Evaluation and Spatial Variability of Cryogenic Soil Properties (Yamal-Nenets Autonomous District, Russia)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Description
2.2. Soil Samples and Analyses
2.3. Spatial Assessment and Digital Mapping
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Year | Quantity of Experiences | Options |
---|---|---|
1937 | Experience for 8 options | I. Manure 100 t/ha plowing to a depth of 18 cm + furnace ash (1 t/ha) under the furrow: (1) Potato (200 m2) (2) Radish (300 m2) (3) Turnip (500 m2) (4) Radish (200 m2) (5) Beet (196 m2) (6) Turnip (3920 m2) II. Sprinkled on top: manure 80 t/ha + superphosphate + potassium salt: (7) Vetch oat mixture (600 m2) (8) Cabbage (1176 m2). |
1948–1949 | Experience for 9 options | (1) 60 t/ha manure (2) 120 t/ha manure (3) 120 t/ha manure + N40P60K60 (4) 60 t/ha manure + N40 (5) 60 t/ha manure + N40P60 (6) 60 t/ha manure + N40K60 (7) 60 t/ha manure + P60K60 (8) N40P60K60 (9) N80P120K120. |
1962–1964 | Experience for 10 options on the background without manure + 10 options on the background with manure (60 t/ha) | 10 options on the background without manure: (1) K180 (2) P90 (3) N180 (4) N180P90K180 (5) K90 (6) P45 (7) N90 (8) N90P45K90 (9) Without applying any fertilizer (10) 60 t/ha manure 10 options on the background with manure (60 t/ha): (1) K180 (2) P90 (3) N180 (4) N180P90K180 (5) K90 (6) P45 (7) N90 (8) N90P45K90 (9) Without applying any fertilizer (10) 60 t/ha manure. |
1974 | Experience for 52 options | Experiments on growing 52 varieties of potatoes |
1985–2005 | Experience for 5 options | 1. Without peat 2. Peat 120 t/ha 3. Peat 240 t/ha 4. Peat 480 t/ha 5. Peat 720 t/ha |
Experience for 4 options | 1. Without applying any fertilizer 2. Manure 120 t/ha 3. Manure 240 t/ha 4. Manure 480 t/ha | |
Experience for 4 options | 1. Without applying any fertilizer 2. N120P90K120 3. N120P150K180 4. N180P210K240 | |
Experience for 4 options | 1. Spring rapeseed 2. Rapeseed + oats 3. Rapeseed + annual ryegrass 4. Rapeseed + peas | |
Experience for 6 options | 1. Without applying any fertilizer 2. N120P90K90 3. Lime 4. Lime 5. Lime 6. Lime | |
Micro-field experience for 6 options | 1. Without applying any fertilizer 2. 60 t/ha manure + P90K120 3. Ammonium nitrate 4. Ammonium sulfate 5. Urea 6. Ammonia water | |
Micro-field experience for 4 options | 1. Without fertilizer 2. 60 t/ha manure + N120P90 3. 60 t/ha manure + K60 4. 60 t/ha manure +K120 |
References
- AMAP. Arctic Climate Change Update 2021: Key Trends and Impacts. Summary for Policy-Makers. In Arctic Monitoring and Assessment Programme; AMAP: Tromsø, Norway, 2021. [Google Scholar]
- Ballinger, T.J.; Overland, J.W.; Wang, M.; Bhatt, U.S.; Hanna, E.; Hanssen-Bauer, I.; Kim, S.-J.; Thoman, R.L.; Walsh, J.E. Arctic Report Card 2020. Surf. Air Temp. 2020, 21, 2. [Google Scholar] [CrossRef]
- Katsov, V.; Semenov, S.; Alekseev, G.; Ananicheva, M. Second Roshydromet Assessment Report on Climate Change and Its Consequences in the Russian Federation; Rosgidromet: Moscow, Russia, 2014. [Google Scholar]
- Wiréhn, L. Nordic Agriculture under Climate Change: A Systematic Review of Challenges, Opportunities and Adaptation Strategies for Crop Production. Land Use Policy 2018, 77, 63–74. [Google Scholar] [CrossRef]
- Mela, T.J.N. Northern agriculture: Constraints and responses to global climate change. Agr. Food Sci. 1996, 5, 161–164. [Google Scholar] [CrossRef]
- Khantimer, I.S. Agricultural Development of Tundra Regions; Academy of Sciences of the USSR: Moscow, Russia, 1974. [Google Scholar]
- Purtov, G. Agricultural Development of the Ob North; Russian Academy of Agricultural Sciences, Siberian Branch, NIISKh of the North Urals: Novosibirsk, Russia, 1994. [Google Scholar]
- Vavilov, N. Problem of Northern Agriculture, Materials of the Leningrad Emergency Session of Academy of Sciences of the USSR 25–30 XI1931; Publishing House of Academy of Sciences: Leningrad, Russia, 1931. [Google Scholar]
- Stevenson, K.T.; Alessa, L.; Kliskey, A.D.; Rader, H.B.; Pantoja, A.; Clark, M. Sustainable Agriculture for Alaska and the Circumpolar North: Part I. Development and Status of Northern Agriculture and Food Security. Arct. Inst. N. Am. 2014, 76, 271–295. [Google Scholar] [CrossRef] [Green Version]
- Eichfeld, I.G. Struggle for the Far North: Brief Results of the Work of the Polar Division of VIR, 1923–1933; VIR: San Francisco, CA, USA, 1933. [Google Scholar]
- Morgun, E.; Abakumov, E. Agricultural Research and Crop Yields in the Yamal-Nenets Autonomous District: Retrospective Analysis (1932–2019). Sci. Bull. Yamal-Nenets Auton. Dist. 2019, 3, 4–9. [Google Scholar]
- Abakumov, E.; Morgun, E.; Pechkin, A.; Polyakov, V. Abandoned agricultural soils from the central part of the Yamal region of Russia: Morphology, diversity, and chemical properties. Open Agr. 2020, 5, 94–106. [Google Scholar] [CrossRef]
- Abakumov, E.; Suleymanov, A.; Guzov, Y.; Titov, V.; Vashuk, A.; Shestakova, E.; Fedorova, I. Ecosystem Services of the Cryogenic Environments: Identification, Evaluation and Monetisation—A Review. J. Water Land Dev. 2022, 52, 1–8. [Google Scholar] [CrossRef]
- Shit, P.K.; Bhunia, G.S.; Maiti, R. Spatial Analysis of Soil Properties Using GIS Based Geostatistics Models. Model. Earth Syst. Environ. 2016, 2, 107. [Google Scholar] [CrossRef] [Green Version]
- Kozlov, D.N.; Sorokina, N.P. Tradition and Innovation in Large-Scale Soil Mapping. Digital Soil Mapping. Theor. Exp. Res. 2012, 1, 35–57. [Google Scholar]
- Dokuchaev, V. Works; Academy of Sciences of USSR: Moscow, Russia, 1950; Volume 4, Part 1. [Google Scholar]
- McBratney, A.B.; Mendonça Santos, M.L.; Minasny, B. On Digital Soil Mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Savin, I. Usage of satellite data for soil mapping: Modern tendencies and problems. Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Iz Kosm. 2016, 13, 29–39. [Google Scholar] [CrossRef]
- Gopp, N.V.; Nechaeva, T.V.; Savenkov, O.A.; Smirnova, N.V.; Smirnov, V. Indicative Capacity of NDVI in Predictive Mapping of the Properties of Plow Horizons of Soils on Slopes in the South of Western Siberia. Eurasian Soil Sci. 2017, 50, 1332–1343. [Google Scholar] [CrossRef]
- Gopp, N.V.; Nechaeva, T.V.; Savenkov, O.A.; Smirnova, N.V.; Smirnov, V. The Methods of Geomorphometry and Digital Soil Mapping for Assessing Spatial Variability in the Properties of Agrogray Soils on a Slope. Eurasian Soil Sci. 2017, 50, 20–29. [Google Scholar] [CrossRef]
- Prudnikova, E.; Savin, I. Some Peculiarities of Arable Soil Organic Matter Detection Using Optical Remote Sensing Data. Remote Sens. 2021, 13, 2313. [Google Scholar] [CrossRef]
- Prudnikova, E.Y.; Savin, I.Y. Satellite assessment of dehumification of arable soils in Saratov region. Eurasian Soil Sci. 2015, 48, 533–539. [Google Scholar] [CrossRef]
- Suleymanov, A.; Abakumov, E.; Suleymanov, R.; Gabbasova, I.; Komissarov, M. The Soil Nutrient Digital Mapping for Precision Agriculture Cases in the Trans-Ural Steppe Zone of Russia Using Topographic Attributes. ISPRS Int. J. Geo-Inf. 2021, 10, 243. [Google Scholar] [CrossRef]
- Sahabiev, I.A.; Ryazanov, S.S.; Kolcova, T.G.; Grigoryan, B.R. Selection of a Geostatistical Method to Interpolate Soil Properties of the State Crop Testing Fields Using Attributes of a Digital Terrain Model. Eurasian Soil Sci. 2018, 51, 255–267. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [Green Version]
- Arkhipov, S.; Isayeva, L.; Bespaly, V.; Glushkova, O. Glaciation of Siberia and north-east USSR. Quat. Sci. Rev. 1986, 5, 463–474. [Google Scholar] [CrossRef]
- Abakumov, E.; Zverev, A.; Morgun, E.; Alekseev, I. Microbiome of Abandoned Agricultural and Mature Tundra Soils in Southern Yamal Region. Russian Arctic. Open Agr. 2020, 5, 335–344. [Google Scholar] [CrossRef]
- Alekseev, I.; Abakumov, E. Permafrost-Affected Former Agricultural Soils of the Salekhard City (Central Part of Yamal Region). Czech Polar Rep. 2018, 8, 119–131. [Google Scholar] [CrossRef]
- Wadoux, A.M.J.-C.; Minasny, B.; McBratney, A.B. Machine Learning for Digital Soil Mapping: Applications, Challenges and Suggested Solutions. Earth Sci. Rev. 2020, 210, 103359. [Google Scholar] [CrossRef]
- Carter, M.R.; Gregorich, E.G. Soil Sampling and Methods of Analysis, 2nd ed.; Carter, M.R., Gregorich, E.G., Eds.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Pansu, M.; Gautheyrou, J. Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods; Springer: Berlin, Germany, 2006. [Google Scholar]
- Jones, J.B. Soil Analysis Handbook of Reference Methods, 1st ed.; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Mulvaney, R.; Sparks, D. Methods of soil analysis, Part 3. Chemical methods. In Soil Science Society of America Book Series 1123; John Wiley & Sons: Hoboken, NJ, USA, 1996. [Google Scholar]
- Jenkinson, D.S.; Powlson, D.S. The Effects of Biocidal Treatments on Metabolism in Soil—V: A Method for Measuring Soil Biomass. Soil Biol. Biochem. 1976, 8, 209–213. [Google Scholar] [CrossRef]
- Lal, R.; Kimble, J.M.; Follet, R.F.; Stewart, B.A. Assessment Methods for Soil Carbon; Lewis Publishers: Boca Raton, FL, USA, 2001. [Google Scholar]
- Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists, 2nd ed.; John Wiley & Sons: Chichester, UK, 2007. [Google Scholar]
- Bhunia, G.S.; Shit, P.K.; Maiti, R. Comparison of GIS-Based Interpolation Methods for Spatial Distribution of Soil Organic Carbon (SOC). J. Saudi Soc. Agric. Sci. 2018, 17, 114–126. [Google Scholar] [CrossRef] [Green Version]
- Cambardella, C.A.; Moorman, T.B.; Novak, J.M.; Parkin, T.B.; Karlen, D.L.; Turco, R.F.; Konopka, A.E. Field-Scale Variability of Soil Properties in Central Iowa Soils. Soil Sci. Soc. Am. J. 1994, 58, 1501–1511. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2015. [Google Scholar]
- RStudio Team. Integrated Development Environment for R; RStudio Team: Boston, MA, USA, 2015. [Google Scholar]
- Alekseev, I.; Abakumov, E. Soil Organic Carbon Stocks and Stability of Organic Matter in Permafrost-Affected Soils of Yamal Region, Russian Arctic. Geoderma Reg. 2022, 28, e00454. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Nizamutdinov, T.; Abakumov, E.; Morgun, E. Morphological Features, Productivity and Pollution State of Abandoned Agricultural Soils in the Russian Arctic (Yamal Region). One Ecosyst. 2021, 6, e68408. [Google Scholar] [CrossRef]
- Maeder, P.; Fliessbach, A.; Dubois, D.; Gunst, L.; Fried, P.; Niggli, U. Soil Fertility and Biodiversity in Organic Farming. Science 2002, 296, 1694–1697. [Google Scholar] [CrossRef] [Green Version]
- Foth, H.D.; Ellis, B.G. Soil Fertility; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Mineev, V.G. (Ed.) Practical Manual on Agrochemistry; Moscow State University: Moscow, Russia, 2001. [Google Scholar]
- Kiryushin, V. Agronomic Soil Science; Kolos-s: Moscow, Russia, 2010. [Google Scholar]
- Lodygin, E.D.; Beznosikov, V.A.; Vasilevich, R.S. Molecular Composition of Humic Substances in Tundra Soils (13C-NMR Spectroscopic Study. Eurasian Soil Sci. 2014, 47, 400–406. [Google Scholar] [CrossRef]
- Moskovchenko, D.V. Biogeochemistry of Permafrost Landscapes in West Siberia: Implications for Ecology and Sustainability. Kriosf. Zemli 2011, 15, 25–28. [Google Scholar]
- Nizamutdinov, T.; Abakumov, E.; Morgun, E.; Loktev, R.; Kolesnikov, R. Agrochemical and Pollution Status of Urbanized Agricultural Soils in the Central Part of Yamal Region. Energies 2021, 14, 4080. [Google Scholar] [CrossRef]
- Sidorova, V.; Fyodorov, F. Effect of Beavers on Variability of Soil Properties in Southern Karelia. In Soil Geography and Geostatistics; Dictus Publishing: Luxembourg, 2008; pp. 68–84. [Google Scholar]
- Bhunia, G.S.; Shit, P.K.; Chattopadhyay, R. Assessment of Spatial Variability of Soil Properties Using Geostatistical Approach of Lateritic Soil (West Bengal, India). Ann. Agrar. Sci. 2018, 16, 436–443. [Google Scholar] [CrossRef]
- Saifuzzaman, M.; Adamchuk, V.; Biswas, A.; Rabe, N. High-Density Proximal Soil Sensing Data and Topographic Derivatives to Characterise Field Variability. Biosyst. Eng. 2021, 211, 19–34. [Google Scholar] [CrossRef]
- Castaldi, F.; Hueni, A.; Chabrillat, S.; Ward, K.; Buttafuoco, G.; Bomans, B.; Vreys, K.; Brell, M.; Wesemael, B. Evaluating the Capability of the Sentinel 2 Data for Soil Organic Carbon Prediction in Croplands. ISPRS J. Photogramm. Remote Sens. 2019, 147, 267–282. [Google Scholar] [CrossRef]
- Suleymanov, A.; Gabbasova, I.; Suleymanov, R.; Abakumov, E.; Polyakov, V.; Liebelt, P. Mapping soil organic carbon under erosion processes using remote sensing. Hung. Geogr. Bull. 2021, 70, 49–64. [Google Scholar] [CrossRef]
- Qiao, P.; Lei, M.; Yang, S.; Yang, J.; Guo, G.; Zhou, X. Comparing Ordinary Kriging and Inverse Distance Weighting for Soil as Pollution in Beijing. Environ. Sci. Pollut. Res. 2018, 25, 15597–15608. [Google Scholar] [CrossRef]
- Mousavi, S.R.; Sarmadian, F.; Dehghani, S.; Sadi̇khani, M.R.; Taati, A. Evaluating inverse distance weighting and kriging methods in estimation of some physical and chemical properties of soil in Qazvin Plain. Eurasian J. Soil Sci. 2017, 6, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.; Mao, R.; Shao, H.; Gao, Y. The Spatial Variability of Heavy Metal Distribution in the Suburban Farmland of Taihang Piedmont Plain, China. C. R. Biol. 2009, 332, 558–566. [Google Scholar] [CrossRef]
- López-Granados, F.; Jurado-Expósito, M.; Atenciano, S.; García-Ferrer, A.; Sánchez de la Orden, M.; García-Torres, L. Spatial Variability of Agricultural Soil Parameters in Southern Spain. Plant Soil 2002, 246, 97–105. [Google Scholar] [CrossRef]
- Meirvenne, M.V. Is the Soil Variability within the Small Fields of Flanders Structured Enough to Allow Precision Agriculture? Precis. Agric. 2003, 4, 193–201. [Google Scholar] [CrossRef]
- Sidorova, V.A.; Zhukovskii, E.E.; Lekomtsev, P.V.; Yakushev, V. Geostatistical Analysis of the Soil and Crop Parameters in a Field Experiment on Precision Agriculture. Eurasian Soil Sci. 2012, 45, 783–792. [Google Scholar] [CrossRef]
- Chambers, R.L.; Yarus, J.M.; Hird, K.B. Petroleum Geostatistics for Nongeostatisticians. Part 1. Lead. Edge 2000, 19, 474–479. [Google Scholar] [CrossRef]
- Rahmani, S.R.; Ackerson, J.P.; Schulze, D.; Adhikari, K.; Libohova, Z. Digital Mapping of Soil Organic Matter and Cation Exchange Capacity in a Low Relief Landscape Using LiDAR Data. Agronomy 2022, 12, 1338. [Google Scholar] [CrossRef]
Parameter | pH H2O | pH CaCl2 | SOC, % | Basal Respiration mg CO2/100 g/Day | Available | N–NH4 | N–NO3 | |
---|---|---|---|---|---|---|---|---|
P2O5 | K2O | |||||||
mg/kg | ||||||||
n = 75 | ||||||||
Min | 4.71 | 3.62 | 0.89 | 14.62 | 165.06 | 53.08 | 0 | 0 |
Max | 5.88 | 5.11 | 5.12 | 30.93 | 1268.05 | 294.05 | 10.26 | 62.83 |
Mean | 5.02 | 3.81 | 3.06 | 21.28 | 665.65 | 106.82 | 4.45 | 23.53 |
SD | 0.22 | 0.24 | 0.99 | 4.14 | 232.62 | 47.28 | 2.41 | 19.44 |
CV (%) | 4.38 | 6.29 | 32.5 | 19.45 | 35.48 | 44.26 | 54.16 | 82.62 |
Median | 5.04 | 3.76 | 2.8 | 20.67 | 630.02 | 98.03 | 4.38 | 19.35 |
Properties | Type of Model | Nugget (C0) | PSill (C1) | Sill (C0 + C1) | Range, m | C0/(C0 + C1), % | Spatial Dependence | RMSE | |
---|---|---|---|---|---|---|---|---|---|
OK | IDW | ||||||||
pH (H2O) | Sph | 0.03 | 0.54 | 0.57 | >350 | 5 | Strong | 0.2 | 0.2 |
pH (CaCl2) | Sph | 0.01 | 0.1 | 0.11 | >350 | 9 | Strong | 0.2 | 0.2 |
SOC | Sph | 0.61 | 0.39 | 1 | 41 | 61 | Moderate | 1 | 1.1 |
CO2 | Pure nugget | 26 | 0 | 26 | - | 100 | No | 4.2 | 5.6 |
P2O5 | Sph | 0 | 5125 | 5635 | 29 | 9 | Strong | 255.7 | 305.9 |
K2O | Sph | 527 | 1470 | 1997 | 51 | 26 | Moderate | 49.1 | 51.4 |
N–NH4 | Pure nugget | 0 | 0 | 0 | - | 100 | No | 3.1 | 2.9 |
N–NO3 | Pure nugget | 0 | 0 | 0 | - | 100 | No | 23.6 | 24.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suleymanov, A.; Nizamutdinov, T.; Morgun, E.; Abakumov, E. Evaluation and Spatial Variability of Cryogenic Soil Properties (Yamal-Nenets Autonomous District, Russia). Soil Syst. 2022, 6, 65. https://doi.org/10.3390/soilsystems6030065
Suleymanov A, Nizamutdinov T, Morgun E, Abakumov E. Evaluation and Spatial Variability of Cryogenic Soil Properties (Yamal-Nenets Autonomous District, Russia). Soil Systems. 2022; 6(3):65. https://doi.org/10.3390/soilsystems6030065
Chicago/Turabian StyleSuleymanov, Azamat, Timur Nizamutdinov, Evgeniya Morgun, and Evgeny Abakumov. 2022. "Evaluation and Spatial Variability of Cryogenic Soil Properties (Yamal-Nenets Autonomous District, Russia)" Soil Systems 6, no. 3: 65. https://doi.org/10.3390/soilsystems6030065
APA StyleSuleymanov, A., Nizamutdinov, T., Morgun, E., & Abakumov, E. (2022). Evaluation and Spatial Variability of Cryogenic Soil Properties (Yamal-Nenets Autonomous District, Russia). Soil Systems, 6(3), 65. https://doi.org/10.3390/soilsystems6030065