Preliminary Report on Temperature Dysregulation in a Cohort of Youth with Prader–Willi Syndrome
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Anthropometrics and Body Composition
3.2. Medical History and Vitals
3.3. Physical Activity and Motor Proficiency
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PWS | Prader–Willi Syndrome |
TD | Temperature Dysregulation |
UPD | Uniparental Disomy |
ANS | Autonomic Nervous System |
GHRT | Growth Hormone Replacement Therapy |
BMI | Body Mass Index |
BMD | Bone Mineral Density |
PA | Physical Activity |
LPA | Light Physical Activity |
MPA | Moderate Physical Activity |
VPA | Vigorous Physical Activity |
PVN | Paraventricular Nucleus |
References
- Butler, M.G.; Hartin, S.N.; Hossain, W.A.; Manzardo, A.M.; Kimonis, V.; Dykens, E. Molecular genetic classification in Prader-Willi syndrome: A multisite cohort study. J. Med. Genet. 2019, 56, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Driscoll, D.J.; Miller, J.L.; Cassidy, S.B. Prader-Willi Syndrome. In GeneReviews® [Internet]; Adam, M.P., Feldman, J., Mirzaa, G.M., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Butler, M.G.; Miller, J.L.; Forster, J.L. Prader-Willi Syndrome—Clinical Genetics, Diagnosis and Treatment Approaches: An Update. Curr. Pediatr. Rev. 2019, 15, 207–244. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.L.; Lynn, C.H.; Driscoll, D.C.; Goldstone, A.P.; Gold, J.A.; Kimonis, V. Nutritional phases in Prader-Willi syndrome. Am. J. Med. Genet. A 2011, 155A, 1040–1049. [Google Scholar] [CrossRef] [PubMed]
- Madeo, S.F.; Zagaroli, L.; Vandelli, S.; Calcaterra, V.; Crino, A.; De Sanctis, L. Endocrine features of Prader-Willi syndrome: A narrative review focusing on genotype-phenotype correlation. Front. Endocrinol. 2024, 15, 1382583. [Google Scholar] [CrossRef]
- Angulo, M.; Abuzzahab, M.J.; Pietropoli, A.; Ostrow, V.; Kelepouris, N.; Tauber, M. Outcomes in children treated with growth hormone for Prader-Willi syndrome: Data from the ANSWER Program(R) and NordiNet(R) International Outcome Study. Int. J. Pediatr. Endocrinol. 2020, 2020, 20. [Google Scholar] [CrossRef]
- Hoybye, C.; Holland, A.J.; Driscoll, D.J.; Clinical and Scientific Advisory Board of The International Prader-Willi Syndrome Organisation. Time for a general approval of growth hormone treatment in adults with Prader-Willi syndrome. Orphanet J. Rare Dis. 2021, 16, 69. [Google Scholar] [CrossRef]
- Donoso, A.; Arriagada, D.; Campbell, S.; Cruces, P. Multiorgan failure associated with hyperthermia in an infant with Prader-Willi syndrome. case report. Arch. Argent Pediatr. 2013, 111, e117–e120. [Google Scholar] [CrossRef]
- Ince, E.; Ciftci, E.; Tekin, M.; Kendirli, T.; Tutar, E.; Dalgic, N. Characteristics of hyperthermia and its complications in patients with Prader Willi syndrome. Pediatr. Int. 2005, 47, 550–553. [Google Scholar] [CrossRef]
- Landau, D.; Hirsch, H.J.; Gross-Tsur, V. Case report: Severe asymptomatic hyponatremia in Prader-Willi Syndrome. BMC Pediatr. 2016, 16, 28. [Google Scholar] [CrossRef]
- Yalcin, S.S.; Kale, E.; Topaloglu, H.; Tuncbilek, E. A hypotonic infant with tachycardia and fever of unknown origin. J. Pediatr. Health Care 2007, 21, 115–138. [Google Scholar] [CrossRef]
- Butler, M.G.; Victor, A.K.; Reiter, L.T. Autonomic nervous system dysfunction in Prader-Willi syndrome. Clin. Auton. Res. 2023, 33, 281–286. [Google Scholar] [CrossRef]
- Camerino, C. Oxytocin’s Regulation of Thermogenesis May Be the Link to Prader-Willi Syndrome. Curr. Issues Mol. Biol. 2023, 45, 4923–4935. [Google Scholar] [CrossRef]
- Vahil, N.; Albrektson, K.; Dean, J. Acute Non-exertional Hyperthermia With Multi-organ Failure in an Adult With Prader-willi Syndrome: A Case Report. Am. J. Respir. Crit. Care Med. 2023, 207, A5171. [Google Scholar]
- Priano, L.; Miscio, G.; Grugni, G.; Milano, E.; Baudo, S.; Sellitti, L. On the origin of sensory impairment and altered pain perception in Prader-Willi syndrome: A neurophysiological study. Eur. J. Pain 2009, 13, 829–835. [Google Scholar] [CrossRef]
- Williams, M.S.; Rooney, B.L.; Williams, J.; Josephson, K.; Pauli, R. Investigation of thermoregulatory characteristics in patients with Prader-Willi syndrome. Am. J. Med. Genet. 1994, 49, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Wise, M.; Zoghbi, H.; Edwards, M.; Byrd, L.; Guttmacher, A.; Greenberg, F. Hyperthermia in infants with Prader-Willi syndrome (abstract). Am. J. Med. Genet. 1991, 41, 528. [Google Scholar]
- Watanabe, T.; Iwabuchi, H.; Oishi, M. Accidental hypothermia in an infant with Prader-Willi syndrome. Eur. J. Pediatr. 2003, 162, 550–551. [Google Scholar] [CrossRef] [PubMed]
- McVea, S.; Thompson, A.J.; Abid, N.; Richardson, J. Thermal dysregulation in Prader-Willi syndrome: A potentially fatal complication in adolescence, not just in infancy. BMJ Case Rep. 2016, 2016, bcr2016215344. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.G.; Manzardo, A.M.; Heinemann, J.; Loker, C.; Loker, J. Causes of death in Prader-Willi syndrome: Prader-Willi Syndrome Association (USA) 40-year mortality survey. Genet. Med. 2017, 19, 635–642. [Google Scholar] [CrossRef]
- Bray, G.A.; Dahms, W.T.; Swerdloff, R.S.; Fiser, R.H.; Atkinson, R.L.; Carrel, R.E. The Prader-Willi syndrome: A study of 40 patients and a review of the literature. Medicine 1983, 62, 59–80. [Google Scholar] [CrossRef]
- Rubin, D.A.; Wilson, K.S.; Castner, D.M.; Dumont-Driscoll, M.C. Changes in Health-Related Outcomes in Youth With Obesity in Response to a Home-Based Parent-Led Physical Activity Program. J. Adolesc. Health 2019, 65, 323–330. [Google Scholar] [CrossRef]
- Petersen, A.C.; Crockett, L.; Richards, M. A self-report measure of pubertal status: Reliability, validity, and initial norms. J. Youth Adolesc. 1988, 17, 117–133. [Google Scholar] [CrossRef] [PubMed]
- Evenson, K.R.; Catellier, D.J.; Gill, K.; Ondrak, K.S.; McMurray, R.G. Calibration of two objective measures of physical activity for children. J. Sports Sci. 2008, 26, 1557–1565. [Google Scholar] [CrossRef] [PubMed]
- Lam, M.Y.; Rubin, D.A.; White, E.; Duran, A.T.; Rose, D.J. Test-retest reliability of the Bruininks-Oseretsky Test of Motor Proficiency, Second Edition for youth with Prader-Willi syndrome. Ann. Phys. Rehabil. Med. 2018, 61, 355–357. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.G.; Theodoro, M.F.; Bittel, D.C.; Donnelly, J.E. Energy expenditure and physical activity in Prader-Willi syndrome: Comparison with obese subjects. Am. J. Med. Genet. A 2007, 143A, 449–459. [Google Scholar] [CrossRef]
- Tan, C.L.; Knight, Z.A. Regulation of Body Temperature by the Nervous System. Neuron 2018, 98, 31–48. [Google Scholar] [CrossRef]
- Guyton, A.C.; Hall, J.E. Textbook of Medical Physiology, 13th ed.; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Fernandez-Pena, C.; Reimundez, A.; Viana, F.; Arce, V.M.; Senaris, R. Sex differences in thermoregulation in mammals: Implications for energy homeostasis. Front. Endocrinol. 2023, 14, 1093376. [Google Scholar] [CrossRef]
- Kuwako, K.; Hosokawa, A.; Nishimura, I.; Uetsuki, T.; Yamada, M.; Nada, S. Disruption of the paternal necdin gene diminishes TrkA signaling for sensory neuron survival. J. Neurosci. 2005, 25, 7090–7099. [Google Scholar] [CrossRef]
- Poomehr, P.; Behzadi, A.; Farahbakhsh, N.; Bahadori, A. Schaaf-Yang Syndrome Presenting with Prolonged Hyperthermia in a Child: A Case Report. Arch. Pediatr. Infect. Dis. 2025, 13, e155654. [Google Scholar]
- Schubert, T.; Schaaf, C.P. MAGEL2 (patho-) physiology and Schaaf-Yang syndrome. Dev. Med. Child Neurol. 2025, 67, 35–48. [Google Scholar] [CrossRef]
- Richer, L.P.; Tan, Q.; Butler, M.G.; Avedzi, H.M.; DeLorey, D.S.; Peng, Y. Evaluation of Autonomic Nervous System Dysfunction in Childhood Obesity and Prader-Willi Syndrome. Int. J. Mol. Sci. 2023, 24, 8013. [Google Scholar] [CrossRef]
- Camerino, C. The Pivotal Role of Oxytocin’s Mechanism of Thermoregulation in Prader-Willi Syndrome, Schaaf-Yang Syndrome, and Autism Spectrum Disorder. Int. J. Mol. Sci. 2024, 25, 2066. [Google Scholar] [CrossRef]
- Swaab, D.F.; Purba, J.S.; Hofman, M.A. Alterations in the hypothalamic paraventricular nucleus and its oxytocin neurons (putative satiety cells) in Prader-Willi syndrome: A study of five cases. J. Clin. Endocrinol. Metab. 1995, 80, 573–579. [Google Scholar] [PubMed]
- Bochukova, E.G.; Lawler, K.; Croizier, S.; Keogh, J.M.; Patel, N.; Strohbehn, G. A Transcriptomic Signature of the Hypothalamic Response to Fasting and BDNF Deficiency in Prader-Willi Syndrome. Cell Rep. 2018, 22, 3401–3408. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.; State, M.; Anderson, G.M.; Kaye, W.M.; Hanchett, J.M.; McConaha, C.W. Cerebrospinal fluid levels of oxytocin in Prader-Willi syndrome: A preliminary report. Biol. Psychiatry 1998, 44, 1349–1352. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.; Manzardo, A.M.; Miller, J.L.; Driscoll, D.J.; Butler, M.G. Elevated plasma oxytocin levels in children with Prader-Willi syndrome compared with healthy unrelated siblings. Am. J. Med. Genet. A 2016, 170, 594–601. [Google Scholar] [CrossRef]
- Hoybye, C.; Barkeling, B.; Espelund, U.; Petersson, M.; Thoren, M. Peptides associated with hyperphagia in adults with Prader-Willi syndrome before and during GH treatment. Growth Horm. IGF Res. 2003, 13, 322–327. [Google Scholar] [CrossRef]
- Rice, L.J.; Agu, J.; Carter, C.S.; Harris, J.C.; Nazarloo, H.P.; Naanai, H. The relationship between endogenous oxytocin and vasopressin levels and the Prader-Willi syndrome behaviour phenotype. Front. Endocrinol. 2023, 14, 1183525. [Google Scholar] [CrossRef]
- Takayanagi, Y.; Kasahara, Y.; Onaka, T.; Takahashi, N.; Kawada, T.; Nishimori, K. Oxytocin receptor-deficient mice developed late-onset obesity. Neuroreport 2008, 19, 951–955. [Google Scholar] [CrossRef]
- Camerino, C. Low sympathetic tone and obese phenotype in oxytocin-deficient mice. Obesity 2009, 17, 980–984. [Google Scholar] [CrossRef]
- Conte, E.; Romano, A.; De Bellis, M.; De Ceglia, M.; Rosaria-Carratu, M.; Gaetani, S. Oxtr/TRPV1 expression and acclimation of skeletal muscle to cold-stress in male mice. J. Endocrinol. 2021, 249, 135–148. [Google Scholar] [CrossRef]
- Pascut, D.; Giraudi, P.J.; Banfi, C.; Ghilardi, S.; Tiribelli, C.; Bondesan, A. Characterization of Circulating Protein Profiles in Individuals with Prader-Willi Syndrome and Individuals with Non-Syndromic Obesity. J. Clin. Med. 2024, 13, 5697. [Google Scholar] [CrossRef]
- Hoffmann, M.E.; Rodriguez, S.M.; Zeiss, D.M.; Wachsberg, K.N.; Kushner, R.F.; Landsberg, L. 24-h core temperature in obese and lean men and women. Obesity 2012, 20, 1585–1590. [Google Scholar] [CrossRef]
- Wijers, S.L.; Saris, W.H.; Van Marken Lichtenbelt, W.D. Cold-induced adaptive thermogenesis in lean and obese. Obesity 2010, 18, 1092–1099. [Google Scholar] [CrossRef] [PubMed]
- Castner, D.M.; Tucker, J.M.; Wilson, K.S.; Rubin, D.A. Patterns of habitual physical activity in youth with and without Prader-Willi Syndrome. Res. Dev. Disabil. 2014, 35, 3081–3088. [Google Scholar] [CrossRef] [PubMed]
- Rubin, D.A.; Wilson, K.S.; Orsso, C.E.; Gertz, E.R.; Haqq, A.M.; Castner, D.M. A 24-Week Physical Activity Intervention Increases Bone Mineral Content without Changes in Bone Markers in Youth with PWS. Genes 2020, 11, 984. [Google Scholar] [CrossRef]
- Rubin, D.A.; Wilson, K.S.; Dumont-Driscoll, M.; Rose, D.J. Effectiveness of a Parent-led Physical Activity Intervention in Youth with Obesity. Med. Sci. Sports Exerc. 2019, 51, 805–813. [Google Scholar] [CrossRef]
- Falk, B.; Dotan, R. Children’s thermoregulation during exercise in the heat: A revisit. Appl. Physiol. Nutr. Metab. 2008, 33, 420–427. [Google Scholar] [CrossRef]
- Notley, S.R.; Akerman, A.P.; Meade, R.D.; McGarr, G.W.; Kenny, G.P. Exercise Thermoregulation in Prepubertal Children: A Brief Methodological Review. Med. Sci. Sports Exerc. 2020, 52, 2412–2422. [Google Scholar] [CrossRef]
Participant Characteristic | Data Values |
---|---|
Demographics | |
Age (Years) | 8–16 |
Sex (Females/Males) | 19/25 |
Number of Participants | 44 |
Cases w/Temperature Dysregulation | 10 |
Cases w/o Temperature Dysregulation | 34 |
Ethnicity | |
Caucasian | 27 |
Hispanic | 12 |
Asian | 3 |
African American | 1 |
Pubertal Status | |
Pre-Pubertal | 6 |
Early-pubertal | 12 |
Mid-pubertal | 16 |
Late-pubertal | 7 |
PWS Subtype | |
Deletion | 20 |
Uniparental Disomy | 8 |
DNA Methylation + | 12 |
Unidentified | 4 |
Type of Dysregulation | |
Hypothermia | 8 |
Hyperthermia | 4 |
Both | 2 |
Participants | Temperature Dysregulation | No Temperature Dysregulation | p-Value of the Distribution | p-Value of the Median | p-Value of the Frequency |
---|---|---|---|---|---|
Sample Size | N = 10 | N = 34 | - | - | - |
Demographics | |||||
Age (Years) | 11.5 (8.0–14.0) | 9.0 (8.0–16.0) | p = 0.227 | p = 0.765 | - |
Anthropometrics | |||||
Height (cm) | 154.5 (125.9–160.7) | 136.3 (125.0–178.4) | p = 0.090 | p = 0.280 | - |
Weight (kg) | 59.8 (25.7–90.1) | 51.9 (27.1–130.3) | p = 0.689 | p = 0.719 | - |
Waist Circumference (cm) | 88.9 (60.3–123.0) | 84.0 (60.4–141.0) | p = 0.901 | p = 0.844 | - |
BMI (Z-Score) | 1.59 ([−0.50]–2.76) | 2.09 ([−0.24]–3.01) | p = 0.312 | p = 0.719 | - |
BMI Percentile (%) | 93.5 (30.0–99.0) | 97.5 (40.0–100.0) | p = 0.286 | p = 0.359 | - |
Weight Status | p = 0.395 | ||||
Healthy weight | N = 3 | N = 6 | - | - | - |
Overweight/Obese | N = 7 | N = 28 | - | - | - |
Body Composition | |||||
Total Body Fat (%) | 42.80 (31.90–58.50) | 48.35 (17.90–60.80) | p = 0.534 | p = 0.719 | - |
Trunk fat (%) | 40.55 (29.00–59.60) | 47.80 (17.40–60.60) | p = 0.368 | p = 0.280 | - |
Lean Mass (kg) | 31.0 (16.5–37.4) | 24.2 (18.2–55.6) | p = 0.261 | p = 0.280 | - |
Bilateral hip BMD (g/cm2) | 0.80 (0.49–0.97) | 0.74 (0.61–1.34) | p = 0.945 | p = 0.719 | - |
Lumbar spine BMD (g/cm2) | 0.8790 (0.76–1.06) | 0.91 (0.75–1.54) | p = 0.566 | p = 1.000 | - |
Bilateral hip BMD (Z-Score) | −1.10 ([−2.80]–1.10) | −0.20 ([−1.90]–2.30) | p = 0.108 | p = 0.844 | - |
Lumbar spine BMD (Z-Score) | −0.10 ([−1.30]–4.10) | 1.00 ([−0.50]–4.10) | p = 0.064 | p = 0.130 | - |
Vitals | |||||
Heart rate (beat/min) | 80 (64–101) | 80 (56–131) | p = 0.913 | p = 0.876 | |
Systolic BP (mmHg) | 108 (82–127) | 102 (74–126) | p = 0.432 | p = 0.600 | |
Diastolic BP (mmHg) | 65 (56–76) | 64 (44–88) | p = 0.913 | p = 0.931 | |
History Of: | |||||
Hypothyroidism | N = 2 | N = 6 | - | - | p = 0.865 |
Diabetes type I | N = 1 | N = 2 | - | - | p = 0.668 |
Diabetes type II | N = 1 | N = 1 | - | - | p = 0.359 |
Asthma | N = 5 | N = 9 | - | - | p = 0.160 |
Sleep Apnea | N = 5 | N = 6 | - | - | p = 0.038 * |
Pneumonia | N = 3 | N = 3 | - | - | p = 0.086 |
Excessive Sleepiness | N = 4 | N = 12 | - | - | p = 0.786 |
Seizures | N = 4 | N = 6 | - | - | p = 0.138 |
High Blood Pressure | N = 0 | N = 0 | - | - | N/A |
Deep Vein Thrombosis | N = 0 | N = 0 | - | - | N/A |
Heart Problems | N = 0 | N = 1 | - | - | p = 0.583 |
Varicose Veins | N = 1 | N = 1 | - | - | p = 0.346 |
High Cholesterol | N = 0 | N = 4 | - | - | p = 0.255 |
High Triglycerides | N = 0 | N = 3 | - | - | p = 0.331 |
GHRT Usage | p = 0.349 | ||||
Current Only | N = 9 | N = 23 | - | - | - |
Past Only | N = 1 | N = 8 | - | - | - |
Never | N = 0 | N = 3 | - | - | - |
Physical Activity | |||||
Sedentary (min/day) | 668.2 (497.2–775.0) | 660.3 (414.3–780.7) | p = 0.540 | p = 0.921 | - |
Light PA (min/day) | 117.0 (87.8–255.3) | 126.2 (75.1–210.2) | p = 0.897 | p = 0.921 | - |
Moderate-Vigorous PA (min/day) | 33.4 (13.8–54.2) | 26.2 (2.9–87.8) | p = 0.725 | p = 0.921 | - |
Motor Proficiency (Arbitrary Units) | 31.0 (20.0–34.0) | 25.5 (20.0–34.0) | p = 0.102 | p = 0.490 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubin, D.A.; Elies, A.; Camerino, C. Preliminary Report on Temperature Dysregulation in a Cohort of Youth with Prader–Willi Syndrome. Reports 2025, 8, 168. https://doi.org/10.3390/reports8030168
Rubin DA, Elies A, Camerino C. Preliminary Report on Temperature Dysregulation in a Cohort of Youth with Prader–Willi Syndrome. Reports. 2025; 8(3):168. https://doi.org/10.3390/reports8030168
Chicago/Turabian StyleRubin, Daniela A., Adam Elies, and Claudia Camerino. 2025. "Preliminary Report on Temperature Dysregulation in a Cohort of Youth with Prader–Willi Syndrome" Reports 8, no. 3: 168. https://doi.org/10.3390/reports8030168
APA StyleRubin, D. A., Elies, A., & Camerino, C. (2025). Preliminary Report on Temperature Dysregulation in a Cohort of Youth with Prader–Willi Syndrome. Reports, 8(3), 168. https://doi.org/10.3390/reports8030168