Soil and Tree Nutrient Status of High Elevation Mixed Red Spruce (Picea rubens Sarg.) and Broadleaf Deciduous Forests
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Indicators of Anthropogenic Deposition Across the Gradient
3.2. Deposition and Species Effects on Soil Elemental Pools
3.3. Species Nutrient Profiles and Deposition Effects on Foliar Elements
3.4. Correlations Between Foliar and Soil Elemental Profiles
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Turnbull, M.H.; Schmidt, S.; Erskine, P.D.; Richards, S.; Stewart, G.R. Root adaptation and nitrogen source acquisition in natural ecosystems. Tree Physiol. 1996, 16, 941–948. [Google Scholar] [CrossRef] [PubMed]
- Phillips, R.; Fahey, T. Tree species and mycorrhizal associations influence the magnitude of rhizosphere effects. Ecology 2006, 87, 1302–1313. [Google Scholar] [CrossRef]
- Plassard, C.; Dell, B. Phosphorus nutrition of mycorrhizal trees. Tree Physiol. 2010, 30, 1129–1139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Koide, R.T.; Eissenstat, D.M. Root morphology and mycorrhizal type strongly influence root production in nutrient hot spots of mixed forests. J. Ecol. 2018, 106, 148–156. [Google Scholar] [CrossRef] [Green Version]
- Midgley, M.G.; Phillips, R.P. Mycorrhizal associations of dominant trees influence nitrate leaching responses to N deposition. Biogeochemistry 2014, 117, 241–253. [Google Scholar] [CrossRef]
- Cumming, J.R.; Zawaski, C.; Desai, S.; Collart, F.R. Phosphorus disequilibrium in the tripartite plant- ectomycorrhiza-plant growth promoting rhizobacterial association. J. Soil Sci. Plant Nutr. 2015, 15, 464–485. [Google Scholar] [CrossRef]
- Burnham, M.B.; Cumming, J.R.; Adams, M.B.; Peterjohn, W.T. Soluble soil aluminum alters the relative uptake of mineral nitrogen forms by six mature temperate broadleaf tree species: Possible implications for watershed nitrate retention. Oecologia 2017, 185, 327–337. [Google Scholar] [CrossRef]
- Grimm, J.W.; Lynch, J.A. Enhanced wet deposition estimates using modeled precipitation inputs. Environ. Monit. Assess. 2004, 90, 243–268. [Google Scholar] [CrossRef]
- National Research Council. Acid Deposition: Long-Term Trends; The National Academies Press: Washington, DC, USA, 1986; ISBN 9784431564386. [Google Scholar]
- Audley, D.E.; Skelly, J.M.; Mccormick, L.H.; Jackson, W.A. Crown condition and nutrient status of red spruce (Picea rubens Sarg.) in West Virginia. Water Air. Soil Pollut. 1998, 102, 177–199. [Google Scholar] [CrossRef]
- Adams, M.B. Acidic deposition and sustainable forest management in the central Appalachians, USA. For. Ecol. Manag. 1999, 122, 17–28. [Google Scholar] [CrossRef]
- Gilliam, F.S.; Burns, D.A.; Driscoll, C.T.; Frey, S.D.; Lovett, G.M.; Watmough, S.A. Decreased atmospheric nitrogen deposition in eastern North America: Predicted responses of forest ecosystems. Environ. Pollut. 2019, 244, 560–574. [Google Scholar] [CrossRef]
- Vet, R.; Artz, R.S.; Carou, S.; Shaw, M.; Ro, C.; Aas, W.; Baker, A.; Bowersox, V.C.; Dentener, F.; Galy-lacaux, C.; et al. A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acid, acidity and pH, and phosphorus. Atmos. Environ. 2014, 93, 3–100. [Google Scholar] [CrossRef]
- Aber, J.D.; Nadelhoffer, K.J.; Steudler, P.; Melillo, J.M. Nitrogen saturation in northern forest ecosystems. Bioscience 1989, 39, 378–386. [Google Scholar] [CrossRef]
- Burns, D.A.; Lynch, J.A.; Cosby, B.J.; Fenn, M.E.; Baron, J.S. National Acid Precipitation Assessment Program Report to Congress 2011: An Integrated Assessment; US Environmental Protection Agency: Washington, DC, USA, 2011; p. 132.
- De Vries, W.; Dobbertin, M.H.; Solberg, S.; van Dobben, H.F.; Schaub, M. Impacts of acid deposition, ozone exposure and weather conditions on forest ecosystems in Europe: An overview. Plant Soil 2014, 380, 1–45. [Google Scholar] [CrossRef] [Green Version]
- McNeil, B.E.; Read, J.M.; Driscoll, C.T. Foliar nitrogen responses to elevated atmospheric nitrogen deposition in nine temperate forest canopy species. Environ. Sci. Technol. 2007, 41, 5191–5197. [Google Scholar] [CrossRef]
- Groffman, P.M.; Fisk, M.C. Calcium constrains plant control over forest ecosystem nitrogen cycling. Ecology 2011, 92, 2035–2042. [Google Scholar] [CrossRef] [Green Version]
- Lovett, G.M.; Goodale, C.L. A new conceptual model of nitrogen saturation based on experimental nitrogen addition to an oak forest. Ecosystems 2011, 14, 615–631. [Google Scholar] [CrossRef]
- Hynicka, J.D.; Pett-Ridge, J.C.; Perakis, S.S. Nitrogen enrichment regulates calcium sources in forests. Glob. Chang. Biol. 2016, 22, 4067–4079. [Google Scholar] [CrossRef]
- Strimbeck, G.R.; Schaberg, P.G.; DeHayes, D.H.; Shane, J.B.; Hawley, G.J. Midwinter dehardening of montane red spruce during a natural thaw. Can. J. For. Res. 1995, 25, 2040–2044. [Google Scholar] [CrossRef] [Green Version]
- DeHayes, D.H.; Schaberg, P.G.; Hawley, G.J.; Strimbeck, G.R. Acid rain impacts on calcium nutrition and forest health. Bioscience 1999, 49, 789–800. [Google Scholar] [CrossRef] [Green Version]
- Borer, C.H.; Schaberg, P.G.; DeHayes, D.H. Acidic mist reduces foliar membrane-associated calcium and impairs stomatal responsiveness in red spruce. Tree Physiol. 2005, 25, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Kosiba, A.M.; Schaberg, P.G.; Hawley, G.J.; Hansen, C.F. Quantifying the legacy of foliar winter injury on woody aboveground carbon sequestration of red spruce trees. For. Ecol. Manag. 2013, 302, 363–371. [Google Scholar] [CrossRef]
- Shortle, W.C.; Smith, K.T.; Minocha, R.; Lawrence, G.B.; David, M.B. Acidic deposition, cation mobilization, and biochemical indicators of stress in healthy red spruce. J. Environ. Qual. 1997, 26, 871–876. [Google Scholar] [CrossRef]
- Thomas, R.B.; Spal, S.E.; Smith, K.R.; Nippert, J.B. Evidence of recovery of Juniperus virginiana trees from sulfur pollution after the Clean Air Act. Proc. Natl Acad. Sci. USA 2013, 110, 15319–15324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engel, B.J.; Schaberg, P.G.; Hawley, G.J.; Rayback, S.A.; Pontius, J.; Kosiba, A.M.; Miller, E.K. Assessing relationships between red spruce radial growth and pollution critical load exceedance values. For. Ecol. Manag. 2016, 359, 83–91. [Google Scholar] [CrossRef]
- Robarge, W.P.; Pye, J.M.; Bruck, R.I. Foliar elemental composition of spruce-fir in the southern blue ridge province. Plant Soil 1989, 114, 19–34. [Google Scholar] [CrossRef]
- Johnson, D.W.; van Miegroet, H.; Lindberg, S.E.; Todd, D.E.; Harrison, R.B. Nutrient cycling in red spruce forests of the Great Smoky Mountains. Can. J. For. Res. 1991, 21, 769–787. [Google Scholar] [CrossRef]
- Rosenberg, M.B.; Butcher, D.J. Investigation of acid deposition effects on southern Appalachian red spruce (Picea rubens) by determination of calcium, magnesium, and aluminum in foliage and surrounding soil using ICP-OES. Instrum. Sci. Technol. 2010, 38, 341–358. [Google Scholar] [CrossRef]
- Smith, K.R.; Mathias, J.M.; McNeil, B.E.; Peterjohn, W.T.; Thomas, R.B. Site-level importance of broadleaf deciduous trees outweighs the legacy of high nitrogen (N) deposition on ecosystem N status of Central Appalachian red spruce forests. Plant Soil 2016, 508, 343–356. [Google Scholar] [CrossRef]
- National Atmospheric Deposition Program NTN Data Access; NADP Program Office, Illinois State Water Survey, University of Illinois: Champaign, IL, USA, 2016; Available online: http://nadp.isws.illinois.edu/data/ntn (accessed on 1 January 2016).
- McNeil, B.E.; Read, J.M.; Sullivan, T.J.; McDonnell, T.C.; Fernandez, I.J.; Driscoll, C.T. The spatial pattern of nitrogen cycling in the Adirondack Park, New York. Ecol. Appl. 2008, 18, 438–452. [Google Scholar] [CrossRef]
- McNulty, A.S.G.; Aber, J.D.; Boone, R.D. Spatial changes in forest floor and foliar chemistry of spruce-fir forests across New England. Biogeochemistry 1991, 14, 13–29. [Google Scholar] [CrossRef]
- Boggs, J.L.; McNulty, S.G.; Pardo, L.H. Changes in conifer and deciduous forest foliar and forest floor chemistry and basal area tree growth across a nitrogen (N) deposition gradient in the northeastern US. Environ. Pollut. 2007, 149, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Chapin, F.S., III; Kedrowski, R.A. Seasonal changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees. Ecology 1983, 64, 376–391. [Google Scholar] [CrossRef]
- Prescott, C.E. The influence of the forest canopy on nutrient cycling. Tree Physiol. 2002, 22, 1193–1200. [Google Scholar] [CrossRef] [Green Version]
- Millard, P.; Grelet, G.A. Nitrogen storage and remobilization by trees: Ecophysiological relevance in a changing world. Tree Physiol. 2010, 30, 1083–1095. [Google Scholar] [CrossRef] [Green Version]
- National Atmospheric Deposition Program Total Deposition Maps. Version 2014.02. Available online: http://nadp.sws.uiuc.edu/ committees/tdep/tdepmaps (accessed on 19 March 2015).
- Bryant, D.M.; Ducey, M.J.; Innes, J.C.; Lee, T.D.; Eckert, R.T.; Zarin, D.J. Forest community analysis and the point-centered quarter method. Plant Ecol. 2004, 175, 193–203. [Google Scholar] [CrossRef]
- Eyre, F.H. Forest Cover Types of the United States and Canada, 1st ed.; Society of American Foresters: Washington, DC, USA, 1980. [Google Scholar]
- Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Soil Survey Geographic (SSURGO) Database for Pocahontas, Randolph and Tucker Cos., WV and for Giles Co., VA. Available online: http://soildatamart.nrcs.usda.gov (accessed on 6 December 2012).
- Zhang, H.; Wang, C.; Wang, X. Spatial variations in non-structural carbohydrates in stems of twelve temperate tree species. Trees Struct. Funct. 2014, 28, 77–89. [Google Scholar] [CrossRef]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Lawrence, G.B.; Shortle, W.C.; David, M.B.; Smith, K.T.; Warby, R.a.F.; Lapenis, A.G. Early indications of soil recovery from acidic deposition in U.S. red spruce forests. Soil Sci. Soc. Am. J. 2012, 76, 1407–1417. [Google Scholar] [CrossRef] [Green Version]
- Schaberg, P.G.; Tilley, J.W.; Hawley, G.J.; DeHayes, D.H.; Bailey, S.W. Associations of calcium and aluminum with the growth and health of sugar maple trees in Vermont. For. Ecol. Manag. 2006, 223, 159–169. [Google Scholar] [CrossRef]
- Schaberg, P.G.; Snyder, M.C.; Shane, J.B.; Donnelly, J.R. Seasonal patterns of carbohydrate reserves in red spruce seedlings. Tree Physiol. 2000, 20, 549–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaberg, P.G.; Dehayes, D.H.; Hawley, G.J.; Murakami, P.F.; Strimbeck, G.R.; Mcnulty, S.G. Effects of chronic N fertilization on foliar membranes, cold tolerance, and carbon storage in montane red spruce. Can. J. For. Res. 2002, 1359, 1351–1359. [Google Scholar] [CrossRef]
- Cook, L.L.; McGonigle, T.P.; Inouye, R.S. Titanium as an indicator of residual soil on arid-land plants. J. Environ. Qual. 2009, 38, 188–199. [Google Scholar] [CrossRef] [PubMed]
- Carrilho, E.N.V.M.; Gonzalez, M.H.; Noguiera, A.R.A.; Cruz, G.M.; Brega, J.A.N. Microwave-assisted acid decomposition of animal- and plant-derived samples for element analysis. J. Agric. Food Chem. 2002, 50, 4164–4168. [Google Scholar] [CrossRef] [PubMed]
- SAS Institute, Inc. JMP Pro 13; SAS Institute, Inc.: Cary, NC, USA, 2016. [Google Scholar]
- Bruin, J. Newtest: Command to Compute New Test. UCLA: Statistical Consulting Group. 2006. Available online: https://stats.idre.ucla.edu/stata/ado/analysis/ (accessed on 23 October 2019).
- Driscoll, C.T.; Lawrence, G.B.; Bulger, A.J.; Butler, T.J.; Cronan, C.S.; Eagar, C.; Lambert, K.F.; Likens, G.E.; Stoddard, J.L.; Weathers, K.C. Acidic deposition in the northeastern United States: Sources and inputs, ecosystem effects, and management strategies. Bioscience 2001, 51, 180–198. [Google Scholar] [CrossRef] [Green Version]
- Kochian, L.V.; Piñeros, M.A.; Hoekenga, O.A. The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil 2005, 274, 175–195. [Google Scholar] [CrossRef]
- Sullivan, T.J.; Driscoll, C.T.; Beier, C.M.; Burtraw, D.; Fernandez, I.J.; Galloway, J.N.; Gay, D.A.; Goodale, C.L.; Likens, G.E.; Lovett, G.M.; et al. Air pollution success stories in the United States: The value of long-term observations. Environ. Sci. Policy 2018, 84, 69–73. [Google Scholar] [CrossRef]
- Johnson, A.H.; Richter, S.L. Organic-horizon lead, copper, and zinc contents of Mid-Atlantic forest soils, 1978–2004. Soil Sci. Soc. Am. J. 2010, 74, 1001–1009. [Google Scholar] [CrossRef]
- Raveh-Rubin, S.; Edery, Y.; Dror, I.; Berkowitz, B. Nickel migration and retention dynamics in natural soil columns. Water Resour. Res. 2015, 51, 7702–7722. [Google Scholar] [CrossRef] [Green Version]
- Johnson, D.W.; Cole, D.W. Anion mobility in soils: Relevance to nutrient transport in forest ecosystems. Environ. Int. 1980, 3, 79–90. [Google Scholar] [CrossRef]
- Sainju, U.M.; Good, R.E. Vertical root distribution in relation to soil properties in New Jersey Pinelands forests. Plant Soil 1993, 150, 87–97. [Google Scholar] [CrossRef]
- Göransson, P.; Andersson, S.; Falkengren-Grerup, U. Genetic adaptation to soil acidification: Experimental evidence from four grass species. Evol. Ecol. 2009, 23, 963–978. [Google Scholar] [CrossRef]
- Yanai, R.D.; Fisk, M.C.; Fahey, T.J.; Cleavitt, N.L.; Park, B.B. Identifying roots of northern hardwood species: Patterns with diameter and depth. Can. J. For. Res. 2008, 38, 2862–2869. [Google Scholar] [CrossRef] [Green Version]
- Dijkstra, F.A.; Smits, M.M. Tree species effects on calcium cycling: The role of calcium uptake in deep soils. Ecosystems 2002, 5, 385–398. [Google Scholar] [CrossRef]
- Bryant, K.N.; Fowlkes, A.J.; Mustafa, S.F.; Neil, B.J.O.; Osterman, A.C.; Smith, T.M.; Shepard, M.R.; Woosley, R.S.; Butcher, D.J. Determination of aluminum, calcium, and magnesium in Fraser fir, balsam fir, and red spruce foliage and soil from the southern and middle Appalachians. Microchem. J. 1997, 392, 382–392. [Google Scholar] [CrossRef]
- Bosch, V.; Pfannkuch, E.; Rehfuess, K.; Runkel, K.; Schramel, P.; Senser, M. Effects of magnesium and calcium fertilization, ozone and acid mist on the mineral nutrition, frost resistance and biomass production of young spruce trees (Picea abies L. Karst). Forstw. Cbl 1986, 105, 218–229. [Google Scholar] [CrossRef]
- Dmuchowski, W.; Gozdowski, D.; Brągoszewska, P.; Baczewska, A.H.; Suwara, I. Phytoremediation of zinc contaminated soils using silver birch (Betula pendula Roth). Ecol. Eng. 2014, 71, 32–35. [Google Scholar] [CrossRef]
- Houle, D.; LaFlèche, M.R.; Duchesne, L. Sequential extractions of elements in tree rings of balsam fir and white spruce. Commun. Soil Sci. Plant Anal. 2008, 39, 1138–1146. [Google Scholar] [CrossRef]
- Lemarchand, E.; Chabaux, F.; Vigier, N.; Millot, R.; Pierret, M. Lithium isotope systematics in a forested granitic catchment. Geochim. Cosmochim. Acta 2010, 74, 4612–4628. [Google Scholar] [CrossRef]
- Pierret, A.; Maeght, J.; Cle, C.; Montoroi, J.; Hartmann, C.; Gonkhamdee, S. Understanding deep roots and their functions in ecosystems: An advocacy for more unconventional research. Ann. Bot. 2016, 118, 621–635. [Google Scholar] [CrossRef] [Green Version]
- Peterjohn, W.T.; Harlacher, M.A.; Christ, M.J.; Adams, M.B. Testing associations between tree species and nitrate availability: Do consistent patterns exist across spatial scales? For. Ecol. Manag. 2015, 358, 335–343. [Google Scholar] [CrossRef]
- Gilliam, F.S.; Billmyer, J.H.; Walter, C.A.; Peterjohn, W.T. Effects of excess nitrogen on biogeochemistry of a temperate hardwood forest: Evidence of nutrient redistribution by a forest understory species. Atmos. Environ. 2016, 146, 261–270. [Google Scholar] [CrossRef] [Green Version]
- Blum, J.D.; Dasch, A.A.; Hamburg, S.P.; Yanai, R.D.; Arthur, M.A. Use of foliar Ca/Sr discrimination and 87Sr/86Sr ratios to determine soil Ca sources to sugar maple foliage in a northern hardwood forest. Biogeochemistry 2008, 87, 287–296. [Google Scholar] [CrossRef]
- Elias, R.W.; Hirao, Y.; Patterson, C.C. The circumvention of the natural biopurification of calcium along nutrient pathways by atmospheric inputs of industrial lead. Geochim. Cosmochim. Acta 1982, 46, 2561–2580. [Google Scholar] [CrossRef]
- Blum, J.D.; Hamburg, S.P.; Yanai, R.D.; Arthur, M.A. Determination of foliar Ca/Sr discrimination factors for six tree species and implications for Ca sources in northern hardwood forests. Plant Soil 2012, 356, 303–314. [Google Scholar] [CrossRef]
Study Site | Soil Series | Map Unit | Drainage Class | Description | Soil pH |
---|---|---|---|---|---|
FLR | Gauley | Frigid Typic Haplorthods | Moderately deep, well drained | Loamy-skeletal, siliceous, superactive | O: 3.61 M: 3.63 |
MCG | Ernest | Mesic Aquic Fragiudults | Very deep, moderately well to poorly drained | Fine-loamy, mixed, superactive | O: 3.42 M: 3.36 |
CGL | Snowdog | Frigid Typic Fragiudepts | Very deep, moderately well drained | Fine-loamy, siliceous, active | O: 3.49 M: 3.47 |
LSB | Lily (LB Complex) Bailegap (LB Complex) | Mesic Type Hapludults Mesic Type Hapludults | Moderately deep, well drained Deep, well drained | Fine-loamy, siliceous, semi-active | O: 3.18 M: 3.32 |
Site | % ACRU | % BEAL | % PIRU | % Total Broadleaf Deciduous | % Total Needleleaf Evergreen |
---|---|---|---|---|---|
FLR | 15.1 | 5.0 | 75.0 | 26.2 | 73.8 |
MCG | 6.4 | 36.8 | 21.4 | 49.8 | 50.2 |
CGL | 18.2 | 14.0 | 50.8 | 43.1 | 56.9 |
LSB | 13.0 | 11.0 | 23.1 | 32.6 | 67.4 |
Organic Fraction | Mineral Fraction | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Model Parameter | N | S | Zn | Pb | Al | N | S | Zn | Pb | Al |
N deposition | 55.0 | 127.8 | 132.6 | 141.8 | 149.3 | 92.3 | 79.2 * | 129.4 | 142.9 * | 157.1 |
Precipitation | 64.5 | 152.9 | 146.1 | 157.3 | 167.9 | 127.9 | 95.4 | 140.7 | 152.3 | 156.9 |
Elevation | 58.2 | 135.1 | 143.7 | 138.9 | 159.1 | 120.5 | 94.3 | 128.6 | 149.8 | 163.9 |
N deposition, precipitation | 57.3 | 123.9 | 127.4 | 139.5 | 143.2 * | 93.0 | 88.2 | 131.7 | 144.1 | 156.6 |
N deposition, elevation | 51.8 | 120.3 * | 134.9 | 133.4 * | 148.8 | 88.9 * | 88.7 | 121.9 | 144.6 | 158.8 |
Precipitation, elevation | 49.9 * | 132.0 | 145.7 | 138.4 | 160.2 | 106.3 | 90.8 | 118.2 * | 149.7 | 152.8 * |
N deposition, precipitation, elevation | 51.6 | 121.5 | 127.3 * | 135.8 | 145.6 | 91.2 | 82.9 | 120.2 | 146.4 | 155.2 |
R2 (* best model) | 0.30 | 0.46 | 0.32 | 0.36 | 0.38 | 0.57 | 0.29 | 0.41 | 0.17 | 0.25 |
Fraction | Nutrient | Deposition Slope % (% kg N ha−1)−1 | PSpecies |
---|---|---|---|
Organic Fraction | C | 2.30 ** | 0.353 |
N | 2.50 ** | 0.998 | |
C:N | 0.19 | 0.081 | |
Ca | −4.89 * | 0.797 | |
Mg | −4.47 | 0.485 | |
K | −5.55 * | 0.744 | |
P | −5.65 * | 0.684 | |
S | −6.86 * | 0.628 | |
Fe | −3.87 | 0.538 | |
Mn | −5.84 | 0.572 | |
Cu | −4.22 * | 0.945 | |
Zn | −5.21 ** | 0.533 | |
Ni | −3.76 | 0.553 | |
Al | −5.73 * | 0.473 | |
Sr | −8.14 ** | 0.628 | |
Ca:Al | 1.81 | 0.346 | |
Ca:Sr | 2.97 * | 0.671 | |
Mineral Fraction | C | 5.89 *** | 0.196 |
N | 6.97 *** | 0.212 | |
C:N | −1.06 * | 0.437 | |
Ca | 4.56 ** | 0.715 | |
Mg | 5.86 *** | 0.077 | |
K | 4.99 *** | 0.758 | |
P | 4.86 *** | 0.418 | |
S | 3.59 ** | 0.750 | |
Fe | 5.24 ** | 0.217 | |
Mn | 4.34 * | 0.559 | |
Cu | 5.59 *** | 0.119 | |
Zn | 5.36 ** | 0.402 | |
Ni | 5.62 ** | 0.219 | |
Al | 4.66 ** | 0.155 | |
Sr | 2.21 ** | 0.192 | |
Ca:Al | −0.24 | 0.464 | |
Ca:Sr | 2.47 ** | 0.791 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crim, P.M.; McDonald, L.M.; Cumming, J.R. Soil and Tree Nutrient Status of High Elevation Mixed Red Spruce (Picea rubens Sarg.) and Broadleaf Deciduous Forests. Soil Syst. 2019, 3, 80. https://doi.org/10.3390/soilsystems3040080
Crim PM, McDonald LM, Cumming JR. Soil and Tree Nutrient Status of High Elevation Mixed Red Spruce (Picea rubens Sarg.) and Broadleaf Deciduous Forests. Soil Systems. 2019; 3(4):80. https://doi.org/10.3390/soilsystems3040080
Chicago/Turabian StyleCrim, Philip M., Louis M. McDonald, and Jonathan R. Cumming. 2019. "Soil and Tree Nutrient Status of High Elevation Mixed Red Spruce (Picea rubens Sarg.) and Broadleaf Deciduous Forests" Soil Systems 3, no. 4: 80. https://doi.org/10.3390/soilsystems3040080
APA StyleCrim, P. M., McDonald, L. M., & Cumming, J. R. (2019). Soil and Tree Nutrient Status of High Elevation Mixed Red Spruce (Picea rubens Sarg.) and Broadleaf Deciduous Forests. Soil Systems, 3(4), 80. https://doi.org/10.3390/soilsystems3040080