Leonardites Rich in Humic and Fulvic Acids Had Little Effect on Tissue Elemental Composition and Dry Matter Yield in Pot-Grown Olive Cuttings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Sample Collection and Analysis
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Weil, R.R.; Brady, N.C. Nature and Properties of Soils, 15th ed.; Pearson: London, UK, 2017. [Google Scholar]
- Obriot, F.; Stauffer, M.; Goubard, Y.; Cheviron, N.; Peres, G.; Eden, M.; Revallier, A.; Vieublé-Gonod, L.; Houot, S. Multi-criteria indices to evaluate the effects of repeated organic amendment applications on soil and crop quality. Agric. Ecosyst. Environ. 2016, 232, 165–178. [Google Scholar] [CrossRef]
- Montiel-Rozas, M.M.; Domínguez, M.T.; Madejón, E.; Madejón, P.; Pastorelli, R.; Renella, G. Long-term effects of organic amendments on bacterial and fungal communities in a degraded Mediterranean soil. Geoderma 2018, 332, 20–28. [Google Scholar] [CrossRef]
- Francis, D.D.; Vigil, M.F.; Mosier, A.R. Gaseous losses of nitrogen other than through denitrification. In Nitrogen in Agricultural Systems; Schepers, J.S., Raun, W.R., Eds.; ASA-CSSA-SSSA: Madison, WI, USA, 2008; pp. 255–279. [Google Scholar]
- Cao, X.; Reichel, R.; Wissel, H.; Kummer, S.; Brüggemann, N. High carbon amendments increase nitrogen retention in soil after slurry application—an incubation study with silty loam soil. J. Soil Sci. Plant Nutr. 2021. [Google Scholar] [CrossRef]
- Afonso, S.; Pereira, E.; Arrobas, M.; Rodrigues, M.A. Recycling nutrient-rich hop leaves by composting with wheat straw and farmyard manure in suitable mixtures. J. Environ. Manag. 2021, 284, 112105. [Google Scholar] [CrossRef] [PubMed]
- Arrobas, M.; Carvalho, J.T.N.; Raimundo, S.; Poddere, G.; Rodrigues, M.A. The safe use of compost derived from municipal solid waste depends on its composition and conditions of application. Soil Use Manag. 2021. [Google Scholar] [CrossRef]
- Almagro, M.; de Vente, J.; Boix-Fayos, C.; García-Franco, N.; Aguilar, J.M.; González, D.; Solé-Benet, A.; Martínez-Mena, M. Sustainable land management practices as providers of several ecosystem services under rainfed Mediterranean agroecosystems. Mitig Adapt. Strat. Glob. Chang. 2016, 21, 1029–1043. [Google Scholar] [CrossRef]
- Rodrigues, M.A.; Arrobas, M. Cover cropping for increasing fruit production and farming sustainability. In Fruit Crops: Diagnosis and Management of Nutrient Constraints; Srivastava, A.K., Hu, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 279–295. [Google Scholar]
- du Jardin, P.; Xu, L.; Geelen, D. Agricultural functions and action mechanisms of plant biostimulants (PBs): An Introduction. In The Chemical Biology of Plant Biostimulants; Geelen, D., Xu, L., Eds.; Wiley: Hoboken, NJ, USA, 2020; pp. 3–29. [Google Scholar]
- Rouphael, Y.; Colla, G. Biostimulants in agriculture. Front. Plant Sci. 2020, 11, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, J.S.; Selvaraj, V.; Gunupuru, L.R.; Rathor, P.K.; Prithiviraj, B. Combined application of Ascophyllum nodosum extract and chitosan synergistically activates host-defense of peas against powdery mildew. BMC Plant Biol. 2020, 20, 113. [Google Scholar] [CrossRef]
- Sun, Q.; Liu, J.; Huo, L.; Li, Y.C.; Li, X.; Xia, L.; Zhou, Z.; Zhang, M.; Li, B. Humic acids derived from Leonardite to improve enzymatic activities and bioavailability of nutrients in a calcareous soil. Int. J. Agric. Biol. Eng. 2020, 13, 200–205. [Google Scholar] [CrossRef]
- Lamar, R.T. Possible role for electron shuttling capacity in elicitation of PB activity of humic substances on plant growth enhancement. In The Chemical Biology of Plant Biostimulants; Geelen, D., Xu, L., Eds.; Wiley: Hoboken, NJ, USA, 2020; pp. 97–121. [Google Scholar]
- Sugier, D.; Kołodziej, B.; Bielińska, E. The effect of leonardite application on Arnica montana L. yielding and chosen chemical properties and enzymatic activity of the soil. J. Geochem. Explor. 2013, 129, 76–82. [Google Scholar] [CrossRef]
- Canellas, L.P.; Olivares, F.L.; Aguiar, N.O.; Jones, D.L.; Nebbioso, A.; Mazzei, P.; Piccolo, A. Humic and fulvic acids as biostimulants in horticulture. Sci. Hortic. 2015, 196, 15–27. [Google Scholar] [CrossRef]
- du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Denre, M.; Ghanti, G.; Sarkar, K. Effect of humic acids application on accumulation of mineral nutrition and pungency in garlic (Allium sativum L.). Int. J. Biotech. Mol. Biol. Res. 2014, 5, 7–12. [Google Scholar]
- Sandepogu, M.; Shukla, P.S.; Asiedu, S.; Yurgel, S.; Prithiviraj, B. Combination of Ascophyllum nodosum extract and humic acid improves early growth and reduces post-harvest loss of lettuce and spinach. Agriculture 2019, 9, 240. [Google Scholar] [CrossRef] [Green Version]
- Litardo, R.C.M.; Bendezú, S.J.G.; Zenteno, M.D.C.; Pérez-Almeida, I.B.; Parismoreno, L.L.; García, E.D.L. Effect of mineral and organic amendments on rice growth and yield in saline soils. J. Saudi Soc. Agric. Sci. 2021. [Google Scholar] [CrossRef]
- Schiavon, M.; Pizzeghello, D.; Muscolo, A.; Vaccaro, S.; Francioso, O.; Nardi, S. High molecular size humic substances enhance phenylpropanoid metabolism in maize (Zea mays L.). J. Chem. Ecol. 2010, 36, 662–669. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.G.; Yoon, H.Y.; Cha, J.-Y.; Kim, E.-K.; Kim, P.J.; Jeon, J.-R. Artificial humification of lignin architecture: Top-down and bottom-up approaches. Biotechnol. Adv. 2019, 37, 107416. [Google Scholar] [CrossRef] [PubMed]
- Özyazici, G. Yield and quality of black cumin (Nigella sativa L.) according to leonardite and nitrogen doses. Appl. Ecol. Environ. Res. 2020, 18, 7057–7075. [Google Scholar] [CrossRef]
- Wang, J.; Wu, J.; Lu, J.; Yuan, G. Effects of leonardite on the coastal saline soil improvement. Chem. Ecol. 2020, 36, 750–765. [Google Scholar] [CrossRef]
- Lopes, J.I.; Correia, C.M.; Gonçalves, A.; Silva, E.; Martins, S.; Arrobas, M.; Rodrigues, M.A. Arbuscular mycorrhizal fungi inoculation reduced the growth of pre-rooted olive cuttings in a greenhouse. Soil Syst. 2021, 5, 30. [Google Scholar] [CrossRef]
- Rodrigues, M.A.; Piroli, L.B.; Forcelini, D.; Raimundo, S.; Domingues, L.C.; Cassol, L.C.; Correia, C.M.; Arrobas, M. Use of commercial mycorrhizal fungi in stress-free growing conditions of potted olive cuttings. Sci. Hortic. 2021, 275, 109712. [Google Scholar] [CrossRef]
- IPMA (Instituto Português do Mar e da Atmosfera). Normais Climatológicas; Instituto Português do Mar e da Atmosfera: Lisabona, Portugal, 2021; Available online: https://www.ipma.pt/pt/oclima/normais.clima/ (accessed on 2 December 2021).
- van Reeuwijk, L.P. Procedures for Soil Analysis; Technical Paper 9; ISRIC FAO: Wageningen, The Netherlands, 2002. [Google Scholar]
- Lakanen, E.; Erviö, R. A Comparison of Eight Extractants for the Determination of Plant Available Micronutrients in Soils. Acta Agral. Fenn. 1971, 123, 223–232. [Google Scholar]
- Temminghoff, E.E.J.M.; Houba, V.G. Plant Analysis Procedures; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Rodrigues, M.A.; Afonso, S.; Ferreira, I.Q.; Arrobas, M. Response of stevia to nitrogen fertilization and harvesting regime in Northeastern Portugal. Arch. Agron. Soil Sci. 2017, 63, 626–637. [Google Scholar] [CrossRef]
- Arrobas, M.; Afonso, S.; Rodrigues, M.A. Diagnosing the nutritional condition of chestnut groves by soil and leaf analyses. Sci. Hortic. 2018, 228, 113–121. [Google Scholar] [CrossRef]
- Arrobas, M.; Santos, D.; Ribeiro, A.; Pereira, E.; Rodrigues, M.A. Soil and foliar nitrogen and boron fertilization of almond trees grown under rainfed conditions. Eur. J. Agron. 2019, 106, 39–48. [Google Scholar] [CrossRef]
- Ferreira, I.Q.; Arrobas, M.; Moutinho-Pereira, J.M.; Correia, C.M.; Rodrigues, M.A. The effect of nitrogen applications on the growth of young olive trees and nitrogen use efficiency. Turk. J. Agric. 2020, 44, 278–289. [Google Scholar] [CrossRef]
- Vistoso, E.; Iraira, S.; Sandaña, P. Phosphorus use efficiency in permanent pastures in Andisols. J. Soil Sci. Plant Nutr. 2021, 21, 2587–2599. [Google Scholar] [CrossRef]
- Li, G.; Huang, G.; Li, H.; van Ittersum, M.K.; Leffelaar, P.A.; Zhang, F. Identifying potential strategies in the key sectors of China’s food chain to implement sustainable phosphorus management: A review. Nutr. Cycl. Agroecosys. 2016, 104, 341–359. [Google Scholar] [CrossRef]
- Tian, D.; Li, Z.; O’Connor, D.; Shen, Z. The need to prioritize sustainable phosphate-based fertilizers. Soil Use Manag. 2020, 36, 351–354. [Google Scholar] [CrossRef]
- Arrobas, M.; Afonso, S.; Ferreira, I.Q.; Moutinho-Pereira, J.M.; Correia, C.M.; Rodrigues, M.A. Liming and application of nitrogen, phosphorus, potassium and boron on a young plantation of chestnut. Turk. J. Agric. 2017, 41, 441–451. [Google Scholar] [CrossRef]
- Rodrigues, M.A.; Ferreira, I.Q.; Afonso, S.; Arrobas, M. Sufficiency ranges and nutrient removals in lemon balm based on crop response to applied nitrogen, phosphorus, potassium and boron. J. Plant Nutr. 2018, 41, 996–1008. [Google Scholar] [CrossRef]
- Ferreira, I.Q.; Rodrigues, M.A.; Moutinho-Pereira, J.M.; Correia, C.; Arrobas, M. Olive tree response to applied phosphorus in field and pot experiments. Sci. Hortic. 2018, 234, 236–244. [Google Scholar] [CrossRef] [Green Version]
- Arrobas, M.; Ferreira, I.Q.; Afonso, S.; Rodrigues, M.A. Sufficiency ranges and crop nutrient removals for peppermint (Mentha x piperita L.) established from field and pot fertilizer experiments. Commun Soil Sci. Plant Anal. 2018, 49, 1719–1730. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, I.Q.; Arrobas, M.; Moutinho-Pereira, J.M.; Correia, C.; Rodrigues, M.A. Olive response to potassium applications under different water regimes and cultivars. Nutr. Cycl. Agroecosys. 2018, 112, 387–401. [Google Scholar] [CrossRef] [Green Version]
- Cieschi, M.T.; Lucena, J.L. Leonardite iron humate and synthetic iron chelate mixtures in Glycine max nutrition. J. Sci. Food Agric. 2021, 101, 4207–4219. [Google Scholar] [CrossRef] [PubMed]
- Purwanto, B.H.; Wulandari, P.; Sulistyaningsih, E.; Utami, S.N.H.; Handayani, S. Improved corn yields when humic acid extracted from composted manure is applied to acid soils with phosphorus fertilizer. Appl. Environ. Soil Sci. 2021. [Google Scholar] [CrossRef]
- Kaya, C.; Şenbayram, M.; Akram, N.A.; Ashraf, M.; Alyemeni, M.N.; Ahmad, P. Sulfur-enriched leonardite and humic acid soil amendments enhance tolerance to drought and phosphorus deficiency stress in maize (Zea mays L.). Sci. Rep. 2020, 10, 6432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salin, A.; Karadogan, T.; Tonguc, M. Effects of leonardite applications on yield and some quality parameters of potatoes (Solanum tuberosum L.). Turk. J. Field Crop. 2013, 18, 20–26. [Google Scholar]
- Atiyeh, R.M.; Lee, S.; Edwards, C.A.; Arancon, N.Q.; Metzger, J.D. The influence of humic acids derived from earthworm-processed organic wastes on plant growth. Bioresour. Technol. 2002, 84, 7–14. [Google Scholar] [CrossRef]
- Muscolo, A.; Panuccio, M.R.; Sidari, M. The effect of phenols on respiratory enzymes in seed germination. Respiratory enzyme activities during germination of Pinus laricio seeds treated with phenols extracted from different forest soils. Plant Growth Regul. 2001, 35, 31–35. [Google Scholar] [CrossRef]
Humitec | Humic Gold | Nutrimais | |
---|---|---|---|
Moisture (%) | - | - | 10.5 |
Organic matter (%) | 55 | - | 52.5 |
Total organic carbon (%) | 23.2 | - | 29.2 |
Total humic extract (%) | 40 | 72 | - |
Humic acids (%) | 30 | 56 | - |
Fulvic acids (%) | 10 | 16 | - |
Total N (%) | 2 | - | 2.4 |
Sulfur (SO3) (%) | 5 | - | - |
Silicon (SiO2) (%) | 24 | - | - |
Potassium (K2O) (%) | - | 8 | 1.8 |
Phosphorus (P2O5) (%) | - | - | 1.5 |
Calcium (CaO) (%) | 15.2 | ||
Magnesium (MgO) | 0.7 |
N | P | K | Ca | Mg | B | Fe | Mn | Zn | Cu | |
---|---|---|---|---|---|---|---|---|---|---|
Treatments | g kg−1 | mg kg−1 | ||||||||
C | 20.9 b | 1.5 a | 8.2 a | 3.9 a | 0.9 a | 20.6 a | 186.8 a | 39.1 a | 12.4 a | 9.0 a |
Nu1 | 21.3 ab | 2.0 a | 9.2 a | 4.5 a | 1.0 a | 18.8 a | 158.2 a | 29.4 a | 17.0 a | 8.5 a |
Nu2 | 23.7 a | 2.0 a | 9.0 a | 4.8 a | 1.0 a | 21.8 a | 161.8 a | 41.0 a | 20.3 a | 8.3 a |
Ht1 | 20.2 bc | 1.9 a | 8.9 a | 4.7 a | 1.0 a | 21.7 a | 182.3 a | 34.4 a | 16.7 a | 8.1 a |
Ht2 | 17.5 c | 2.0 a | 9.2 a | 4.5 a | 1.1 a | 19.9 a | 180.8 a | 30.7 a | 18.6 a | 7.4 a |
Hg1 | 21.0 ab | 1.9 a | 9.2 a | 4.6 a | 1.1 a | 20.7 a | 149.1 a | 32.1 a | 15.2 a | 8.1 a |
Hg2 | 18.6 bc | 1.7 a | 8.2 a | 4.3 a | 1.3 a | 18.7 a | 151.0 a | 31.2 a | 15.0 a | 8.1 a |
Prob. < P | <0.0001 | 0.6929 | 0.4674 | 0.8649 | 0.7053 | 0.1134 | 0.0866 | 0.1066 | 0.1220 | 0.9852 |
Std error | 0.58 | 0.24 | 0.45 | 0.46 | 0.17 | 0.85 | 10.28 | 3.00 | 1.77 | 1.23 |
NPK addition | ||||||||||
C+ | 24.5 a | 1.6 a | 8.8 a | 4.5 a | 1.1 a | 18.9 a | 160.3 a | 30.1 a | 20.5 a | 7.4 a |
Nu1+ | 23.9 a | 2.3 a | 9.3 a | 4.9 a | 1.2 a | 22.7 a | 135.8 a | 44.0 a | 18.7 a | 8.0 a |
Nu2+ | 24.3 a | 2.3 a | 9.6 a | 4.8 a | 1.2 a | 19.3 a | 132.9 a | 37.5 a | 16.0 a | 7.9 a |
Ht1+ | 24.0 a | 1.9 a | 8.7 a | 5.0 a | 1.2 a | 21.1 a | 191.0 a | 42.6 a | 16.5 a | 8.6 a |
Ht2+ | 24.4 a | 1.9 a | 9.5 a | 4.6 a | 1.2 a | 20.6 a | 168.1 a | 51.0 a | 17.2 a | 7.8 a |
Hg1+ | 23.4 a | 1.6 a | 8.7 a | 4.5 a | 1.0 a | 21.8 a | 151.0 a | 40.9 a | 13.3 a | 7.9 a |
Hg2+ | 23.9 a | 1.8 a | 9.7 a | 4.6 a | 1.1 a | 22.3 a | 192.0 a | 47.5 a | 13.2 a | 11.2 a |
Prob. < P | 0.3391 | 0.2545 | 0.4550 | 0.6578 | 0.4789 | 0.0727 | 0.1397 | 0.1171 | 0.2014 | 0.1519 |
Std error | 0.35 | 0.24 | 0.44 | 0.24 | 0.07 | 0.93 | 17.06 | 4.69 | 2.06 | 0.93 |
N | P | K | Ca | Mg | B | Fe | Mn | Zn | Cu | |
---|---|---|---|---|---|---|---|---|---|---|
Treatments | g kg−1 | mg kg−1 | ||||||||
C | 9.3 ab | 1.3 a | 5.3 a | 2.5 a | 0.7 a | 16.9 a | 292.9 a | 14.5 a | 11.8 a | 9.6 a |
Nu1 | 9.3 ab | 1.3 a | 7.3 a | 2.7 a | 0.7 a | 14.3 a | 285.1 a | 15.4 a | 12.1 a | 8.9 a |
Nu2 | 9.8 a | 1.6 a | 7.4 a | 3.0 a | 0.8 a | 15.8 a | 222.6 a | 14.5 a | 15.8 a | 8.2 a |
Ht1 | 8.1 ab | 1.4 a | 6.9 a | 2.7 a | 0.7 a | 16.2 a | 262.1 a | 14.9 a | 14.7 a | 6.9 a |
Ht2 | 7.9 b | 1.5 a | 6.7 a | 2.6 a | 0.7 a | 16.6 a | 261.3 a | 13.8 a | 16.0 a | 8.2 a |
Hg1 | 9.2 ab | 1.4 a | 7.0 a | 2.8 a | 0.7 a | 15.9 a | 209.5 a | 12.6 a | 14.1 a | 8.4 a |
Hg2 | 8.6 ab | 1.3 a | 7.0 a | 2.4 a | 0.6 a | 17.1 a | 206.9 a | 9.5 a | 11.8 a | 8.2 a |
Prob. < P | 0.0225 | 0.4461 | 0.6957 | 0.7196 | 0.8532 | 0.2151 | 0.1490 | 0.2690 | 0.0967 | 0.3281 |
Std error | 0.38 | 0.12 | 0.86 | 0.24 | 0.10 | 0.75 | 25.73 | 1.67 | 1.23 | 0.73 |
NPK addition | ||||||||||
C+ | 9.8 a | 1.3 a | 6.6 a | 2.7 a | 0.7 a | 14.3 a | 194.9 a | 14.3 a | 11.1 a | 9.6 a |
Nu1+ | 10.6 a | 1.5 a | 7.4 a | 2.8 a | 0.8 a | 16.2 a | 217.3 a | 13.8 a | 10.2 a | 10.9 a |
Nu2+ | 10.2 a | 1.4 a | 6.9 a | 2.6 a | 0.7 a | 16.2 a | 187.5 a | 10.7 a | 9.8 a | 11.4 a |
Ht1+ | 10.0 a | 1.5 a | 7.3 a | 2.7 a | 0.7 a | 16.2 a | 279.3 a | 14.6 a | 11.6 a | 12.8 a |
Ht2+ | 10.0 a | 1.5 a | 6.9 a | 2.7 a | 0.7 a | 16.3 a | 219.0 a | 16.4 a | 12.2 a | 9.9 a |
Hg1+ | 10.2 a | 1.6 a | 6.9 a | 3.0 a | 0.7 a | 14.8 a | 200.1 a | 13.7 a | 8.7 a | 11.0 a |
Hg2+ | 9.7 a | 1.5 a | 7.2 a | 2.4 a | 0.6 a | 15.9 a | 208.2 a | 9.7 a | 10.6 a | 12.0 a |
Prob. < P | 0.7240 | 0.1978 | 0.8315 | 0.5016 | 0.8007 | 0.1754 | 0.1422 | 0.4308 | 0.3428 | 0.2483 |
Std error | 0.39 | 0.07 | 0.37 | 0.17 | 0.06 | 0.61 | 21.86 | 2.25 | 1.05 | 0.91 |
N | P | K | Ca | Mg | B | Fe | Mn | Zn | Cu | |
---|---|---|---|---|---|---|---|---|---|---|
Treatments | g kg−1 | mg kg−1 | ||||||||
C | 15.0 ab | 1.7 b | 11.3 a | 4.8 a | 3.1 b | 19.8 a | 5152.6 a | 132.5 a | 31.8 a | 90.9 a |
Nu1 | 16.2 ab | 1.9 ab | 11.3 a | 5.6 a | 3.6 ab | 19.1 a | 5902.8 a | 145.9 a | 35.5 a | 92.4 a |
Nu2 | 16.3 a | 2.5 a | 11.2 a | 5.7 a | 4.3 a | 20.5 a | 6920.9 a | 167.6 a | 43.1 a | 95.7 a |
Ht1 | 14.1 ab | 1.7 b | 11.4 a | 4.5 a | 3.2 ab | 18.0 a | 5906.6 a | 145.6 a | 36.6 a | 79.8 a |
Ht2 | 13.3 b | 1.7 b | 11.0 a | 4.8 a | 3.3 ab | 18.0 a | 6759.6 a | 156.6 a | 41.7 a | 97.4 a |
Hg1 | 15.6 ab | 1.8 ab | 12.6 a | 5.1 a | 3.3 ab | 17.7 a | 6463.0 a | 142.6 a | 34.4 a | 95.9 a |
Hg2 | 13.7 ab | 1.9 ab | 11.4 a | 4.7 a | 3.6 ab | 20.7 a | 6026.7 a | 166.7 a | 43.1 a | 101.1 a |
Prob. < P | 0.0471 | 0.0486 | 0.9233 | 0.0615 | 0.0462 | 0.1199 | 0.4635 | 0.4365 | 0.5449 | 0.5921 |
Std error | 0.71 | 0.18 | 0.93 | 0.28 | 0.24 | 0.87 | 604.96 | 12.75 | 4.92 | 7.66 |
NPK addition | ||||||||||
C+ | 15.4 a | 1.8 a | 13.3 a | 5.8 a | 3.7 a | 17.6 a | 5636.2 a | 147.8 a | 33.4 a | 69.8 a |
Nu1+ | 17.1 a | 2.0 a | 13.9 a | 5.5 a | 3.8 a | 20.7 a | 4973.9 a | 142.8 a | 35.5 a | 82.2 a |
Nu2+ | 18.4 a | 2.4 a | 12.6 a | 5.9 a | 3.9 a | 20.6 a | 5545.7 a | 160.3 a | 41.5 a | 91.6 a |
Ht1+ | 17.4 a | 2.0 a | 13.3 a | 5.2 a | 3.4 a | 19.0 a | 4042.7 a | 152.0 a | 33.6 a | 80.9 a |
Ht2+ | 17.7 a | 2.2 a | 14.1 a | 5.1 a | 3.3 a | 17.9 a | 5119.3 a | 149.3 a | 40.8 a | 95.6 a |
Hg1+ | 17.4 a | 1.9 a | 12.7 a | 5.7 a | 3.4 a | 20.1 a | 4531.8 a | 151.4 a | 33.2 a | 87.5 a |
Hg2+ | 16.9 a | 2.0 a | 12.0 a | 5.1 a | 3.4 a | 17.4 a | 4767.0 a | 108.6 a | 37.7 a | 99.1 a |
Prob. < P | 0.1968 | 0.3780 | 0.8096 | 0.0682 | 0.1098 | 0.0558 | 0.5068 | 0.1070 | 0.1771 | 0.2304 |
Std error | 0.72 | 0.14 | 1.09 | 0.19 | 0.15 | 0.86 | 583.17 | 11.32 | 2.64 | 7.99 |
Extractable | Exchangeable | Extractable | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Organic Carbon | pH | P (P2O5) | K (K2O) | Ca++ | Mg++ | CEC | B | Fe | Zn | Cu | Mn | |
Treatments | g kg−1 | H2O | mg kg−1 | cmol+ kg−1 | mg kg−1 | |||||||
C | 11.0 bc | 6.7 a | 78.9 c | 95.3 bc | 8.8 a | 5.8 a | 15.3 a | 0.9 a | 109.0 a | 3.8 a | 42.8 a | 168.8 a |
Nu1 | 10.8 bc | 6.8 a | 123.8 b | 122.0 b | 9.3 a | 6.2 a | 16.4 a | 0.8 a | 109.1 a | 4.0 a | 45.7 a | 175.8 a |
Nu2 | 12.3 a | 6.9 a | 167.6 a | 163.3 a | 8.5 a | 5.3 a | 14.9 a | 1.0 a | 110.3 a | 4.2 a | 29.4 a | 167.7 a |
Ht1 | 10.4 c | 6.9 a | 57.6 c | 90.3 c | 8.4 a | 5.1 a | 14.1 a | 0.8 a | 101.3 a | 3.2 a | 32.0 a | 167.4 a |
Ht2 | 10.4 c | 6.9 a | 58.9 c | 86.3 c | 7.8 a | 4.2 a | 12.6 a | 0.8 a | 99.6 a | 3.4 a | 33.7 a | 161.3 a |
Hg1 | 11.1 b | 6.9 a | 71.8 c | 103.0 bc | 8.3 a | 5.4 a | 14.5 a | 0.9 a | 110.2 a | 4.3 a | 44.6 a | 170.2 a |
Hg2 | 10.8 bc | 6.9 a | 59.5 c | 89.7 c | 9.0 a | 7.0 a | 16.6 a | 0.7 a | 98.7 a | 3.3 a | 29.9 a | 157.8 a |
Prob. < P | <0.0001 | 0.0774 | <0.0001 | <0.0001 | 0.7194 | 0.1133 | 0.2865 | 0.3813 | 0.0902 | 0.1177 | 0.0997 | 0.1473 |
Std error | 0.17 | 0.05 | 7.98 | 6.41 | 0.62 | 0.60 | 1.16 | 0.08 | 3.48 | 0.32 | 4.82 | 4.26 |
NPK addition | ||||||||||||
C+ | 10.7 c | 6.7 a | 132.3 b | 163.3 a | 9.4 a | 6.3 a | 16.5 a | 0.8 a | 109.2 a | 3.8 a | 30.9 a | 156.9 a |
Nu1+ | 11.5 bc | 6.8 a | 158.4 b | 218.7 a | 9.3 a | 6.6 a | 17.1 a | 1.0 a | 104.5 a | 3.9 a | 32.1 a | 151.2 a |
Nu2+ | 12.6 a | 6.7 a | 226.0 a | 264.0 a | 8.5 a | 6.0 a | 15.9 a | 0.9 a | 102.7 a | 4.1 a | 28.6 a | 158.8 a |
Ht1+ | 11.1 bc | 6.7 a | 139.8 b | 190.7 a | 7.9 a | 5.6 a | 14.5 a | 0.8 a | 100.1 a | 4.4 a | 41.0 a | 160.2 a |
Ht2+ | 11.6 b | 6.7 a | 181.6 ab | 214.3 a | 8.6 a | 5.6 a | 15.3 a | 0.9 a | 129.3 a | 4.6 a | 48.2 a | 186.0 a |
Hg1+ | 11.5 bc | 6.9 a | 136.8 b | 153.3 a | 9.0 a | 5.8 a | 15.8 a | 0.9 a | 110.5 a | 4.6 a | 42.4 a | 167.6 a |
Hg2+ | 11.3 bc | 6.8 a | 142.1 b | 190.0 a | 7.8 a | 5.5 a | 14.2 a | 0.8 a | 94.1 a | 3.9 a | 33.4 a | 158.1 a |
Prob. < P | <0.0001 | 0.0542 | 0.0004 | 0.0827 | 0.6668 | 0.8893 | 0.7648 | 0.0805 | 0.1807 | 0.1151 | 0.1341 | 0.4111 |
Std error | 0.17 | 0.04 | 11.24 | 24.07 | 0.74 | 0.69 | 1.40 | 0.06 | 8.47 | 0.24 | 5.11 | 10.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arrobas, M.; de Almeida, S.F.; Raimundo, S.; da Silva Domingues, L.; Rodrigues, M.Â. Leonardites Rich in Humic and Fulvic Acids Had Little Effect on Tissue Elemental Composition and Dry Matter Yield in Pot-Grown Olive Cuttings. Soil Syst. 2022, 6, 7. https://doi.org/10.3390/soilsystems6010007
Arrobas M, de Almeida SF, Raimundo S, da Silva Domingues L, Rodrigues MÂ. Leonardites Rich in Humic and Fulvic Acids Had Little Effect on Tissue Elemental Composition and Dry Matter Yield in Pot-Grown Olive Cuttings. Soil Systems. 2022; 6(1):7. https://doi.org/10.3390/soilsystems6010007
Chicago/Turabian StyleArrobas, Margarida, Surian Fernanda de Almeida, Soraia Raimundo, Lucas da Silva Domingues, and Manuel Ângelo Rodrigues. 2022. "Leonardites Rich in Humic and Fulvic Acids Had Little Effect on Tissue Elemental Composition and Dry Matter Yield in Pot-Grown Olive Cuttings" Soil Systems 6, no. 1: 7. https://doi.org/10.3390/soilsystems6010007
APA StyleArrobas, M., de Almeida, S. F., Raimundo, S., da Silva Domingues, L., & Rodrigues, M. Â. (2022). Leonardites Rich in Humic and Fulvic Acids Had Little Effect on Tissue Elemental Composition and Dry Matter Yield in Pot-Grown Olive Cuttings. Soil Systems, 6(1), 7. https://doi.org/10.3390/soilsystems6010007