Evaluation of the Influence of Individual Clay Minerals on Biochar Carbon Mineralization in Soils
Abstract
1. Introduction
2. Materials and Methods
2.1. Soil, Biochar, and Minerals
2.2. Laboratory Incubation
2.3. Mineralization of Biochar-C and Native SOC
2.4. Mean Residence Time of Biochar-C and Native SOC
2.5. Statistical Analyses
3. Results
3.1. Total Carbon Mineralization
3.2. Mineralization of Native SOC and Biochar-C
3.3. Mean Residence Time (MRT) of Biochar-C and Native SOC
4. Discussion
4.1. Effects of Clay Minerals on Native SOC and Biochar-C Mineralization
4.2. Effects of Biochar on Native SOC Mineralization
4.3. Interactive Effects of Biochar and Clay Minerals on Native SOC
4.4. Mean Residence Time of Native SOC and Biochar-C
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—A review. Biol. Fertil. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Kookana, R.S.; Sarmah, A.K.; Van Zwieten, L.; Krull, E.; Singh, B. Biochar Application to Soil: Agronomic and Environmental Benefits and Unintended Consequences. In Advances in Agronomy; Sparks, D.L., Ed.; Elsevier Academic Press Inc.: San Diego, CA, USA, 2011; Volume 112, pp. 103–143. [Google Scholar]
- Lehmann, J. A handful of carbon. Nature 2007, 447, 143–144. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.Y.; Singh, B.; Singh, B.P. Effect of temperature on biochar priming effects and its stability in soils. Soil Biol. Biochem. 2015, 80, 136–145. [Google Scholar] [CrossRef]
- Lehmann, J.; Kuzyakov, Y.; Pan, G.X.; Ok, Y.S. Biochars and the plant-soil interface. Plant Soil 2015, 395, 1–5. [Google Scholar] [CrossRef]
- Jones, D.L.; Murphy, D.V.; Khalid, M.; Ahmad, W.; Edwards-Jones, G.; DeLuca, T.H. Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biol. Biochem. 2011, 43, 1723–1731. [Google Scholar] [CrossRef]
- Keith, A.; Singh, B.; Singh, B.P. Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil. Environ. Sci. Technol. 2011, 45, 9611–9618. [Google Scholar] [CrossRef]
- Luo, Y.; Durenkamp, M.; De Nobili, M.; Lin, Q.; Brookes, P.C. Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Biol. Biochem. 2011, 43, 2304–2314. [Google Scholar] [CrossRef]
- Zimmerman, A.R.; Gao, B.; Ahn, M.Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol. Biochem. 2011, 43, 1169–1179. [Google Scholar] [CrossRef]
- Santos, F.; Torn, M.S.; Bird, J.A. Biological degradation of pyrogenic organic matter in temperate forest soils. Soil Biol. Biochem. 2012, 51, 115–124. [Google Scholar] [CrossRef]
- Krull, E.S.; Baldock, J.A.; Skjemstad, J.O. Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover. Funct. Plant Biol. 2003, 30, 207–222. [Google Scholar] [CrossRef]
- Köegel-Knabner, I.; Guggenberger, G.; Kleber, M.; Kandeler, E.; Kalbitz, K.; Scheu, S.; Eusterhues, K.; Leinweber, P. Organo-mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistry. J. Plant Nutr. Soil Sci. 2008, 171, 61–82. [Google Scholar] [CrossRef]
- Weng, Y.-T.; Wang, C.-C.; Chiang, C.-C.; Heng, T.; Song, Y.-F.; Huang, S.-T.; Liang, B. In situ evidence of mineral physical protection and carbon stabilization revealed by nanoscale 3-D tomography. Biogeosciences 2018, 15, 3133–3142. [Google Scholar] [CrossRef]
- Brodowski, S.; John, B.; Flessa, H.; Amelung, W. Aggregate-occluded black carbon in soil. Eur. J. Soil Sci. 2006, 57, 539–546. [Google Scholar] [CrossRef]
- Vasilyeva, N.A.; Abiven, S.; Milanovskiy, E.Y.; Hilf, M.; Rizhkov, O.V.; Schmidt, M.W.I. Pyrogenic carbon quantity and quality unchanged after 55 years of organic matter depletion in a Chernozem. Soil Biol. Biochem. 2011, 43, 1985–1988. [Google Scholar] [CrossRef]
- Liang, B.; Lehmann, J.; Solomon, D.; Sohi, S.; Thies, J.E.; Skjemstad, J.O.; Luizao, F.J.; Engelhard, M.H.; Neves, E.G.; Wirick, S. Stability of biomassderived black carbon in soils. Geochim. Cosmochim. Acta 2008, 72, 6069–6078. [Google Scholar] [CrossRef]
- Fernández-Ugalde, O.; Gartzia-Bengoetxea, N.; Arostegi, J.; Moragues, L.; Arias-González, A. Storage and stability of biochar-derived carbon and total organic carbon in relation to minerals in an acid forest soil of the Spanish Atlantic area. Sci. Total Environ. 2017, 587, 204–213. [Google Scholar] [CrossRef]
- Guan, S.; Liu, S.; Liu, R.; Zhang, J.; Ren, J.; Cai, H.; Lin, X. Soil organic carbon associated with aggregate-size and density fractions in a Mollisol amended with charred and uncharred maize straw. J. Integr. Agric. 2019, 18, 1496–1507. [Google Scholar] [CrossRef]
- Bruun, S.; Clauson-Kaas, S.; Bobuľská, L.; Thomsen, I.K. Carbon dioxide emissions from biochar in soil: Role of clay, microorganisms and carbonates. Eur. J. Soil Sci. 2014, 65, 52–59. [Google Scholar] [CrossRef]
- Fang, Y.; Singh, B.; Singh, B.P.; Krull, E. Biochar carbon stability in four contrasting soils. Eur. J. Soil Sci. 2014, 65, 60–71. [Google Scholar] [CrossRef]
- Novak, J.M.; Cantrell, K.B.; Watts, D.W. Compositional and Thermal Evaluation of Lignocellulosic and Poultry Litter Chars via High and Low Temperature Pyrolysis. Bioenergy Res. 2013, 6, 114–130. [Google Scholar] [CrossRef]
- Schwertmann, U.; Cornell, R.M. Iron Oxides in the Laboratory: Preparation and Characterization; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2000. [Google Scholar]
- Bruun, T.B.; Elberling, B.; Christensen, B.T. Lability of soil organic carbon in tropical soils with different clay minerals. Soil Biol. Biochem. 2010, 42, 888–895. [Google Scholar] [CrossRef]
- Kaiser, M.; Zederer, D.P.; Ellerbrock, R.H.; Sommer, M.; Ludwig, B. Effects of mineral characteristics on content, composition, and stability of organic matter fractions separated from seven forest topsoils of different pedogenesis. Geoderma 2016, 263, 1–7. [Google Scholar] [CrossRef]
- Gu, B.H.; Schmitt, J.; Chen, Z.H.; Liang, L.Y.; McCarthy, J.F. Adsorption and desorption of natural organic-matter on iron-oxide—Mechanisms and models. Environ. Sci. Technol. 1994, 28, 38–46. [Google Scholar] [CrossRef]
- Von Lützow, M.; Köegel-Knabner, I.; Ekschmitt, K.; Matzner, E.; Guggenberger, G.; Marschner, B.; Flessa, H. Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions—A review. Eur. J. Soil Sci. 2006, 57, 426–445. [Google Scholar] [CrossRef]
- Fang, Y.Y.; Singh, B.P.; Singh, B. Temperature sensitivity of biochar and native carbon mineralisation in biochar-amended soils. Agric. Ecosyst. Environ. 2014, 191, 158–167. [Google Scholar] [CrossRef]
- Yoo, G.; Kang, H. Effects of biochar addition on greenhouse gas emissions and microbial responses in a short-term laboratory experiment. J. Environ. Qual. 2012, 41, 1193–1202. [Google Scholar] [CrossRef]
- Fernandez, J.M.; Nieto, M.A.; Lopez-de-Sa, E.G.; Gasco, G.; Mendez, A.; Plaza, C. Carbon dioxide emissions from semi-arid soils amended with biochar alone or combined with mineral and organic fertilizers. Sci. Total Environ. 2014, 482, 1–7. [Google Scholar] [CrossRef]
- Lu, N.; Liu, X.-R.; Du, Z.-L.; Wang, Y.-D.; Zhang, Q.-Z. Effect of biochar on soil respiration in the maize growing season after 5 years of consecutive application. Soil Res. 2014, 52, 505. [Google Scholar] [CrossRef]
- Ventura, M.; Zhang, C.; Baldi, E.; Fornasier, F.; Sorrenti, G.; Panzacchi, P.; Tonon, G. Effect of biochar addition on soil respiration partitioning and root dynamics in an apple orchard. Eur. J. Soil Sci. 2014, 65, 186–195. [Google Scholar] [CrossRef]
- Case, S.D.C.; McNamara, N.P.; Reay, D.S.; Whitaker, J. Can biochar reduce soil greenhouse gas emissions from a Miscanthus bioenergy crop? GCB Bioenergy 2014, 9, 76–89. [Google Scholar] [CrossRef]
- Whitman, W.B.; Woyke, T.; Klenk, H.-P.; Zhou, Y.; Lilburn, T.G.; Beck, B.J.; De Vos, P.; Vandamme, P.; Eisen, J.A.; Garrity, G.; et al. Genomic Encyclopedia of Bacterial and Archaeal Type Strains, Phase III: The genomes of soil and plant-associated and newly described type strains. Stand. Genomic Sci. 2015, 10, 26. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xiong, Z.; Kuzyakov, Y. Biochar stability in soil: Meta-analysis of decomposition and priming effects. GCB Bioenergy 2016, 8, 512–523. [Google Scholar] [CrossRef]
Organic Carbon (%) | pH (1:5 H2O) | Sand (%) | Silt (%) | Clay (%) | δ13C (‰) | |
---|---|---|---|---|---|---|
Soil (Inceptisol) | 1.48 (±0.08) | 5.70 (±0.01) | 97.5(±0.1) | 1.2 (±0.1) | 1.3 (±0.1) | −28.15 (±0.02) |
Biochar | 74.3 (±0.11) | 7.46 (±0.18) | − | − | − | −13.75 (±0.06) |
Treatment | n | Mean | t Grouping 1 |
---|---|---|---|
S+B+Sm | 27 | 357.65 | a |
S+B+Ka | 27 | 339.44 | a,b |
S | 27 | 325.69 | b,c |
S+Sm | 27 | 316.52 | c |
S+B | 27 | 316.38 | c |
S+Go | 27 | 285.54 | d |
S+Ka | 27 | 278.89 | d |
S+B+Go | 27 | 243.14 | e |
Treatment | n | Mean | t Grouping 1 |
---|---|---|---|
S | 27 | 325.69 | a |
S+Sm | 27 | 316.52 | a |
S+Go | 27 | 285.54 | b |
S+Ka | 27 | 278.90 | b |
S+B | 27 | 76.46 | c |
S+B+Sm | 27 | 66.28 | d, c |
S+B+Ka | 27 | 59.19 | d, e |
S+B+Go | 27 | 46.71 | e |
Treatment | Native SOC | Biochar-C | ||
---|---|---|---|---|
Labile C (Days) | Recalcitrant C (Years) | Labile C (Days) | Recalcitrant C (Years) | |
S | 12.3(±1.5) | 9.5(±0.8) | - | - |
S+Sm | 10.8(±1.2) | 10.0(±1.2) | - | - |
S+Ka | 13.1(±0.9) | 12.2(±1.0) | - | - |
S+Go | 22.7(±3.4) | 13.4(±2.3) | - | - |
S+B | 5.7(±0.5) | 68.4(±11.3) | 11.0(±1.4) | 125.0(±0.0) |
S+B+Go | 15.9(±3.3) | 88.6(±21.7) | 21.9(±7.9) | 122.6(±12.4) |
S+B+Sm | 8.6(±0.9) | 88.9(±12.8) | 9.1(±0.9) | 138.6(±32.2) |
S+B+Ka | 7.0(±2.7) | 107.1(±46.5) | 14.1(±3.6) | 86.7(±38.3) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Keitel, C.; Singh, B. Evaluation of the Influence of Individual Clay Minerals on Biochar Carbon Mineralization in Soils. Soil Syst. 2019, 3, 79. https://doi.org/10.3390/soilsystems3040079
Zhang Q, Keitel C, Singh B. Evaluation of the Influence of Individual Clay Minerals on Biochar Carbon Mineralization in Soils. Soil Systems. 2019; 3(4):79. https://doi.org/10.3390/soilsystems3040079
Chicago/Turabian StyleZhang, Qingzhong, Claudia Keitel, and Balwant Singh. 2019. "Evaluation of the Influence of Individual Clay Minerals on Biochar Carbon Mineralization in Soils" Soil Systems 3, no. 4: 79. https://doi.org/10.3390/soilsystems3040079
APA StyleZhang, Q., Keitel, C., & Singh, B. (2019). Evaluation of the Influence of Individual Clay Minerals on Biochar Carbon Mineralization in Soils. Soil Systems, 3(4), 79. https://doi.org/10.3390/soilsystems3040079