Masses and Quadrupole Deformations of Even-Z Nuclei Within a Triaxial Relativistic Hartree–Bogoliubov Model
Abstract
:1. Introduction
2. Theoretical Framework and Numerical Details
3. Results and Discussion
4. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thoennessen, M. The Discovery of Isotopes; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Wang, M. Nuclear Mass Measurement and Evaluation. Nucl. Phys. Rev. 2017, 34, 380–386. [Google Scholar]
- Wang, M.; Zhang, Y.H.; Zhou, X.H. Nuclear mass measurements. Sci. Sin. Phys. Mech. Astron. 2020, 50, 052006. [Google Scholar]
- Wang, M.; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. The AME 2020 atomic mass evaluation (II). Tables, graphs and references. Chin. Phys. C 2021, 45, 030003. [Google Scholar] [CrossRef]
- Erler, J.; Birge, N.; Kortelainen, M.; Nazarewicz, W.; Olsen, E.; Perhac, A.M.; Stoitsov, M. The limits of the nuclear landscape. Nature 2012, 486, 509–512. [Google Scholar] [CrossRef]
- Xia, X.W.; Lim, Y.; Zhao, P.W.; Liang, H.Z.; Qu, X.Y.; Chen, Y.; Liu, H.; Zhang, L.F.; Zhang, S.Q.; Kim, Y.; et al. The limits of the nuclear landscape explored by the relativistic continuum Hartree—Bogoliubov theory. At. Data Nucl. Data Tables 2018, 121–122, 1–215. [Google Scholar] [CrossRef]
- Burbidge, E.M.; Burbidge, G.R.; Fowler, W.A.; Hoyle, F. Synthesis of the elements in stars. Rev. Mod. Phys. 1957, 29, 547. [Google Scholar] [CrossRef]
- Möller, P.; Myers, W.; Swiatecki, W.; Treiner, J. Nuclear mass formula with a finite-range droplet model and a folded-Yukawa single-particle potential. At. Data Nucl. Data Tables 1988, 39, 225–233. [Google Scholar] [CrossRef]
- Moller, P.; Nix, J.; Myers, W.; Swiatecki, W. Nuclear Ground-State Masses and Deformations. At. Data Nucl. Data Tables 1995, 59, 185–381. [Google Scholar] [CrossRef]
- Möller, P.; Sierk, A.; Ichikawa, T.; Sagawa, H. Nuclear ground-state masses and deformations: FRDM(2012). At. Data Nucl. Data Tables 2016, 109–110, 1–204. [Google Scholar] [CrossRef]
- Haustein, P.E. An overview of the 1986–1987 atomic mass predictions. At. Data Nucl. Data Tables 1988, 39, 185–200. [Google Scholar] [CrossRef]
- Wang, N.; Liu, M.; Wu, X.Z.; Meng, J. Surface diffuseness correction in global mass formula. Phys. Lett. B 2014, 734, 215–219. [Google Scholar] [CrossRef]
- Bender, M.; Heenen, P.H.; Reinhard, P.G. Self-consistent mean-field models for nuclear structure. Rev. Mod. Phys. 2003, 75, 121. [Google Scholar] [CrossRef]
- Samyn, M.; Goriely, S.; Heenen, P.H.; Pearson, J.; Tondeur, F. A hartree–fock–bogoliubov mass formula. Nucl. Phys. A 2002, 700, 142–156. [Google Scholar] [CrossRef]
- Stoitsov, M.; Dobaczewski, J.; Nazarewicz, W.; Pittel, S.; Dean, D. Systematic study of deformed nuclei at the drip lines and beyond. Phys. Rev. C—Nucl. Phys. 2003, 68, 054312. [Google Scholar] [CrossRef]
- Goriely, S.; Chamel, N.; Pearson, J. Skyrme-Hartree-Fock-Bogoliubov Nuclear Mass Formulas: Crossing the 0.6 MeV Accuracy Threshold with Microscopically Deduced Pairing. Phys. Rev. Lett. 2009, 102, 152503. [Google Scholar] [CrossRef]
- Goriely, S.; Chamel, N.; Pearson, J. Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XIII. The 2012 atomic mass evaluation and the symmetry coefficient. Phys. Rev. C—Nucl. Phys. 2013, 88, 024308. [Google Scholar] [CrossRef]
- Goriely, S.; Chamel, N.; Pearson, J. Hartree-Fock-Bogoliubov nuclear mass model with 0.50 MeV accuracy based on standard forms of Skyrme and pairing functionals. Phys. Rev. C—Nucl. Phys. 2013, 88, 061302. [Google Scholar] [CrossRef]
- Hilaire, S.; Girod, M. Large-scale mean-field calculations from proton to neutron drip lines using the D1S Gogny force. Eur. Phys. J. A 2007, 33, 237–241. [Google Scholar] [CrossRef]
- Goriely, S.; Hilaire, S.; Girod, M.; Peru, S. The Gogny-Hartree-Fock-Bogoliubov nuclear-mass model. Phys. Rev. Lett. 2009, 102, 242501. [Google Scholar] [CrossRef]
- Delaroche, J.P.; Girod, M.; Libert, J.; Goutte, H.; Hilaire, S.; Péru, S.; Pillet, N.; Bertsch, G. Structure of even-even nuclei using a mapped collective Hamiltonian and the D1S Gogny interaction. Phys. Rev. C—Nucl. Phys. 2010, 81, 014303. [Google Scholar] [CrossRef]
- Ring, P. Relativistic mean field theory in finite nuclei. Prog. Part. Nucl. Phys. 1996, 37, 193–263. [Google Scholar] [CrossRef]
- Vretenar, D.; Afanasjev, A.; Lalazissis, G.; Ring, P. Relativistic Hartree–Bogoliubov theory: Static and dynamic aspects of exotic nuclear structure. Phys. Rep. 2005, 409, 101–259. [Google Scholar] [CrossRef]
- Meng, J.; Toki, H.; Zhou, S.G.; Zhang, S.Q.; Long, W.H.; Geng, L.S. Relativistic continuum Hartree Bogoliubov theory for ground-state properties of exotic nuclei. Prog. Part. Nucl. Phys. 2006, 57, 470–563. [Google Scholar] [CrossRef]
- Nikšić, T.; Vretenar, D.; Ring, P. Relativistic nuclear energy density functionals: Mean-field and beyond. Prog. Part. Nucl. Phys. 2011, 66, 519–548. [Google Scholar] [CrossRef]
- Meng, J.; Peng, J.; Zhang, S.Q.; Zhao, P.W. Progress on tilted axis cranking covariant density functional theory for nuclear magnetic and antimagnetic rotation. Front. Phys. 2013, 8, 55–79. [Google Scholar] [CrossRef]
- Meng, J.; Zhou, S.G. Halos in medium-heavy and heavy nuclei with covariant density functional theory in continuum. J. Phys. G Nucl. Part. Phys. 2015, 42, 093101. [Google Scholar] [CrossRef]
- Zhou, S.G. Multidimensionally constrained covariant density functional theories—nuclear shapes and potential energy surfaces. Phys. Scr. 2016, 91, 063008. [Google Scholar] [CrossRef]
- Meng, J. Relativistic Density Functional for Nuclear Structure; World Scientific: Singapore, 2016; Volume 10. [Google Scholar]
- Shen, S.H.; Liang, H.Z.; Long, W.H.; Meng, J.; Ring, P. Towards an ab initio covariant density functional theory for nuclear structure. Prog. Part. Nucl. Phys. 2019, 109, 103713. [Google Scholar] [CrossRef]
- Zhao, P.W.; Li, Z.P.; Yao, J.M.; Meng, J. New parametrization for the nuclear covariant energy density functional with a point-coupling interaction. Phys. Rev. C 2010, 82, 054319. [Google Scholar] [CrossRef]
- Lu, K.Q.; Li, Z.X.; Li, Z.P.; Yao, J.M.; Meng, J. Global study of beyond-mean-field correlation energies in covariant energy density functional theory using a collective Hamiltonian method. Phys. Rev. C 2015, 91, 027304. [Google Scholar] [CrossRef]
- Yang, Y.L.; Wang, Y.K.; Zhao, P.W.; Li, Z.P. Nuclear landscape in a mapped collective Hamiltonian from covariant density functional theory. Phys. Rev. C 2021, 104, 054312. [Google Scholar] [CrossRef]
- Agbemava, S.; Afanasjev, A.; Ray, D.; Ring, P. Global performance of covariant energy density functionals: Ground state observables of even-even nuclei and the estimate of theoretical uncertainties. Phys. Rev. C 2014, 89, 054320. [Google Scholar] [CrossRef]
- Geng, L.S.; Toki, H.; Meng, J. Masses, Deformations and Charge Radii—Nuclear Ground-State Properties in the Relativistic Mean Field Model. Prog. Theor. Phys. 2005, 113, 785–800. [Google Scholar] [CrossRef]
- Yang, Y.L.; Zhao, P.W.; Li, Z.P. Shape and multiple shape coexistence of nuclei within covariant density functional theory. Phys. Rev. C 2023, 107, 024308. [Google Scholar] [CrossRef]
- Wang, Y.K. Yrast band of 109Ag described by tilted axis cranking covariant density functional theory with a separable pairing force. Phys. Rev. C 2017, 96, 054324. [Google Scholar] [CrossRef]
- Wang, Y.K. Magnetic rotations in 198Pb and 199Pb within covariant density functional theory with pairing correlations. Phy. Rev. C 2018, 97, 064321. [Google Scholar] [CrossRef]
- Zhao, P.W.; Wang, Y.K.; Chen, Q.B. Microscopic resolution of the nuclear chiral conundrum with crossing twin bands in 106Ag. Phys. Rev. C 2019, 99, 054319. [Google Scholar] [CrossRef]
- Wang, Y.K.; Zhao, P.W.; Meng, J. Relativistic configuration-interaction density functional theory: Nonaxial effects on nuclear ββ decay. Sci. Bull. 2024, 69, 2017–2020. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Cao, X.J.; Chen, K.M.; Chen, Z.H.; Cheoun, M.K.; Choi, Y.B.; Lam, P.C.; Deng, W.M.; Dong, J.M.; Du, P.X.; et al. Nuclear mass table in deformed relativistic Hartree–Bogoliubov theory in continuum, II: Even-Z nuclei. At. Data Nucl. Data Tables 2024, 158, 101661. [Google Scholar] [CrossRef]
- Meng, J. Relativistic continuum Hartree-Bogoliubov theory with both zero range and finite range Gogny force and their application. Nucl. Phys. A 1998, 635, 3–42. [Google Scholar] [CrossRef]
- Kucharek, H.; Ring, P. Relativistic field theory of superfluidity in nuclei. Z. Für Phys. A Hadron. Nucl. 1991, 339, 23–35. [Google Scholar] [CrossRef]
- Gonzalez-Llarena, T.; Egido, J.; Lalazissis, G.; Ring, P. Relativistic Hartree-Bogoliubov calculations with finite range pairing forces. Phys. Lett. B 1996, 379, 13–19. [Google Scholar] [CrossRef]
- Serra, M.; Ring, P. Relativistic Hartree-Bogoliubov theory for finite nuclei. Phys. Rev. C 2002, 65, 064324. [Google Scholar] [CrossRef]
- Ring, P.; Schuck, P. The Many Body Nuclear Problem; Springer: Berlin/Heidelberg, Germany, 1980. [Google Scholar]
- Tian, Y.; Ma, Z.Y.; Ring, P. A finite range pairing force for density functional theory in superfluid nuclei. Phys. Lett. B 2009, 676, 44–50. [Google Scholar] [CrossRef]
- Pan, C.; Zhang, K.Y.; Zhang, S.Q. Nuclear magnetism in the deformed halo nucleus 31Ne. Phys. Lett. B 2024, 855, 138792. [Google Scholar] [CrossRef]
- Nikšić, T.; Paar, N.; Vretenar, D.; Ring, P. DIRHB—A relativistic self-consistent mean-field framework for atomic nuclei. Comput. Phys. Commun. 2014, 185, 1808–1821. [Google Scholar] [CrossRef]
- Zhao, Q.; Ren, Z.X.; Zhao, P.W.; Meng, J. Covariant density functional theory with localized exchange terms. Phys. Rev. C 2022, 106, 034315. [Google Scholar] [CrossRef]
- Heyde, K.; Wood, J.L. Shape coexistence in atomic nuclei. Rev. Mod. Phys. 2011, 83, 1467–1521. [Google Scholar] [CrossRef]
- Quan, S.; Liu, W.P.; Li, Z.P.; Smith, M.S. Microscopic core-quasiparticle coupling model for spectroscopy of odd-mass nuclei. Phys. Rev. C 2017, 96, 054309. [Google Scholar] [CrossRef]
- Pan, C.; Cheoun, M.K.; Choi, Y.B.; Dong, J.M.; Du, X.K.; Fan, X.H.; Gao, W.; Geng, L.S.; Ha, E.; He, X.T.; et al. Deformed relativistic Hartree-Bogoliubov theory in continuum with a point-coupling functional. II. Examples of odd Nd isotopes. Phys. Rev. C 2022, 106, 014316. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, E.F.; Yao, J.M. Benchmarking rotational correction energies in odd-mass nuclei. arXiv 2024, arXiv:2409.12402. [Google Scholar]
DFTs | Date Number | |||
---|---|---|---|---|
TRHB w/o DCE | 2.56 | 0.98 | 0.75 | 1223 |
TRHB w DCE | 1.36 | 0.75 | 0.65 | 1223 |
TRHB w DCE* | 1.30 | 0.75 | 0.63 | 1223 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Q.; Li, Z. Masses and Quadrupole Deformations of Even-Z Nuclei Within a Triaxial Relativistic Hartree–Bogoliubov Model. Particles 2025, 8, 57. https://doi.org/10.3390/particles8020057
Zhou Q, Li Z. Masses and Quadrupole Deformations of Even-Z Nuclei Within a Triaxial Relativistic Hartree–Bogoliubov Model. Particles. 2025; 8(2):57. https://doi.org/10.3390/particles8020057
Chicago/Turabian StyleZhou, Qin, and Zhipan Li. 2025. "Masses and Quadrupole Deformations of Even-Z Nuclei Within a Triaxial Relativistic Hartree–Bogoliubov Model" Particles 8, no. 2: 57. https://doi.org/10.3390/particles8020057
APA StyleZhou, Q., & Li, Z. (2025). Masses and Quadrupole Deformations of Even-Z Nuclei Within a Triaxial Relativistic Hartree–Bogoliubov Model. Particles, 8(2), 57. https://doi.org/10.3390/particles8020057