Tillage Management Impacts on Soil Phosphorus Variability under Maize–Soybean Rotation in Eastern Canada
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Soil Sampling
2.2. Statistical and Geostatistical Analyses
3. Results
3.1. Descriptive Statistics of Topography Properties
3.2. Descriptive Statistics of Soil Phosphorus Indices and Other Soil Chemical Properties
3.3. Geostatistical Parameters of Soil Phosphorus Indices and Other Soil Chemical Properties
3.4. Spatial Distribution of Soil Phosphorus Indices and Other Soil Chemical Properties
3.5. Relationships between Soil Phosphorus Indices and Other Soil Chemical Properties
3.6. Phosphorus Fertilizer Recommendations Based on Prescription Maps
4. Discussion
4.1. Effects of Topography Properties on Phosphorus Transport
4.2. Effects of Soil Tillage Practices on Soil Phosphorus Stratification
4.3. Variability of Soil Phosphorus Indices under the Different Soil Tillage Practices
4.4. Geostatistics of Soil Phosphorus Indices under Different Soil Tillage Practices
4.5. Spatial Distribution Maps and Relationships between Soil Phosphorus Indices and Other Soil Chemical Properties
4.6. Phosphorus Recommendations and Environmental Implications
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- MAPAQ. Portrait-Diagnostic Sectoriel de L’industrie des Grains au Québec; Ministère de L’agriculture de L’alimentation et des Pêcheries du Québec: Québec, QC, Canada, 2020; p. 45. [Google Scholar]
- Malvezi, K.E.D.; Júnior, L.A.Z.; Guimarães, E.C.; Vieira, S.R.; Pereira, N. Soil chemical attributes variability under tillage and no-tillage in a long-term experiment in southern Brazil. Biosci. J. 2019, 35, 467–476. [Google Scholar] [CrossRef]
- Guan, D.; Al-Kaisi, M.M.; Zhang, Y.; Duan, L.; Tan, W.; Zhang, M.; Li, Z. Tillage practices affect biomass and grain yield through regulating root growth, root-bleeding sap and nutrients uptake in summer maize. Field Crops Res. 2014, 157, 89–97. [Google Scholar] [CrossRef]
- Liu, K.; Wiatrak, P. Corn production response to tillage and nitrogen application in dry-land environment. Soil Till. Res. 2012, 124, 138–143. [Google Scholar] [CrossRef]
- Alvear, M.; Rosas, A.; Rouanet, J.; Borie, F. Effects of three soil tillage systems on some biological activities in an Ultisol from southern Chile. Soil Till. Res. 2005, 82, 195–202. [Google Scholar] [CrossRef]
- Li, H. Impact à Long Terme du Travail du Sol Sur le Cycle Biogéochimique du Phosphore: Analyse de L’essai L’Acadie (Québec, Canada) et Modélisation. Ph.D. Thesis, Soil and Environmental Sciences Co-Supervised by Université Laval and Université de Bordeaux, Québec, QC, Canada, 2017. [Google Scholar]
- Kassam, A.; Friedrich, T.; Derpsch, R.; Lahmar, R.; Mrabet, R.; Basch, G.; González-Sánchez, E.J.; Serraj, R. Conservation agriculture in the dry Mediterranean climate. Field Crops Res. 2012, 132, 7–17. [Google Scholar] [CrossRef] [Green Version]
- Soane, B.D.; Ball, B.C.; Arvidsson, J.; Basch, G.; Moreno, F.; Roger-Estrade, J. No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil Till. Res. 2012, 118, 66–87. [Google Scholar] [CrossRef] [Green Version]
- Olson, K.R.; Ebelhar, S.A. Impacts of conservation tillage systems on long-term crop yields. J. Agron. 2009, 8, 14–20. [Google Scholar] [CrossRef]
- Andraski, T.W.; Bundy, L.G.; Kilian, K.C. Manure history and long-term tillage effects on soil properties and phosphorus losses in runoff. J. Environ. Qual. 2003, 32, 1782–1789. [Google Scholar] [CrossRef]
- Blevins, R.; Frye, W. Conservation tillage: An ecological approach to soil management. Adv. Agron. 1993, 51, 33–78. [Google Scholar]
- Daverede, I.; Kravchenko, A.; Hoeft, R.; Nafziger, E.D.; Bullock, D.; Warren, J.; Gonzini, L. Phosphorus runoff: Effect of Tillage and Soil Phosphorus Levels. J. Environ. Qual. 2003, 32, 1436–1444. [Google Scholar] [CrossRef]
- Dick, R. A review: Long-term effects of agricultural systems on soil biochemical and microbial parameters. Agric. Ecosyst. Environ. 1992, 40, 25–36. [Google Scholar] [CrossRef]
- Friedrich, T.; Derpsch, R.; Kassam, A. Overview of the global spread of conservation agriculture. In Field Actions Science Reports; Special Issue 6; Institut Veolia Environnement: Rome, Italy, 2012. [Google Scholar]
- De Santiago, A.; Recena, R.; Perea-Torres, F.; Moreno, M.T.; Carmona, E.; Delgado, A. Relationship of soil fertility to biochemical properties under agricultural practices aimed at controlling land degradation. Land Degrad. Dev. 2019, 30, 1121–1129. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Liang, X.; Linquist, B.A.; Van Groenigen, K.J.; Lee, J.; Lundy, M.E.; Van Gestel, N.; Six, J.; Venterea, R.T.; Van Kessel, C. Productivity limits and potentials of the principles of conservation agriculture. Nat. Clim. Chang. 2015, 517, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Statistics Canada. Table 32-10-0408-01: Tillage and Seeding Practices, Census of Agriculture, 2011 and 2016; Statistics Canada: Ottawa, ON, Canada, 2016. [Google Scholar]
- Statistics Canada. Farm and Farm Operator Data; Statistics Canada: Ottawa, ON, Canada, 2016. [Google Scholar]
- Lafond, G.P.; Walley, F.; May, W.; Holzapfel, C. Long term impact of no-till on soil properties and crop productivity on the Canadian prairies. Soil Till. Res. 2011, 117, 110–123. [Google Scholar] [CrossRef]
- Holm, F.; Zentner, R.; Thomas, A.; Sapsford, K.; Légère, A.; Gossen, B.; Olfert, O.; Leeson, J. Agronomic and economic responses to integrated weed management systems and fungicide in a wheat-canola-barley-pea rotation. Can. J. Plant Sci. 2006, 86, 1281–1295. [Google Scholar] [CrossRef] [Green Version]
- Abdi, D.; Cade-Menun, B.J.; Ziadi, N.; Parent, L.E. Long-term impact of tillage practices and phosphorus fertilization on soil phosphorus forms as determined by 31 P nuclear magnetic resonance spectroscopy. J. Environ. Qual. 2014, 43, 1431–1441. [Google Scholar] [CrossRef]
- Cade-Menun, B.J.; Carter, M.R.; James, D.C.; Liu, C.W. Phosphorus forms and chemistry in the soil profile under long-term conservation tillage: A phosphorus-31 nuclear magnetic resonance study. J. Environ. Qual. 2010, 39, 1647–1656. [Google Scholar] [CrossRef]
- Messiga, A.J.; Ziadi, N.; Morel, C.; Parent, L.-E. Soil phosphorus availability in no-till versus conventional tillage following freezing and thawing cycles. Can. J. Soil. Sci. 2010, 90, 419–428. [Google Scholar] [CrossRef]
- Allaire, S.E.; van Bochove, E.; Denault, J.-T.; Dadfar, H.; Thériault, G.; Charles, A.; De Jong, R. Preferential pathways of phosphorus movement from agricultural land to water bodies in the Canadian Great Lakes basin: A predictive tool. Can. J. Soil. Sci. 2011, 91, 361–374. [Google Scholar] [CrossRef]
- Puustinen, M.; Koskiaho, J.; Peltonen, K. Influence of cultivation methods on suspended solids and phosphorus concentrations in surface runoff on clayey sloped fields in boreal climate. Agric. Ecosyst. Environ. 2005, 105, 565–579. [Google Scholar] [CrossRef]
- Sun, W.-X.; Huang, B.; Qu, M.-K.; Tian, K.; Yao, L.-P.; Fu, M.-M.; Yin, L.-P. Effect of Farming Practices on the Variability of Phosphorus Status in Intensively Managed Soils. Pedosphere 2015, 25, 438–449. [Google Scholar] [CrossRef]
- Tunney, H. A note on a balance sheet approach to estimating the phosphorus fertiliser needs of agriculture. Ir. J. Agric. Res. 1990, 29, 149–154. [Google Scholar]
- Borges, R.; Mallarino, A. Field-scale variability of phosphorus and potassium uptake by no-till corn and soybean. Soil Sci. Soc. Am. J. 1997, 61, 846–853. [Google Scholar] [CrossRef]
- Borges, R.; Mallarino, A. Significance of spatially variable soil phosphorus and potassium for early growth and nutrient content of no-till corn and soybean. Commun. Soil Sci. Plant Anal. 1998, 29, 2589–2605. [Google Scholar] [CrossRef]
- Dalchiavon, F.C.; Rodrigues, A.R.; de Lima, E.; Lovera, L.H.; Montanari, R. Spatial variability of chemical attributes of soil cropped with soybean under no-tillage. Rev. Ciências Agroveterinárias 2017, 16, 144–154. [Google Scholar] [CrossRef] [Green Version]
- Fernández, F.G.; Schaefer, D. Assessment of soil phosphorus and potassium following real time kinematic-guided broadcast and deep-band placement in strip-till and no-till. Soil Sci. Soc. Am. J. 2012, 76, 1090–1099. [Google Scholar] [CrossRef] [Green Version]
- Mallarino, A.P. Spatial variability patterns of phosphorus and potassium in no-tilled soils for two sampling scales. Soil Sci. Soc. Am. J. 1996, 60, 1473–1481. [Google Scholar] [CrossRef]
- Cambouris, A.; Messiga, A.; Ziadi, N.; Perron, I.; Morel, C. Decimetric-Scale Two-Dimensional Distribution of Soil Phosphorus after 20 Years of Tillage Management and Maintenance Phosphorus Fertilization. Soil Sci. Soc. Am. J. 2017, 81, 1606–1614. [Google Scholar] [CrossRef] [Green Version]
- CRAAQ. Guide de Référence en Fertilisation, 2nd ed.; Centre de Référence en Agriculture et Agroalimentaire du Québec: Quebec, QC, Canada, 2010; p. 473. [Google Scholar]
- Nolin, M.C.; Simard, R.; Cambouris, A.; Beauchemin, S. Specific Variability of Phosphorus Status and Sorption Characteristics in Clay Soils of the St-Lawrence Lowlands (Quebec). In Proceedings of the Fourth International Conference on Precision Agriculture; Wiley Online Library: Hoboken, NJ, USA, 1999; pp. 395–406. [Google Scholar]
- Nze Memiaghe, J.D.; Cambouris, A.N.; Ziadi, N.; Karam, A.; Perron, I. Spatial variability of soil phosphorus indices under two contrasting grassland fields in Eastern Canada. Agronomy 2021, 11, 24. [Google Scholar] [CrossRef]
- Cambouris, A.N.; Nolin, M.C.; Simard, R.R. Precision management of fertilizer phosphorus and potassium for potato in Quebec, Canada. In Proceedings of the Fourth International Conference on Precision Agriculture; Wiley Online Library: Hoboken, NJ, USA, 1999; pp. 847–857. [Google Scholar]
- MDDELCC. Guide de Référence du Règlement sur les Exploitations Agricoles; Ministère du Développement durable, de l’Environnement et de la Lutte Contre les Changements Climatiques: Québec, QC, Canada, 2017; p. 185. [Google Scholar]
- Pellerin, A.; Parent, L.-É.; Fortin, J.; Tremblay, C.; Khiari, L.; Giroux, M. Environmental Mehlich-III soil phosphorus saturation indices for Quebec acid to near neutral mineral soils varying in texture and genesis. Can. J. Soil. Sci. 2006, 86, 711–723. [Google Scholar] [CrossRef]
- Wang, C.; Nolin, M.; Wu, J. Microrelief and spatial variability of some selected soil properties on an agricultural benchmark site in Quebec, Canada. In Site-Specific Management for Agricultural Systems; Wiley Online Library: Hoboken, NJ, USA, 1995; pp. 339–350. [Google Scholar]
- Nolin, M.C.; Lamontagne, L. Étude Pédologique du Comté de Richelieu (Québec); Agriculture Canada, Direction Generale de la Recherche: Sainte-Foy, QC, Canada, 1990; p. 287. [Google Scholar]
- Hendershot, W.H.; Lalande, H.; Duquette, M. Soil reaction and exchangeable acidity. In Soil Sampling and Methods of Analysis; Taylor & Francis: Boca Raton, FL, USA, 2008; pp. 173–178. [Google Scholar]
- Ziadi, N.; Tran, T. Mehlich 3-Extractable Elements. In Soil Sampling and Methods of Analysis; Carter, M.R., Gregorich, E.G., Eds.; Taylor & Francis: Boca Raton, FL, USA, 2008; pp. 81–88. [Google Scholar]
- Beven, K.J.; Kirkby, M.J. A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol. Sci. J. 1979, 24, 43–69. [Google Scholar] [CrossRef] [Green Version]
- Sörensen, R.; Zinko, U.; Seibert, J. On the calculation of the topographic wetness index: Evaluation of different methods based on field observations. Hydrol. Earth Syst. Sci. 2006, 10, 101–112. [Google Scholar] [CrossRef] [Green Version]
- SAS User’s Guide. Statistics, version 9.3. SAS Institute: Cary, NC, USA, 2010.
- Nolin, M.; Caillier, M. La variabilité des sols. II-Quantification et amplitude. Agrosol 1992, 5, 21–32. [Google Scholar]
- Cambardella, C.; Moorman, T.; Parkin, T.; Karlen, D.; Novak, J.; Turco, R.; Konopka, A. Field-scale variability of soil properties in central Iowa soils. Soil Sci. Soc. Am. J. 1994, 58, 1501–1511. [Google Scholar] [CrossRef]
- Pohlmann, H. Geostatistical modelling of environmental data. Catena 1993, 20, 191–198. [Google Scholar] [CrossRef]
- Webster, R.; Oliver, M.A. Statistical Methods in Soil and Land Resource Survey; Oxford University Press (OUP): Oxford, UK, 1990. [Google Scholar]
- Robertson, G. GS: Geostatistics for the Environmental Sciences; Gamma Design Software: Plainwell, MI, USA, 2008. [Google Scholar]
- Whelan, B.; McBratney, A. The “null hypothesis” of precision agriculture management. Precis. Agric. 2000, 2, 265–279. [Google Scholar] [CrossRef]
- Vieira, S.; Hatfield, J.; Nielsen, D.; Biggar, J. Geostatistical theory and application to variability of some agronomical properties. Hilgardia 1983, 51, 1–75. [Google Scholar] [CrossRef] [Green Version]
- Kravchenko, A.; Bollero, G.A.; Omonode, R.; Bullock, D. Quantitative mapping of soil drainage classes using topographical data and soil electrical conductivity. Soil Sci. Soc. Am. J. 2002, 66, 235–243. [Google Scholar] [CrossRef]
- Heathwaite, A.L.; Quinn, P.; Hewett, C.J. Modelling and managing critical source areas of diffuse pollution from agricultural land using flow connectivity simulation. J. Hydrol. 2005, 304, 446–461. [Google Scholar] [CrossRef]
- Roberts, W.M.; Gonzalez-Jimenez, J.L.; Doody, D.G.; Jordan, P.; Daly, K.J. Assessing the risk of phosphorus transfer to high ecological status rivers: Integration of nutrient management with soil geochemical and hydrological conditions. Sci. Total. Environ. 2017, 589, 25–35. [Google Scholar] [CrossRef]
- Li, N.; Xu, J.; Yin, W.; Chen, Q.; Wang, J.; Shi, Z. Effect of local watershed landscapes on the nitrogen and phosphorus concentrations in the waterbodies of reservoir bays. Sci. Total. Environ. 2020, 716, 137132. [Google Scholar] [CrossRef] [PubMed]
- Salekin, S.; Bloomberg, M.; Morgenroth, J.; Meason, D.F.; Mason, E.G. Within-site drivers for soil nutrient variability in plantation forests: A case study from dry sub-humid New Zealand. Catena 2021, 200, 105149. [Google Scholar] [CrossRef]
- Selles, F.; McConkey, B.; Campbell, C. Distribution and forms of P under cultivator-and zero-tillage for continuous-and fallow-wheat cropping systems in the semi-arid Canadian prairies. Soil Till. Res. 1999, 51, 47–59. [Google Scholar] [CrossRef]
- Bertol, I.; Engel, F.; Mafra, A.; Bertol, O.; Ritter, S. Phosphorus, potassium and organic carbon concentrations in runoff water and sediments under different soil tillage systems during soybean growth. Soil Till. Res. 2007, 94, 142–150. [Google Scholar] [CrossRef]
- Duiker, S.W.; Beegle, D.B. Soil fertility distributions in long-term no-till, chisel/disk and moldboard plow/disk systems. Soil Till. Res. 2006, 88, 30–41. [Google Scholar] [CrossRef]
- Messiga, A.J.; Ziadi, N.; Morel, C.; Grant, C.; Tremblay, G.; Lamarre, G.; Parent, L.-E. Long term impact of tillage practices and biennial P and N fertilization on maize and soybean yields and soil P status. Field Crops Res. 2012, 133, 10–22. [Google Scholar] [CrossRef]
- Rodrigues, M.; Pavinato, P.S.; Withers, P.J.A.; Teles, A.P.B.; Herrera, W.F.B. Legacy phosphorus and no tillage agriculture in tropical oxisols of the Brazilian savanna. Sci. Total. Environ. 2016, 542, 1050–1061. [Google Scholar] [CrossRef] [PubMed]
- Piegholdt, C.; Geisseler, D.; Koch, H.J.; Ludwig, B. Long-term tillage effects on the distribution of phosphorus fractions of loess soils in Germany. J. Soil Sci. Plant Nutr. 2013, 176, 217–226. [Google Scholar] [CrossRef]
- Metwally, M.S.; Shaddad, S.M.; Liu, M.; Yao, R.-J.; Abdo, A.I.; Li, P.; Jiao, J.; Chen, X. Soil properties spatial variability and delineation of site-specific management zones based on soil fertility using fuzzy clustering in a hilly field in Jianyang, Sichuan, China. Sustainability 2019, 11, 7084. [Google Scholar] [CrossRef] [Green Version]
- Kitchen, N.; Westfall, D.; Havlin, J. Soil sampling under no-till banded phosphorus. Soil Sci. Soc. Am. J. 1990, 54, 1661–1665. [Google Scholar] [CrossRef]
- Tyler, D.; Howard, D. Soil sampling patterns for assessing no-tillage fertilization techniques. J. Fertil. Issues 1991, 8, 52–56. [Google Scholar]
- Vasu, D.; Singh, S.; Sahu, N.; Tiwary, P.; Chandran, P.; Duraisami, V.; Ramamurthy, V.; Lalitha, M.; Kalaiselvi, B. Assessment of spatial variability of soil properties using geospatial techniques for farm level nutrient management. Soil Till. Res. 2017, 169, 25–34. [Google Scholar] [CrossRef]
- McBratney, A.; Webster, R. Optimal interpolation and isarithmic mapping of soil properties: V. Co-regionalization and multiple sampling strategy. J. Soil Sci. 1983, 34, 137–162. [Google Scholar] [CrossRef]
- Kravchenko, A. Influence of spatial structure on accuracy of interpolation methods. Soil Sci. Soc. Am. J. 2003, 67, 1564–1571. [Google Scholar] [CrossRef]
- Perron, I.; Cambouris, A.N.; Chokmani, K.; Vargas Gutierrez, M.F.; Zebarth, B.J.; Moreau, G.; Biswas, A.; Adamchuk, V. Delineating soil management zones using a proximal soil sensing system in two commercial potato fields in New Brunswick, Canada. Can. J. Soil. Sci. 2018, 98, 724–737. [Google Scholar] [CrossRef]
- Tarkalson, D.D.; Hergert, G.W.; Cassman, K.G. Long-term effects of tillage on soil chemical properties and grain yields of a dryland winter wheat–sorghum/corn–fallow rotation in the Great Plains. Agron. J. 2006, 8, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Limousin, G.; Tessier, D. Effects of no-tillage on chemical gradients and topsoil acidification. Soil Till. Res. 2007, 92, 167–174. [Google Scholar] [CrossRef]
- Houx III, J.; Wiebold, W.; Fritschi, F. Long-term tillage and crop rotation determines the mineral nutrient distributions of some elements in a Vertic Epiaqualf. Soil Till. Res. 2011, 112, 27–35. [Google Scholar] [CrossRef]
- Reeves, J.L.; Liebig, M.A. Depth matters: Soil pH and dilution effects in the northern Great Plains. Soil Sci. Soc. Am. J. 2016, 80, 1424–1427. [Google Scholar] [CrossRef]
Precipitation (mm) | Air Temperature (°C) | |||
---|---|---|---|---|
2014 | 30 yr Normal | 2014 | 30 yr Normal | |
May | 95.8 | 85.6 | 14.2 | 13.4 |
June | 176.4 | 97.1 | 19.3 | 18.6 |
July | 69.8 | 102.5 | 21.1 | 20.6 |
August | 61.8 | 98.7 | 19.3 | 19.5 |
September | 45.2 | 87.2 | 14.7 | 15.1 |
October | 119.6 | 103.8 | 10.1 | 8.2 |
November | 59.3 | 101.2 | 5.3 | 4.0 |
Total | 627.9 | 676.1 | - | - |
Average | - | - | 14.9 | 13.9 |
-------------------------------0–5 cm----------------------------- | -------------------------------5–20 cm--------------------------- | |||||||
---|---|---|---|---|---|---|---|---|
Model 1 | Sill Ratio 2 (%) | Range 3 (m) | R2CV 4 | Model | Sill Ratio (%) | Range (m) | R2CV | |
Conventional tillage | ||||||||
Soil pHH2O | Sph | 33 | 58 | 0.11 | Lin | 28 | 183 | 0.18 |
TC | PN | - | - | - | PN | - | - | - |
PM3 | Sph | 36 | 50 | 0.15 | Sph | 33 | 51 | 0.17 |
AlM3 | Sph | 85 | 180 | 0.69 | Sph | 52 | 55 | 0.33 |
FeM3 | Sph | 39 | 60 | 0.12 | Sph | 29 | 48 | 0.01 |
CaM3 | PN | - | - | - | PN | - | - | - |
(P/Al)M3 | Sph | 23 | 70 | 0.15 | Sph | 31 | 46 | 0.15 |
No-tillage | ||||||||
Soil pHH2O | Sph | 86 | 57 | 0.29 | Sph | 99 | 57 | 0.30 |
TC | Sph | 45 | 61 | 0.07 | Exp | 92 | 86 | 0.09 |
PM3 | Sph | 43 | 55 | 0.06 | Sph | 33 | 77 | 0.16 |
AlM3 | Sph | 52 | 64 | 0.27 | Sph | 52 | 77 | 0.24 |
FeM3 | Sph | 71 | 69 | 0.30 | Sph | 99 | 55 | 0.36 |
CaM3 | Sph | 99 | 77 | 0.26 | Sph | 45 | 90 | 0.17 |
(P/Al)M3 | Sph | 46 | 60 | 0.08 | Sph | 45 | 66 | 0.17 |
----------------------0–5 cm-------------------- | -----------------5–20 cm ------------------- | |||||||
---|---|---|---|---|---|---|---|---|
PM3 | (P/Al)M3 | PM3 | (P/Al)M3 | |||||
Conventional tillage | ||||||||
Soil pHH2O | 0.06 | ns | 0.11 | ns | 0.11 | ns | 0.13 | ns |
TC | 0.65 | *** | 0.62 | *** | 0.71 | *** | 0.69 | *** |
AlM3 | −0.09 | ns | na | −0.12 | ns | na | ||
FeM3 | 0.52 | *** | 0.43 | *** | 0.53 | *** | 0.49 | *** |
CaM3 | 0.41 | *** | 0.40 | *** | 0.28 | *** | 0.28 | *** |
Elevation | 0.09 | ns | 0.1 | ns | na | na | ||
Topographic wetness index | −0.03 | ns | −0.1 | ns | na | na | ||
No-tillage | ||||||||
Soil pHH2O | 0.23 | ** | 0.26 | ** | 0.00 | ns | 0.00 | ns |
TC | 0.35 | *** | 0.32 | *** | 0.36 | *** | 0.33 | *** |
AlM3 | −0.04 | ns | na | −0.03 | ns | na | ||
FeM3 | 0.15 | ns | 0.13 | ns | 0.33 | *** | 0.33 | *** |
CaM3 | 0.26 | ** | 0.30 | *** | 0.13 | ns | 0.14 | ns |
Elevation | −0.07 | ns | −0.12 | ns | na | na | ||
Topographic wetness index | −0.13 | ns | −0.16 | ns | na | na |
Regression Equations | Soil Chemical Properties Selected by the Spatial Regression | R2 | ||||
---|---|---|---|---|---|---|
Conventional Tillage | TC 1 | FeM3 2 | AlM3 3 | CaM3 4 | ||
PM3(0–5 cm) = | 1.62 | +0.805 TC p < 0.0001 | +0.01013 FeM3 p < 0.0001 | −0.0035 AlM3 p < 0.0001 | +0.0005 CaM3 p < 0.0001 | 0.720 *** |
PM3(5–20 cm)= | 1.62 | +1.378 TC p < 0.0001 | +0.0085 FeM3 p < 0.0001 | −0.0032 AlM3 p < 0.0001 | +0.0003 CaM3 p < 0.0001 | 0.678 *** |
(P/Al)M3(0–5 cm)= | –3.46 | +1.042 TC p < 0.0001 | +0.0053 FeM3 p < 0.0001 | +0.0005 CaM3 p < 0.0001 | 0.453 *** | |
(P/Al)M3(5–20 cm)= | –3.46 | +1.408 TC p < 0.0001 | +0.0051 FeM3 p < 0.0001 | +0.0002 CaM3 p < 0.0001 | 0.526 *** | |
No-tillage | ||||||
PM3(0–5 cm) = | 1.84 | +0.005 FeM3 p < 0.0001 | +0.0004 CaM3 p < 0.0001 | 0.285 *** | ||
PM3(5–20 cm)= | 1.84 | +0.004 FeM3 p < 0.0001 | +0.0004 CaM3 p < 0.0001 | 0.375 *** | ||
(P/Al)M3(0–5 cm)= | –0.28 | +0.0041 FeM3 p < 0.0001 | +0.0004 CaM3 p < 0.0001 | 0.319 *** | ||
(P/Al)M3(5–20 cm)= | –0.28 | +0.0031 FeM3 p < 0.0001 | +0.0004 CaM3 p < 0.0001 | 0.392 *** |
Maize | Total P2O5 4 Q1 + Q2 + Q3 (kg P2O5) | P2O5 5 Based on (P/Al)M3 Mean Value (kg P2O5) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
A1 1 (ha) | Rate1 2 (kg P2O5 ha−1) | Q1 3 (A1xR1) | A2 (ha) | Rate2 (kg P2O5 ha−1) | Q2 (A2xR2) | A3 (ha) | Rate3 (kg P2O5 ha−1) | Q3 (A3xR3) | |||
Conventional tillage | |||||||||||
(0–5 cm) | 6.1 | 80 | 488 | 4.7 | 60 | 282 | - | - | - | 770 | 648 |
(5–20 cm) | 8.8 | 80 | 704 | 2 | 60 | 120 | - | - | - | 824 | 864 |
No-tillage | |||||||||||
(0–5 cm) | 8.8 | 40 | 352 | 0.7 | 20 | 14 | - | - | - | 366 | 380 |
(5–20 cm) | 2.6 | 60 | 156 | 6.9 | 40 | 276 | - | - | - | 432 | 380 |
Soybean | Total P2O5 Q1 + Q2 + Q3 (kg P2O5) | P2O5 Based on (P/Al)M3 Mean Value (kg P2O5) | |||||||||
A1 (ha) | Rate1 (kg P2O5 ha−1) | Q1 (A1xR1) | A2 (ha) | Rate2 (kg P2O5 ha−1) | Q2 (A2xR2) | A3 (ha) | Rate3 (kg P2O5 ha−1) | Q3 (A3xR3) | |||
Conventional tillage | |||||||||||
(0–5 cm) | 6.1 | 60 | 366 | 4.7 | 20 | 94 | - | - | - | 460 | 216 |
(5–20 cm) | 8.8 | 60 | 528 | 2 | 20 | 40 | - | - | - | 568 | 648 |
No-tillage | |||||||||||
(0–5 cm) | 3 | 0 | 0 | 6.5 | 0 | 0 | - | - | - | 0 | 0 |
(5–20 cm) | 2.6 | 20 | 52 | 6 | 0 | 0 | 0.9 | 0 | 0 | 52 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nze Memiaghe, J.D.; Cambouris, A.N.; Ziadi, N.; Karam, A. Tillage Management Impacts on Soil Phosphorus Variability under Maize–Soybean Rotation in Eastern Canada. Soil Syst. 2022, 6, 45. https://doi.org/10.3390/soilsystems6020045
Nze Memiaghe JD, Cambouris AN, Ziadi N, Karam A. Tillage Management Impacts on Soil Phosphorus Variability under Maize–Soybean Rotation in Eastern Canada. Soil Systems. 2022; 6(2):45. https://doi.org/10.3390/soilsystems6020045
Chicago/Turabian StyleNze Memiaghe, Jeff D., Athyna N. Cambouris, Noura Ziadi, and Antoine Karam. 2022. "Tillage Management Impacts on Soil Phosphorus Variability under Maize–Soybean Rotation in Eastern Canada" Soil Systems 6, no. 2: 45. https://doi.org/10.3390/soilsystems6020045
APA StyleNze Memiaghe, J. D., Cambouris, A. N., Ziadi, N., & Karam, A. (2022). Tillage Management Impacts on Soil Phosphorus Variability under Maize–Soybean Rotation in Eastern Canada. Soil Systems, 6(2), 45. https://doi.org/10.3390/soilsystems6020045