Uncovering the Role of Biophysical Factors and Socioeconomic Forces Shaping Soil Sensitivity to Degradation: Insights from Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Variables
2.3. Biophysical and Socioeconomic Indicators of Soil Sensitivity to Degradation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rodrigo-Comino, J.; López-Vicente, M.; Kumar, V.; Rodríguez-Seijo, A.; Valkó, O.; Rojas, C.; Pourghasemi, H.R.; Salvati, L.; Bakr, N.; Vaudour, E.; et al. Soil Science Challenges in a New Era: A Transdisciplinary Overview of Relevant Topics. Air Soil Water Res. 2020, 13, 1178622120977491. [Google Scholar] [CrossRef]
- Karlen, D.L.; Mausbach, M.J.; Doran, J.W.; Cline, R.G.; Harris, R.F.; Schuman, G.E. Soil quality: A concept, definition, and framework for evaluation. Soil Sci. Soc. Am. 1997, 61, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerdà, A.; Montanarella, L.; Quinton, J.N.; Pachepsky, Y.; van der Putten, W.H.; et al. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil 2016, 2, 111–128. [Google Scholar] [CrossRef] [Green Version]
- Usher, M. Territory incognita. Prog. Hum. Geogr. 2020, 44, 1019–1046. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Gutiérrez, Á.; Schnabel, S.; Lavado-Contador, J.F. Gully erosion, land use and topographical thresholds during the last 60 years in a small rangeland catchment in SW Spain. Land Degrad. Dev. 2009, 20, 535–550. [Google Scholar] [CrossRef]
- Simpson, I.A.; Dugmore, A.J.; Thomson, A. Vésteinsson Crossing the thresholds: Human ecology and historical patterns of landscape degradation. Catena 2001, 42, 175–192. [Google Scholar] [CrossRef]
- Trnka, M.; Eitzinger, J.; Hlavinka, P.; Dubrovský, M.; Semerádová, D.; Štěpánek, P.; Thaler, S.; Žalud, Z.; Možný, M.; Formayer, H. Climate-driven changes of production regions in Central Europe. Plant Soil Environ. 2009, 10, 257–266. [Google Scholar] [CrossRef] [Green Version]
- Salvati, L.; Mancini, A.; Bajocco, S.; Gemmiti, R.; Carluxcci, M. Socioeconomic development and vulnerability to land degradation in Italy. Reg. Environ. Chang. 2011, 11, 767–777. [Google Scholar] [CrossRef]
- Zeraatpisheh, M.; Ayoubi, S.; Brungard, C.W.; Finke, P. Disaggregating and updating a legacy soil map using DSMART, fuzzy c-means and k-means clustering algorithms in Central Iran. Geoderma 2019, 340, 249–258. [Google Scholar] [CrossRef]
- Gill, J.C.; Malamud, B.D. Anthropogenic processes, natural hazards, and interactions in a multi-hazard framework. Earth Sci. Rev. 2017, 166, 246–269. [Google Scholar] [CrossRef] [Green Version]
- Gardoni, P.; LaFave, J.M. Multi-hazard approaches to civil infrastructure engineering: Mitigating risks and promoting resilence. In Multi-Hazard Approaches to Civil Infrastructure Engineering; Gardoni, P., LaFave, J.M., Eds.; Springer International Publishing: Cham, Swizerland, 2016; pp. 3–12. ISBN 978-3-319-29713-2. [Google Scholar]
- Orlecka-Sikora, B.; Lasocki, S.; Kocot, J.; Szepieniec, T.; Grasso, J.R.; Garcia-Aristizabal, A.; Schaming, M.; Urban, P.; Jones, G.; Stimpson, I.; et al. An open data infrastructure for the study of anthropogenic hazards linked to georesource exploitation. Sci. Data 2020, 7, 89. [Google Scholar] [CrossRef] [Green Version]
- Pourghasemi, H.R.; Kariminejad, N.; Amiri, M.; Edalat, M.; Zarafshar, M.; Blaschke, T.; Cerda, A. Assessing and mapping multi-hazard risk susceptibility using a machine learning technique. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bridges, E.M.; Oldeman, L.R. Global Assessment of Human-Induced Soil Degradation. Arid Soil Res. Rehabil. 1999, 13, 319–325. [Google Scholar] [CrossRef]
- Blaikie, P.; Brookfield, H. Land Degradation and Society; Routledge: Abingdon, UK, 2015; ISBN 978-1-317-41194-9. [Google Scholar]
- Prager, K.; Schuler, J.; Helming, K.; Zander, P.; Ratinger, T.; Hagedorn, K. Soil degradation, farming practices, institutions and policy responses: An analytical framework. Land Degrad. Dev. 2011, 22, 32–46. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J. Five decades of soil erosion research in “terroir”. The State-of-the-Art. Earth Sci. Rev. 2018, 179, 436–447. [Google Scholar] [CrossRef]
- Karlen, D.L.; Stott, D.E. A framework for evaluating physical and chemical indicators of soil quality. In Defining Soil Quality for a Sustainable Environment; Doran, J.W., Coleman, D.C., Bezdicek, D.F., Stewart, B.A., Eds.; Soil Science Society of America and American Society of Agronomy: Madison, WI, USA, 1994; pp. 53–72. ISBN 0-89118-930-0. [Google Scholar]
- Arnold, R.W. Soil Geography and Factor Functionality: Interacting Concepts. Factors Soil Form. A Fiftieth Anniv. Retrosp. 1994, 33, 99–109. [Google Scholar] [CrossRef]
- Brevik, E.C.; Slaughter, L.; Singh, B.R.; Steffan, J.J.; Collier, D.; Barnhart, P.; Pereira, P. Soil and Human Health: Current Status and Future Needs. Air Soil Water Res. 2020, 13, 1178622120934441. [Google Scholar] [CrossRef]
- Bryan, R.B. Subsystem studies: Geophysical factors, soils. Environmental Monograph—Institute for Environmental Studies. Univ. Tor. 1981, 2, 100–109. [Google Scholar]
- Gomiero, T. Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge. Sustainability 2016, 8, 281. [Google Scholar] [CrossRef] [Green Version]
- Berazneva, J.; Conrad, J.M.; Güereña, D.T.; Lehmann, J.; Woolf, D. Agricultural Productivity and Soil Carbon Dynamics: A Bioeconomic Model. Am. J. Agric. Econ. 2019, 101, 1021–1046. [Google Scholar] [CrossRef]
- Lal, R. Restoring Soil Quality to Mitigate Soil Degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.; Barham, B.L.; Coxhead, I. Recovering soil productivity attributes from experimental data: A statistical method and an application to soil productivity dynamics. Geoderma 2000, 96, 239–259. [Google Scholar] [CrossRef]
- Cerdà, A.; Lavee, H.; Romero-Díaz, A.; Hooke, J.; Montanarella, L. Preface: Soil erosion and degradation in mediterranean type ecosystems. Land Degrad. Dev. 2010, 21, 71–74. [Google Scholar] [CrossRef]
- Panagos, P.; Katsoyiannis, A. Soil erosion modelling: The new challenges as the result of policy developments in Europe. Environ. Res. 2019, 172, 470–474. [Google Scholar] [CrossRef]
- Guerra, C.A.; Rosa, I.M.D.; Valentini, E.; Wolf, F.; Filipponi, F.; Karger, D.N.; Nguyen Xuan, A.; Mathieu, J.; Lavelle, P.; Eisenhauer, N. Global vulnerability of soil ecosystems to erosion. Landsc. Ecol 2020, 35, 823–842. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, S.; Alsafadi, K.; Talukdar, S.; Kiwan, S.; Hennawi, S.; Alshihabi, O.; Sharaf, M.; Harsanyie, E. Estimation of soil erosion risk in southern part of Syria by using RUSLE integrating geo informatics approach. Remote Sens. Appl. Soc. Environ. 2020, 20, 100375. [Google Scholar] [CrossRef]
- Nowak, A.; Schneider, C. Environmental characteristics, agricultural land use, and vulnerability to degradation in Malopolska Province (Poland). Sci. Total Environ. 2017, 590–591, 620–632. [Google Scholar] [CrossRef] [Green Version]
- Edmondson, J.L.; Davies, Z.G.; McHugh, N.; Gaston, K.J.; Leake, J.R. Organic carbon hidden in urban ecosystems. Sci. Rep. 2012, 2, 963. [Google Scholar] [CrossRef] [PubMed]
- Ledo, A.; Smith, P.; Zerihun, A.; Whitaker, J.; Vicente-Vicente, J.L.; Qin, Z.; McNamara, N.P.; Zinn, Y.L.; Llorente, M.; Liebig, M.; et al. Changes in soil organic carbon under perennial crops. Glob. Chang. Biol. 2020, 26, 4158–4168. [Google Scholar] [CrossRef] [PubMed]
- Novara, A.; Gristina, L.; Kuzyakov, Y.; Schillaci, C.; Laudicina, V.A.; La Mantia, T. Turnover and availability of soil organic carbon under different Mediterranean land-uses as estimated by \textlesssup\textgreater13\textless/sup\textgreaterC natural abundance. Eur. J. Soil Sci. 2013, 64, 466–475. [Google Scholar] [CrossRef] [Green Version]
- Fini, A.; Frangi, P.; Mori, J.; Donzelli, D.; Ferrini, F. Nature based solutions to mitigate soil sealing in urban areas: Results from a 4-year study comparing permeable, porous, and impermeable pavements. Environ. Res. 2017, 156, 443–454. [Google Scholar] [CrossRef]
- Munafò, M.; Salvati, L.; Zitti, M. Estimating soil sealing rate at national level—Italy as a case study. Ecol. Indic. 2013, 26, 137–140. [Google Scholar] [CrossRef]
- Rodríguez-Seijo, A.; Arenas-Lago, D.; Lago-Vila, M.; Vega, F.A.; Andrade Couce, L. Limitations for revegetation in lead/zinc minesoils (NW Spain). J. Soils Sediments 2014, 14, 785–793. [Google Scholar] [CrossRef]
- Keshavarzi, A.; Kumar, V. Ecological risk assessment and source apportionment of heavy metal contamination in agricultural soils of Northeastern Iran. Int. J. Environ. Health Res. 2019, 29, 544–560. [Google Scholar] [CrossRef] [PubMed]
- Marques, M.; Ruiz-Colmenero, M.; Bienes, R.; García-Díaz, A.; Sastre, B. Effects of a Permanent Soil Cover on Water Dynamics and Wine Characteristics in a Steep Vineyard in the Central Spain. Air Soil Water Res. 2020, 13, 1178622120948069. [Google Scholar] [CrossRef]
- Pulido, M.; Schnabel, S.; Lavado Contador, J.F.; Lozano-Parra, J.; Gómez-Gutiérrez, Á.; Brevik, E.C.; Cerdà, A. Reduction of the frequency of herbaceous roots as an effect of soil compaction induced by heavy grazing in rangelands of SW Spain. Catena 2017, 158, 381–389. [Google Scholar] [CrossRef] [Green Version]
- Ababou, A.; Chouieb, M.; Khader, M.; Mederbal, K.; Saidi, D. Using vegetation units as salinity predictors in the Lower Cheliff Algeria. Turk. J. Bot. 2010, 34, 73–82. [Google Scholar]
- Acosta, J.A.; Faz, A.; Jansen, B.; Kalbitz, K.; Martínez-Martínez, S. Assessment of salinity status in intensively cultivated soils under semiarid climate, Murcia, SE Spain. J. Arid Environ. 2011, 75, 1056–1066. [Google Scholar] [CrossRef]
- Arheimer, B.; Lidén, R. Nitrogen and phosphorus concentrations from agricultural catchments—Influence of spatial and temporal variables. J. Hydrol. 2000, 227, 140–159. [Google Scholar] [CrossRef]
- Bechmann, M.; Våje, P.I. Monitoring erosion and nutrient losses from small basins representative of Norwegian agriculture. Agricultural effects on ground and surface waters: Research at the edge of science and society. In Proceedings of the an international symposium, Wageningen, The Netherlands, 21 October 2002; pp. 361–366. [Google Scholar]
- Baveye, P.C.; Berthelin, J.; Munch, J.-C. Too much or not enough: Reflection on two contrasting perspectives on soil biodiversity. Soil Biol. Biochem. 2016, 103, 320–326. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; Reich, P.B.; Trivedi, C.; Eldridge, D.J.; Abades, S.; Alfaro, F.D.; Bastida, F.; Berhe, A.A.; Cutler, N.A.; Gallardo, A.; et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 2020, 4, 210–220. [Google Scholar] [CrossRef]
- Thuiller, W. Patterns and uncertainties of species’ range shifts under climate change. Glob. Chang. Biol. 2004, 10, 2020–2027. [Google Scholar] [CrossRef]
- Sala, O.E.; Chapin, F.S., III; Armesto, J.J.; Berlow, E.; Bloomfield, J.; Dirzo, R.; Huber-Sanwald, E.; Huenneke, L.F.; Jackson, R.B.; Kinzig, A.; et al. Global Biodiversity Scenarios for the Year 2100. Science 2000, 287, 1770–1774. [Google Scholar] [CrossRef]
- Alder, S.; Prasuhn, V.; Liniger, H.; Herweg, K.; Hurni, H.; Candinas, A.; Gujer, H.U. A high-resolution map of direct and indirect connectivity of erosion risk areas to surface waters in Switzerland—A risk assessment tool for planning and policy-making. Land Use Policy 2015, 48, 236–249. [Google Scholar] [CrossRef]
- García-Ruiz, J.M. The effects of land uses on soil erosion in Spain: A review. CATENA 2010, 81, 1–11. [Google Scholar] [CrossRef]
- Chalov, S.; Golosov, V.; Collins, A.; Stone, M. Preface: Land use and climate change impacts on erosion and sediment transport. Proc. Int. Assoc. Hydrol. Sci. 2019, 381, 1. [Google Scholar] [CrossRef] [Green Version]
- Nearing, M.A.; Pruski, F.F.; O’Neal, M.R. Expected climate change impacts on soil erosion rates: A review. J. Soil Water Conserv. 2004, 59, 43–50. [Google Scholar]
- Baveye, P.C.; Baveye, J.; Gowdy, J. Soil “Ecosystem” Services and Natural Capital: Critical Appraisal of Research on Uncertain Ground. Front. Environ. Sci. 2016, 4. [Google Scholar] [CrossRef]
- Jónsson, J.Ö.G.; Davíðsdóttir, B. Classification and valuation of soil ecosystem services. Agric. Syst. 2016, 145, 24–38. [Google Scholar] [CrossRef]
- Schröter, D.; Cramer, W.; Leemans, R.; Prentice, I.C.; Araújo, M.B.; Arnell, N.W.; Bondeau, A.; Bugmann, H.; Carter, T.R.; Gracia, C.A.; et al. Ecosystem Service Supply and Vulnerability to Global Change in Europe. Science 2005, 310, 1333–1337. [Google Scholar] [CrossRef] [Green Version]
- Bakr, N.; Weindorf, D.C.; Bahnassy, M.H.; El-Badawi, M.M. Multi-temporal assessment of land sensitivity to desertification in a fragile agro-ecosystem: Environmental indicators. Ecol. Indic. 2012, 15, 271–280. [Google Scholar] [CrossRef]
- Bao, Y.; Cheng, L.; Bao, Y.; Yang, L.; Jiang, L.; Long, C.; Kong, Z.; Peng, P.; Xiao, J.; Lu, Q. Desertification: China provides a solution to a global challenge. Front. Agric. Sci. Eng. 2017, 4, 402–413. [Google Scholar] [CrossRef] [Green Version]
- Arnaez, J.; Lasanta, T.; Errea, M.P.; Ortigosa, L. Land abandonment, landscape evolution, and soil erosion in a Spanish Mediterranean mountain region: The case of Camero Viejo. Land Degrad. Dev. 2011, 22, 537–550. [Google Scholar] [CrossRef]
- Hill, J.; Stellmes, M.; Udelhoven, Th.; Röder, A.; Sommer, S. Mediterranean desertification and land degradation: Mapping related land use change syndromes based on satellite observations. Glob. Planet. Chang. 2008, 64, 146–157. [Google Scholar] [CrossRef]
- Bajocco, S.; de Angelis, A.; Salvati, L. A satellite-based green index as a proxy for vegetation cover quality in a Mediterranean region. Ecol. Indic. 2012, 23, 578–587. [Google Scholar] [CrossRef]
- Bajocco, S.; Salvati, L.; Ricotta, C. Land degradation versus fire: A spiral process? Prog. Phys. Geogr. Earth Environ. 2011, 35, 3–18. [Google Scholar] [CrossRef]
- Kairis, O.; Karavitis, C.; Salvati, L.; Kounalaki, A.; Kosmas, K. Exploring the Impact of Overgrazing on Soil Erosion and Land Degradation in a Dry Mediterranean Agro-Forest Landscape (Crete, Greece). Arid Land Res. Manag. 2015, 29, 360–374. [Google Scholar] [CrossRef]
- Kosmas, C.; Karamesouti, M.; Kounalaki, K.; Detsis, V.; Vassiliou, P.; Salvati, L. Land degradation and long-term changes in agro-pastoral systems: An empirical analysis of ecological resilience in Asteroussia—Crete (Greece). Catena 2016, 147, 196–204. [Google Scholar] [CrossRef]
- Salvati, L.; Bajocco, S.; Ceccarelli, T.; Zitti, M.; Perini, L. Towards a process-based evaluation of land vulnerability to soil degradation in Italy. Ecol. Indic. 2011, 11, 1216–1227. [Google Scholar] [CrossRef]
- Geoff, A.W.; Meri, J. (Eds.) Unravelling Desertification; Wageningen Academic Publishers: Wageningen, The Netherlands, 2005; ISBN 978-90-76998-42-8. [Google Scholar]
- Olson, J.M.; Misana, S.; Campbell, D.; Mbonile, M.; Mugisha, S. Framework to Identify the Root Causes of Land Use Change Leading to Land Degradation and Changing Biodiversity. Available online: https://www.semanticscholar.org/paper/Framework-to-Identify-the-Root-Causes-of-Land-Use-Olson-Misana/e195e5b0a2ad27fee15bfec7ca80aeabe082dc09 (accessed on 8 February 2021).
- Sommer, S.; Zucca, C.; Grainger, A.; Cherlet, M.; Zougmore, R.; Sokona, Y.; Hill, J.; Peruta, R.D.; Roehrig, J.; Wang, G. Application of indicator systems for monitoring and assessment of desertification from national to global scales. Land Degrad. Dev. 2011, 22, 184–197. [Google Scholar] [CrossRef]
- Scarascia, M.E.V.; Battista, F.D.; Salvati, L. Water resources in Italy: Availability and agricultural uses. Irrig. Drain. 2006, 55, 115–127. [Google Scholar] [CrossRef]
- Incerti, G.; Feoli, E.; Salvati, L.; Brunetti, A.; Giovacchini, A. Analysis of bioclimatic time series and their neural network-based classification to characterise drought risk patterns in South Italy. Int. J. Biometeorol. 2007, 51, 253–263. [Google Scholar] [CrossRef]
- Salvati, L.; Petitta, M.; Ceccarelli, T.; Perini, L.; Battista, F.D.; Scarascia, M.E.V. Italy’s renewable water resources as estimated on the basis of the monthly water balance. Irrig. Drain. 2008, 57, 507–515. [Google Scholar] [CrossRef]
- Chelli, F.M.; Ciommi, M.; Emili, A.; Gigliarano, C.; Taralli, S. Assessing the Equitable and Sustainable Well-Being of the Italian Provinces. Int. J. Unc. Fuzz. Knowl. Based Syst. 2016, 24, 39–62. [Google Scholar] [CrossRef]
- Ciommi, M.; Gigliarano, C.; Emili, A.; Taralli, S.; Chelli, F.M. A new class of composite indicators for measuring well-being at the local level: An application to the Equitable and Sustainable Well-being (BES) of the Italian Provinces. Ecol. Indic. 2017, 76, 281–296. [Google Scholar] [CrossRef]
- Ciommi, M.; Gentili, A.; Ermini, B.; Gigliarano, C.; Chelli, F.M.; Gallegati, M. Have Your Cake and Eat it Too: The Well-Being of the Italians (1861–2011). Soc. Indic. Res. 2017, 134, 473–509. [Google Scholar] [CrossRef]
- Montanarella, L. Trends in land degradation in Europe. In Climate and Land Degradation; Sivakumar, M.V.K., Ndiang’ui, N., Eds.; Environmental Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2007; pp. 83–104. ISBN 978-3-540-72438-4. [Google Scholar]
- Salvati, L.; Zitti, M.; Ceccarelli, T. Integrating economic and environmental indicators in the assessment of desertification risk: A case study. Appl. Ecol. Env. Res. 2007, 6, 129–138. [Google Scholar] [CrossRef]
- Lavado Contador, J.F. Adaptive management, monitoring, and the ecological sustainability of a thermal-polluted water ecosystem: A case in SW Spain. Environ. Monit. Assess. 2005, 104, 19–35. [Google Scholar] [CrossRef] [PubMed]
- Lavado Contador, J.F.; Schnabel, S.; Gómez Gutiérrez, Á; Pulido Fernández, M. Sensibilidad ambiental a la degradación en Extremadura (España). Boletín de la Asoc. de Geógrafos Españoles 2010, 53, 147–164. [Google Scholar]
- Santini, M.; Caccamo, G.; Laurenti, A.; Noce, S.; Valentini, R. A multi-component GIS framework for desertification risk assessment by an integrated index. Appl. Geogr. 2010, 30, 394–415. [Google Scholar] [CrossRef]
- Rubio, J.L.; Recatalá, L. The relevance and consequences of Mediterranean desertification including security aspects. In Proceedings of the Desertification in the Mediterranean Region. A Security Issue; Kepner, W.G., Rubio, J.L., Mouat, D.A., Pedrazzini, F., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 133–165. [Google Scholar]
- Salvati, L.; Zitti, M. Assessing the impact of ecological and economic factors on land degradation vulnerability through multiway analysis. Ecol. Indic. 2009, 9, 357–363. [Google Scholar] [CrossRef]
- Lavado Contador, J.F.; Schnabel, S.; Gómez Gutiérrez, Á. An evaluation of the MEDALUS ESA Index (environmental sensitivity to land degradation), from regional to plot scale. In Proceedings of the International Conference on Desertification, Bari, Italy, 16–18 September 2009. [Google Scholar]
- Costantini, E.A.C.; Urbano, F.; Aramini, G.; Barbetti, R.; Bellino, F.; Bocci, M.; Bonati, G.; Fais, A.; L’Abate, G.; Loj, G.; et al. Rationale and methods for compiling an atlas of desertification in Italy. Land Degrad. Dev. 2009, 20, 261–276. [Google Scholar] [CrossRef]
- Briassoulis, H. Governing desertification in Mediterranean Europe: The challenge of environmental policy integration in multi-level governance contexts. Land Degrad. Dev. 2011, 22, 313–325. [Google Scholar] [CrossRef]
- Rosti, L.; Yamaguchi, C.; Castagnetti, C. Educational Performance as Signalling Device: Evidence from Italy. Econ. Bull. 2005, 9, 1–7. [Google Scholar]
- Rosti, L.; Chelli, F. Self-employment among Italian female graduates. Educ. Train. 2009, 51, 526–540. [Google Scholar] [CrossRef] [Green Version]
- Gigliarano, C.; Chelli, F.M. Measuring inter-temporal intragenerational mobility: An application to the Italian labour market. Qual. Quant. 2016, 50, 89–102. [Google Scholar] [CrossRef]
- Akhtar-Schuster, M.; Stringer, L.C.; Erlewein, A.; Metternicht, G.; Minelli, S.; Safriel, U.; Sommer, S. Unpacking the concept of land degradation neutrality and addressing its operation through the Rio Conventions. J. Environ. Manag. 2017, 195, 4–15. [Google Scholar] [CrossRef]
- Tóth, G.; Hermann, T.; da Silva, M.R.; Montanarella, L. Monitoring soil for sustainable development and land degradation neutrality. Environ. Monit. Assess. 2018, 190. [Google Scholar] [CrossRef] [Green Version]
- Keesstra, S.; Mol, G.; De Leeuw, J.; Okx, J.; Molenaar, C.; de Cleen, M.; Visser, S. Soil-Related Sustainable Development Goals: Four Concepts to Make Land Degradation Neutrality and Restoration Work. Land 2018, 7, 133. [Google Scholar] [CrossRef] [Green Version]
- Briassoulis, H. Combating land degradation and desertification: The land-use planning quandary. Land 2019, 27. [Google Scholar] [CrossRef] [Green Version]
- Zambon, I.; Benedetti, A.; Ferrara, C.; Salvati, L. Soil matters? A multivariate analysis of socioeconomic constraints to urban expansion in Mediterranean Europe. Ecol. Econ. 2018, 146, 173–183. [Google Scholar] [CrossRef]
- Karamesouti, M.; Detsis, V.; Kounalaki, A.; Vasiliou, P.; Salvati, L.; Kosmas, C. Land-use and land degradation processes affecting soil resources: Evidence from a traditional Mediterranean cropland (Greece). Catena 2015, 132, 45–55. [Google Scholar] [CrossRef]
- Kairis, O.; Karavitis, C.; Kounalaki, A.; Salvati, L.; Kosmas, C. The effect of land management practices on soil erosion and land desertification in an olive grove. Soil Use Manag. 2013, 29, 597–606. [Google Scholar] [CrossRef]
- Zuindeau, B. Territorial Equity and Sustainable Development. Environ. Values 2007, 16, 253–268. [Google Scholar] [CrossRef]
Dimension | Main Process | # | Variables |
---|---|---|---|
Biophysical | Erosion | 9 | Soil depth, soil texture, soil water content (maximum potential retention), quality of parent material, erosion risk, plant cover, grazing index, wildfire frequency, and protected areas |
Salinization | 4 | Risk of primary salinization, groundwater irrigation, obsolete irrigation systems, and diversification of irrigation water sources | |
Climate change | 10 | Average annual precipitation, rainfall seasonality index, rainfall concentration index, rainfall variability index, standardized precipitation index, dry spell occurrence, hot wave occurrence, aridity index, average soil moisture, and aspect | |
Socio-economic | Contamination | 1 | Soil vulnerability to contamination |
Intensification/soil compaction | 5 | Crop intensity index, percentage of leased agricultural area, farmers’ elderly index, farm mechanization, and land abandonment | |
Sealing | 5 | Population density, population growth rate, percentage of the population living in dense settlements, per cent share of built-up area in the total landscape, and workers in tourism |
Geographical Gradient | Socioeconomic Indic. | Biophysical Indicator | Socioecon. vs. Biophys. | ||||||
---|---|---|---|---|---|---|---|---|---|
1990s | 2010s | ∆ (%) | 1990s | 2010s | ∆ (%) | 1990s | 2010s | ∆ (%) | |
Latitude range | |||||||||
North | 0.145 | 0.152 | 0.48 | 0.354 | 0.366 | 0.34 | 0.410 | 0.415 | 0.14 |
Centre | 0.178 | 0.188 | 1.19 | 0.373 | 0.392 | 0.51 | 0.450 | 0.480 | 0.65 |
South | 0.150 | 0.172 | 1.47 | 0.421 | 0.442 | 0.50 | 0.356 | 0.389 | 0.92 |
Elevation range | |||||||||
Lowland | 0.208 | 0.223 | 0.74 | 0.440 | 0.449 | 0.20 | 0.485 | 0.509 | 0.50 |
Upland | 0.168 | 0.187 | 1.12 | 0.403 | 0.420 | 0.43 | 0.426 | 0.453 | 0.64 |
Mountain | 0.103 | 0.111 | 0.82 | 0.311 | 0.332 | 0.69 | 0.325 | 0.329 | 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gambella, F.; Colantoni, A.; Egidi, G.; Morrow, N.; Prokopová, M.; Salvati, L.; Giménez-Morera, A.; Rodrigo-Comino, J. Uncovering the Role of Biophysical Factors and Socioeconomic Forces Shaping Soil Sensitivity to Degradation: Insights from Italy. Soil Syst. 2021, 5, 11. https://doi.org/10.3390/soilsystems5010011
Gambella F, Colantoni A, Egidi G, Morrow N, Prokopová M, Salvati L, Giménez-Morera A, Rodrigo-Comino J. Uncovering the Role of Biophysical Factors and Socioeconomic Forces Shaping Soil Sensitivity to Degradation: Insights from Italy. Soil Systems. 2021; 5(1):11. https://doi.org/10.3390/soilsystems5010011
Chicago/Turabian StyleGambella, Filippo, Andrea Colantoni, Gianluca Egidi, Nathan Morrow, Marcela Prokopová, Luca Salvati, Antonio Giménez-Morera, and Jesús Rodrigo-Comino. 2021. "Uncovering the Role of Biophysical Factors and Socioeconomic Forces Shaping Soil Sensitivity to Degradation: Insights from Italy" Soil Systems 5, no. 1: 11. https://doi.org/10.3390/soilsystems5010011
APA StyleGambella, F., Colantoni, A., Egidi, G., Morrow, N., Prokopová, M., Salvati, L., Giménez-Morera, A., & Rodrigo-Comino, J. (2021). Uncovering the Role of Biophysical Factors and Socioeconomic Forces Shaping Soil Sensitivity to Degradation: Insights from Italy. Soil Systems, 5(1), 11. https://doi.org/10.3390/soilsystems5010011