, S.; Sawamoto, T.; Akiyama, H.; Sudo, S.; Yagi, K. Methane and nitrous oxide emissions from a paddy field with Japanese conventional water management and fertilizer application. Glob. Biogeochem. Cycles 2004, 18, 1–10. [Google Scholar] [CrossRef]
- Majumdar, D. Biogeochemistry of N2O uptake and consumption in submerged soils and rice fields and implications in climate change. Crit. Rev. Environ. Sci. Technol. 2013, 43, 2653–2684. [Google Scholar] [CrossRef]
- Chapuis-Lardy, L.; Wrage, N.; Metay, A.; Chotte, J.L.; Bernoux, M. Soils, a sink for N2O? A review. Glob. Chang. Biol. 2007, 13, 1–17. [Google Scholar] [CrossRef]
- Yan, X.; Yagi, K.; Akiyama, H.; Akimoto, H. Statistical analysis of the major variables controlling methane emission from rice fields. Glob. Chang. Biol. 2005, 11, 1131–1141. [Google Scholar] [CrossRef]
- Butterbach-Bahl, K.; Baggs, E.M.; Dannenmann, M.; Kiese, R.; Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130122. [Google Scholar] [CrossRef]
- Wu, Q.; He, Y.; Qi, Z.; Jiang, Q. Drainage in paddy systems maintains rice yield and reduces total greenhouse gas emissions on the global scale. J. Clean. Prod. 2022, 370, 133515. [Google Scholar] [CrossRef]
- He, H.; Li, D.; Pan, F.; Wu, Z.; Wang, F.; Wu, D.; Wu, S.; Yang, S.; Ma, Y. Effects of Drainage on Greenhouse Gas Emissions and Yields of Lowland Rice—Wheat Rotation System in East China. Agronomy 2022, 12, 1932. [Google Scholar] [CrossRef]
- Tuyishime, O.; Joel, A.; Messing, I.; Naramabuye, F.; Sankaranarayanan, M.; Wesström, I. Effects of drainage intensity on water and nitrogen use efficiency and rice grain yield in a semi-arid marshland in Rwanda. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2020, 70, 578–593. [Google Scholar] [CrossRef]
- Yang, S.; Peng, S.; Hou, H.; Xu, J. Controlled irrigation and drainage of a rice paddy field reduced global warming potential of its gas emissions. Arch. Agron. Soil Sci. 2014, 60, 151–161. [Google Scholar] [CrossRef]
- Jiang, Y.; Carrijo, D.; Huang, S.; Chen, J.; Balaine, N.; Zhang, W.; van Groenigen, K.J.; Linquist, B. Water management to mitigate the global warming potential of rice systems: A global meta-analysis. Field Crop. Res. 2019, 234, 47–54. [Google Scholar] [CrossRef]
- Watanabe, T.; Wang, G.; Taki, K.; Ohashi, Y.; Kimura, M.; Asakawa, S. Vertical changes in bacterial and archaeal communities with soil depth in Japanese paddy fields. Soil Sci. Plant Nutr. 2010, 56, 705–715. [Google Scholar] [CrossRef]
- Xiao, M.; Yu, S.e.; Zhang, Y. Changes of nitrogen concentration for surface and groundwater in flooding paddy field under controlled drainage. Trans. Chin. Soc. Agric. Eng. 2011, 27, 180–186. [Google Scholar]
- Jiang, Q.; Qi, Z.; Madramootoo, C.A.; Crézé, C. Mitigating greenhouse gas emissions in subsurface-drained field using RZWQM2. Sci. Total Environ. 2019, 646, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Dubey, S. Microbial ecology of methane emission in rice agroecosystem: A review. Appl. Ecol. Environ. Res. 2005, 3, 1–27. [Google Scholar]
- Velthof, G.; Rietra, R. Nitrous Oxide Emission From Agricultural Soils. 1566-7197; Wageningen Environmental Research: Wageningen, The Netherlands, 2018; 62p. [Google Scholar]
- Gagnon, B.; Ziadi, N.; Rochette, P.; Chantigny, M.H.; Angers, D.A. Fertilizer source influenced nitrous oxide emissions from a clay soil under corn. Soil Sci. Soc. Am. J. 2011, 75, 595–604. [Google Scholar] [CrossRef]
- Wang, C.; Lai, D.Y.; Sardans, J.; Wang, W.; Zeng, C.; Penuelas, J. Factors related with CH4 and N2O emissions from a paddy field: Clues for management implications. PLoS ONE 2017, 12, e0169254. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Q.; Pump, J.; Conrad, R. Straw application in paddy soil enhances methane production also from other carbon sources. Biogeosciences 2014, 11, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Allen, J.; Pascual, K.S.; Romasanta, R.R.; Trinh, M.V.; Thach, T.V.; Hung, N.V.; Sander, B.O.; Chivenge, P. Rice straw management effects on greenhouse gas emissions and mitigation options. In Sustainable Rice Straw Management; Springer: Cham, Switzerland, 2020; pp. 145–159. [Google Scholar] [CrossRef] [Green Version]
- Naser, H.M.; Nagata, O.; Tamura, S.; Hatano, R. Methane emissions from five paddy fields with different amounts of rice straw application in central Hokkaido, Japan. Soil Sci. Plant Nutr. 2007, 53, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Jain, N.; Pathak, H.; Mitra, S.; Bhatia, A. Emission of methane from rice fields—A review. J. Sci. Ind. Res. 2004, 63, 101–115. [Google Scholar]
- Haj-Amor, Z.; Araya, T.; Kim, D.-G.; Bouri, S.; Lee, J.; Ghiloufi, W.; Yang, Y.; Kang, H.; Jhariya, M.K.; Banerjee, A.; et al. Soil salinity and its associated effects on soil microorganisms, greenhouse gas emissions, crop yield, biodiversity and desertification: A review. Sci. Total Environ. 2022, 843, 156946. [Google Scholar] [CrossRef]
- Shahariar, S.; Farrell, R.; Soolanayakanahally, R.; Bedard-Haughn, A. Elevated salinity and water table drawdown significantly affect greenhouse gas emissions in soils from contrasting land-use practices in the prairie pothole region. Biogeochemistry 2021, 155, 127–146. [Google Scholar] [CrossRef]
- Thapa, R.; Chatterjee, A.; Abbey, W.; Butcher, K. Carbon dioxide and nitrous oxide emissions from naturally occurring sulfate-based saline soils at different moisture contents. Pedosphere 2017, 27, 868–876. [Google Scholar] [CrossRef]
- Yu, Y.; Zhao, C.; Zheng, N.; Jia, H.; Yao, H. Interactive effects of soil texture and salinity on nitrous oxide emissions following crop residue amendment. Geoderma 2019, 337, 1146–1154. [Google Scholar] [CrossRef]
- Hijbeek, R.; Loon, M.V.; Ittersum, M.V.; Berge, H.t. Benchmarking crop nitrogen requirements, nitrogen-use efficiencies and associated greenhouse gas mitigation potential: Methodology exploration for cereal production in sub-Saharan Africa. CCAFS Work. Pap. 2020. [Google Scholar]
- Hickman, J.E.; Havlikova, M.; Kroeze, C.; Palm, C.A. Current and future nitrous oxide emissions from African agriculture. Curr. Opin. Environ. Sustain. 2011, 3, 370–378. [Google Scholar] [CrossRef]
- Valentini, R.; Arneth, A.; Bombelli, A.; Castaldi, S.; Cazzolla Gatti, R.; Chevallier, F.; Ciais, P.; Grieco, E.; Hartmann, J.; Henry, M. A full greenhouse gases budget of Africa: Synthesis, uncertainties, and vulnerabilities. Biogeosciences 2014, 11, 381–407. [Google Scholar] [CrossRef] [Green Version]
- Ciais, P.; Bombelli, A.; Williams, M.; Piao, S.; Chave, J.; Ryan, C.; Henry, M.; Brender, P.; Valentini, R. The carbon balance of Africa: Synthesis of recent research studies. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 2038–2057. [Google Scholar] [CrossRef]
- Van Loon, M.P.; Hijbeek, R.; Ten Berge, H.F.; De Sy, V.; Ten Broeke, G.A.; Solomon, D.; van Ittersum, M.K. Impacts of intensifying or expanding cereal cropping in sub-Saharan Africa on greenhouse gas emissions and food security. Glob. Chang. Biol. 2019, 25, 3720–3730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.-G.; Thomas, A.; Pelster, D.; Rosenstock, T.S.; Sanz-Cobena, A. Greenhouse gas emissions from natural ecosystems and agricultural lands in sub-Saharan Africa: Synthesis of available data and suggestions for further research. Biogeosciences 2016, 13, 4789–4809. [Google Scholar] [CrossRef] [Green Version]
- Nyamadzawo, G.; Wuta, M.; Chirinda, N.; Mujuru, L.; Smith, J.L. Greenhouse gas emissions from intermittently flooded (dambo) rice under different tillage practices in chiota smallholder farming area of Zimbabwe. Atmos. Clim. Sci. 2013, 3, 13–20. [Google Scholar] [CrossRef] [Green Version]
- FAO. FAOSTAT Online Data Base Rom; FAO: Rome, Italy, 2020. [Google Scholar]
- Palm, C.A.; Smukler, S.M.; Sullivan, C.C.; Mutuo, P.K.; Nyadzi, G.I.; Walsh, M.G. Identifying potential synergies and trade-offs for meeting food security and climate change objectives in sub-Saharan Africa. Proc. Natl. Acad. Sci. USA 2010, 107, 19661–19666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- RIWSP. Review of the National Hydrological Service in Rwanda, in RIWSP-No. 2.2.1/02; Venneker, R., Wenninger, J., Eds.; Rwanda Integrated Water Security Program: Kigali, Rwanda, 2012. [Google Scholar]
- Abimbola, O.P.; Wenninger, J.; Venneker, R.; Mittelstet, A.R. The assessment of water resources in ungauged catchments in Rwanda. J. Hydrol. Reg. Stud. 2017, 13, 274–289. [Google Scholar] [CrossRef]
- FAO/IUSS. World Reference Base For Soil Resources 2014, Update 2015: International Soil Classification System For Naming Soils And Creating Legends For Soil Maps; Fao Rome: Rome, Italy, 2015. [Google Scholar]
- Omuto, C.; Vargas, R.; El Mobarak, A.; Mohamed, N.; Viatkin, K.; Yigini, Y. Mapping of Salt-Affected Soils: Technical Manual; FAO: Rome, Italy, 2020. [Google Scholar]
- Cyamweshi, A.R.; Kayumba, J.; Nabahungu, N.L. Optimizing Fertilizer Use Within The Context Of Integrated Soil Fertility Management in Rwanda; Wortmann, C.S., Sones, K., Eds.; CAB International: Wallingford, UK, 2017. [Google Scholar]
- Rukazambuga-Ntirushwa, D. Land-husbandry, Water-harvesting and Hillside-irrigation (LWH) project: Pest Management Plan (PMP) and Arrangement for LWH (E2741 V3). In Land-Husbandry, Water-Harvesting and Hillside-Irrigation (Lwh) Project: Pest Management Plan (Pmp) and Arrangement For Lwh (E2741 V3); CAB International: Wallingford, UK, 2009; pp. 1–117. [Google Scholar]
- Parkin, T.; Venterea, R. Chamber-Based Trace Gas Flux Measurements Sampling Protocols ed RF Follett Chapter 3. In GRACEnet Sampling Protocols; Follett, R., Ed.; Agricultural Research Service, United States Department of Agriculture: Washington, DC, USA, 2010; pp. 1–39. [Google Scholar]
- Pihlatie, M.K.; Christiansen, J.R.; Aaltonen, H.; Korhonen, J.F.J.; Nordbo, A.; Rasilo, T.; Benanti, G.; Giebels, M.; Helmy, M.; Sheehy, J.; et al. Comparison of static chambers to measure CH4 emissions from soils. Agric. For. Meteorol. 2013, 171–172, 124–136. [Google Scholar] [CrossRef] [Green Version]
- Yagi, K.; Tsuruta, H.; Kanda, K.i.; Minami, K. Effect of water management on methane emission from a Japanese rice paddy field: Automated methane monitoring. Glob. Biogeochem. Cycles 1996, 10, 255–267. [Google Scholar] [CrossRef]
- Naser, H.M.; Nagata, O.; Sultana, S.; Hatano, R. Impact of management practices on methane emissions from paddy grown on mineral soil over peat in Central Hokkaido, Japan. Atmosphere 2018, 9, 212. [Google Scholar] [CrossRef]
- Tariq, A.; Vu, Q.D.; Jensen, L.S.; de Tourdonnet, S.; Sander, B.O.; Wassmann, R.; Van Mai, T.; de Neergaard, A. Mitigating CH4 and N2O emissions from intensive rice production systems in northern Vietnam: Efficiency of drainage patterns in combination with rice residue incorporation. Agric. Ecosyst. Environ. 2017, 249, 101–111. [Google Scholar] [CrossRef]
- IPCC. IPCC Guidelines for National Greenhouse Gas Inventories; Eggleston, S., Ed.; National Greenhouse Gas Inventories Programme: Hayama, Japan, 2006. [Google Scholar]
- Zhang, S.; Liu, F.; Xiao, R.; Lian, S.; Lv, S. Effects of water level on nitrous oxide emissions from vegetated ditches. Sci. Total Environ. 2022, 811, 151419. [Google Scholar] [CrossRef] [PubMed]
- Hua, X.; Guangxi, X.; Cai, Z.-C.; Tsuruta, H. Nitrous oxide emissions from three rice paddy fields in China. Nutr. Cycl. Agroecosys 1997, 49, 23–28. [Google Scholar] [CrossRef]
- Hiraishi, T.; Krug, T.; Tanabe, K.; Srivastava, N.; Baasansuren, J.; Fukuda, M.; Troxler, T. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Towprayoon, S.; Smakgahn, K.; Poonkaew, S. Mitigation of methane and nitrous oxide emissions from drained irrigated rice fields. Chemosphere 2005, 59, 1547–1556. [Google Scholar] [CrossRef] [PubMed]
- Rochette, P.; Tremblay, N.; Fallon, E.; Angers, D.; Chantigny, M.; MacDonald, J.; Bertrand, N.; Parent, L.É. N2O emissions from an irrigated and non-irrigated organic soil in eastern Canada as influenced by N fertilizer addition. Eur. J. Soil Sci. 2010, 61, 186–196. [Google Scholar] [CrossRef]
- Hergoualc’h, K.; Akiyama, H.; Bernoux, M.; Chirinda, N.; del Prado, A.; Kasimir, Å.; MacDonald, J.D.; Ogle, S.M.; Regina, K.; Weerden, T.J.V.D. IPCC: N2O Emissions from Managed Soils, and CO2 Emissions from Lime and Urea Application. Chapter 11; In 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzeland, 2019. [Google Scholar]
- Jiao, J.; Shi, K.; Li, P.; Sun, Z.; Chang, D.; Shen, X.; Wu, D.; Song, X.; Liu, M.; Li, H.; et al. Assessing of an irrigation and fertilization practice for improving rice production in the Taihu Lake region (China). Agric. Water Manag. 2018, 201, 91–98. [Google Scholar] [CrossRef]
Field Operation | Date (2018) | DAT a | Fertilizer Type | N kg ha−1 | P kg ha−1 | K kg ha−1 |
---|---|---|---|---|---|---|
Seeds germination | 8 March | |||||
Rice transplanting | 29 March | |||||
1st fertilizer application | 4 April | 6 | NPK | 10 | 4 | 8 |
2nd fertilizer application | 18 April | 20 | NPK | 24 | 11 | 20 |
3rd fertilizer application | 7 May | 39 | Urea | 46 | ||
First GHG b sampling | 24 May | 56 | ||||
Last GHG b sampling | 8 July | 100 | ||||
Last irrigation event | 15 July | 107 | ||||
End of weir regulation | 16 July | 108 | ||||
Rice harvesting | 1 August | 122 |
Fixed Effects | CH4 Flux | N2O Flux | Groundwater Level | Soil Temperature |
---|---|---|---|---|
Drainage | 0.03 | 0.60 | 0.03 | 0.83 |
Fixed Effects | CH4 Flux | N2O Flux | Groundwater Level | Soil Temperature |
---|---|---|---|---|
Drainage | 0.17 | 0.74 | 0.61 | 0.82 |
Time of day | 0.07 | 0.67 | 0.87 | 0.00 |
Treatment | CH4 | N2O | ||
---|---|---|---|---|
kg ha−1 | kg CO2-eq. ha−1 | kg ha−1 | kg CO2-eq. ha−1 | |
S4 | 0.8 | 26 | 0.04 | 11 |
D4 | 0.1 | 3 | −0.06 | −17 |
D2 | 0.0 | 0 | −0.05 | −14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuyishime, O.; Strömgren, M.; Joel, A.; Messing, I.; Naramabuye, F.X.; Wesström, I. Deep Drainage Lowers Methane and Nitrous Oxide Emissions from Rice Fields in a Semi-Arid Environment in Rwanda. Soil Syst. 2022, 6, 84. https://doi.org/10.3390/soilsystems6040084
Tuyishime O, Strömgren M, Joel A, Messing I, Naramabuye FX, Wesström I. Deep Drainage Lowers Methane and Nitrous Oxide Emissions from Rice Fields in a Semi-Arid Environment in Rwanda. Soil Systems. 2022; 6(4):84. https://doi.org/10.3390/soilsystems6040084
Chicago/Turabian StyleTuyishime, Olive, Monika Strömgren, Abraham Joel, Ingmar Messing, Francois Xavier Naramabuye, and Ingrid Wesström. 2022. "Deep Drainage Lowers Methane and Nitrous Oxide Emissions from Rice Fields in a Semi-Arid Environment in Rwanda" Soil Systems 6, no. 4: 84. https://doi.org/10.3390/soilsystems6040084