Decoding the Gaugino Code Naturally at High-Lumi LHC
Abstract
:1. Introduction
2. Three Paradigms for Gaugino Masses
2.1. Gravity-Mediated SUSY Breaking
2.2. Anomaly-Mediated SUSY Breaking (AMSB)
2.3. Comparable Gravity and Anomaly Mediation (Mirage Mediation)
2.4. The Gaugino Code in Natural SUSY
3. Revealing the Gaugino Code Naturally at High-Lumi LHCs
3.1. Higgsino Pair Production
3.2. Wino Pair Production
3.3. Decoding the Gaugino Code at HL-LHC
- : 0.1–60 TeV,
- : 0.1–20 TeV,
- : 0.5–10 TeV,
- 50–0 TeV (negative only).
- : 80–400 TeV,
- : 1–20 TeV,
- : 1–10 TeV,
- : 0–20 TeV (positive only).
- 3–25 (with draw),
- ,
- : 3–80,
- : 3–100.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Candelas, P.; Horowitz, G.T.; Strominger, A.; Witten, E. Vacuum configurations for superstrings. Nucl. Phys. B 1985, 258, 46–74. [Google Scholar] [CrossRef]
- Witten, E. Dynamical Breaking of Supersymmetry. Nucl. Phys. B 1981, 188, 513. [Google Scholar] [CrossRef]
- Kaul, R.K. Gauge Hierarchy in a Supersymmetric Model. Phys. Lett. B 1982, 109, 19–24. [Google Scholar] [CrossRef]
- Canepa, A. Searches for Supersymmetry at the Large Hadron Collider. Rev. Phys. 2019, 4, 100033. [Google Scholar] [CrossRef]
- Aad, G.; Aakvaag, E.; Abbott, B.K.; Abeling, K.; Abicht, N.J.; Abidi, H.; Aboelela, M.; Aboulhorma, A.; Abramowicz, H.; Abreu, H.; et al. The quest to discover supersymmetry at the ATLAS experiment. arXiv 2024, arXiv:2403.02455. [Google Scholar]
- Bousso, R.; Polchinski, J. Quantization of four form fluxes and dynamical neutralization of the cosmological constant. J. High Energy Phys. 2000, 2000, 6. [Google Scholar] [CrossRef]
- Susskind, L. The Anthropic landscape of string theory. arXiv 2003, arXiv:hep-th/0302219. [Google Scholar]
- Ashok, S.; Douglas, M.R. Counting flux vacua. J. High Energy Phys. 2004, 2004, 060. [Google Scholar] [CrossRef]
- Douglas, M.R.; Kachru, S. Flux compactification. Rev. Mod. Phys. 2007, 79, 733–796. [Google Scholar] [CrossRef]
- Weinberg, S. Anthropic Bound on the Cosmological Constant. Phys. Rev. Lett. 1987, 59, 2607. [Google Scholar] [CrossRef]
- Arkani-Hamed, N.; Dimopoulos, S.; Kachru, S. Predictive landscapes and new physics at a TeV. arXiv 2005, arXiv:hep-th/0501082. [Google Scholar]
- Baer, H.; Tata, X. Weak Scale Supersymmetry: From Superfields to Scattering Events; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Douglas, M.R. Statistical analysis of the supersymmetry breaking scale. arXiv 2004, arXiv:hep-th/0405279. [Google Scholar]
- Susskind, L. Supersymmetry breaking in the anthropic landscape. In From Fields to Strings: Circumnavigating Theoretical Physics: A Conference in Tribute to Ian Kogan; World Scientific: Singapore, 2004; pp. 1745–1749. [Google Scholar] [CrossRef]
- Baer, H.; Barger, V.; Savoy, M.; Serce, H. The Higgs mass and natural supersymmetric spectrum from the landscape. Phys. Lett. B 2016, 758, 113–117. [Google Scholar] [CrossRef]
- Agrawal, V.; Barr, S.M.; Donoghue, J.F.; Seckel, D. Viable range of the mass scale of the standard model. Phys. Rev. D 1998, 57, 5480–5492. [Google Scholar] [CrossRef]
- Baer, H.; Barger, V.; Serce, H.; Sinha, K. Higgs and superparticle mass predictions from the landscape. J. High Energy Phys. 2018, 2018, 002. [Google Scholar] [CrossRef]
- Baer, H.; Barger, V.; Bolich, J.; Dutta, J.; Sengupta, D. Natural anomaly mediation from the landscape with implications for LHC SUSY searches. Phys. Rev. D 2024, 109, 035011. [Google Scholar] [CrossRef]
- Baer, H.; Barger, V.; Sengupta, D. Mirage mediation from the landscape. Phys. Rev. Res. 2020, 2, 013346. [Google Scholar] [CrossRef]
- Baer, H.; Barger, V.; Salam, S.; Sengupta, D.; Sinha, K. Status of weak scale supersymmetry after LHC Run 2 and ton-scale noble liquid WIMP searches. Eur. Phys. J. Spec. Top. 2020, 229, 3085–3141. [Google Scholar] [CrossRef]
- Baer, H.; Barger, V.; Salam, S.; Sengupta, D. String landscape guide to soft SUSY breaking terms. Phys. Rev. D 2020, 102, 075012. [Google Scholar] [CrossRef]
- Choi, K.; Nilles, H.P. The Gaugino code. J. High Energy Phys. 2007, 2007, 006. [Google Scholar] [CrossRef]
- Soni, S.K.; Weldon, H.A. Analysis of the Supersymmetry Breaking Induced by N = 1 Supergravity Theories. Phys. Lett. B 1983, 126, 215–219. [Google Scholar] [CrossRef]
- Kaplunovsky, V.S.; Louis, J. Model independent analysis of soft terms in effective supergravity and in string theory. Phys. Lett. B 1993, 306, 269–275. [Google Scholar] [CrossRef]
- Brignole, A.; Ibanez, L.E.; Munoz, C. Towards a theory of soft terms for the supersymmetric Standard Model. Nucl. Phys. B 1994, 422, 125–171, Erratum in Nucl. Phys. B 1995, 436, 747–748. [Google Scholar] [CrossRef]
- Arnowitt, R.L.; Nath, P. Supersymmetry and Supergravity: Phenomenology and Grand Unification. arXiv 1993, arXiv:hep-ph/9309277. [Google Scholar]
- Kane, G.L.; Kolda, C.F.; Roszkowski, L.; Wells, J.D. Study of constrained minimal supersymmetry. Phys. Rev. D 1994, 49, 6173–6210. [Google Scholar] [CrossRef]
- Baer, H.; Barger, V.; Huang, P.; Mustafayev, A.; Tata, X. Radiative natural SUSY with a 125 GeV Higgs boson. Phys. Rev. Lett. 2012, 109, 161802. [Google Scholar] [CrossRef]
- Baer, H.; Barger, V.; Huang, P.; Mickelson, D.; Mustafayev, A.; Tata, X. Radiative natural supersymmetry: Reconciling electroweak fine-tuning and the Higgs boson mass. Phys. Rev. D 2013, 87, 115028. [Google Scholar] [CrossRef]
- Arkani-Hamed, N.; Murayama, H. Can the supersymmetric flavor problem decouple? Phys. Rev. D 1997, 56, R6733–R6737. [Google Scholar] [CrossRef]
- Baer, H.; Barger, V.; Sengupta, D. Landscape solution to the SUSY flavor and CP problems. Phys. Rev. Res. 2019, 1, 033179. [Google Scholar] [CrossRef]
- Cremmer, E.; Ferrara, S.; Girardello, L.; Proeyen, A.V. Yang-Mills Theories with Local Supersymmetry: Lagrangian, Transformation Laws and SuperHiggs Effect. Nucl. Phys. B 1983, 212, 413. [Google Scholar] [CrossRef]
- Buchmuller, W.; Hamaguchi, K.; Lebedev, O.; Ratz, M. Local grand unification. arXiv 2005, arXiv:hep-ph/0512326. [Google Scholar]
- Nilles, H.P.; Vaudrevange, P.K.S. Geography of Fields in Extra Dimensions: String Theory Lessons for Particle Physics. Mod. Phys. Lett. A 2015, 30, 1530008. [Google Scholar] [CrossRef]
- Randall, L.; Sundrum, R. Out of this world supersymmetry breaking. Nucl. Phys. B 1999, 557, 79–118. [Google Scholar] [CrossRef]
- Giudice, G.F.; Luty, M.A.; Murayama, H.; Rattazzi, R. Gaugino mass without singlets. J. High Energy Phys. 1999, 1998, 027. [Google Scholar] [CrossRef]
- Bagger, J.A.; Moroi, T.; Poppitz, E. Anomaly mediation in supergravity theories. J. High Energy Phys. 2000, 2000, 009. [Google Scholar] [CrossRef]
- Wells, J.D. PeV-scale supersymmetry. Phys. Rev. D 2005, 71, 015013. [Google Scholar] [CrossRef]
- Arkani-Hamed, N.; Dimopoulos, S.; Giudice, G.F.; Romanino, A. Aspects of split supersymmetry. Nucl. Phys. B 2005, 709, 3–46. [Google Scholar] [CrossRef]
- Arvanitaki, A.; Craig, N.; Dimopoulos, S.; Villadoro, G. Mini-Split. J. High Energy Phys. 2013, 2013, 126. [Google Scholar] [CrossRef]
- Gherghetta, T.; Giudice, G.F.; Wells, J.D. Phenomenological consequences of supersymmetry with anomaly induced masses. Nucl. Phys. B 1999, 559, 27–47. [Google Scholar] [CrossRef]
- Feng, J.L.; Moroi, T. Supernatural supersymmetry: Phenomenological implications of anomaly mediated supersymmetry breaking. Phys. Rev. D 2000, 61, 095004. [Google Scholar] [CrossRef]
- Cohen, T.; Lisanti, M.; Pierce, A.; Slatyer, T.R. Wino Dark Matter Under Siege. J. Cosmol. Astropart. Phys. 2013, 2013, 061. [Google Scholar] [CrossRef]
- Fan, J.; Reece, M. In Wino Veritas? Indirect Searches Shed Light on Neutralino Dark Matter. J. High Energy Phys. 2013, 2013, 124. [Google Scholar] [CrossRef]
- Baer, H.; Barger, V.; Serce, H. SUSY under siege from direct and indirect WIMP detection experiments. Phys. Rev. D 2016, 94, 115019. [Google Scholar] [CrossRef]
- Baer, H.; Barger, V.; Mickelson, D.; Padeffke-Kirkland, M. SUSY models under siege: LHC constraints and electroweak fine-tuning. Phys. Rev. D 2014, 89, 115019. [Google Scholar] [CrossRef]
- Baer, H.; Barger, V.; Sengupta, D. Anomaly mediated SUSY breaking model retrofitted for naturalness. Phys. Rev. D 2018, 98, 015039. [Google Scholar] [CrossRef]
- Choi, K.; Falkowski, A.; Nilles, H.P.; Olechowski, M. Soft supersymmetry breaking in KKLT flux compactification. Nucl. Phys. B 2005, 718, 113–133. [Google Scholar] [CrossRef]
- Kachru, S.; Kallosh, R.; Linde, A.D.; Trivedi, S.P. De Sitter vacua in string theory. Phys. Rev. D 2003, 68, 046005. [Google Scholar] [CrossRef]
- Nilles, H.P. Gaugino Condensation and Supersymmetry Breakdown. Int. J. Mod. Phys. A 1990, 5, 4199–4224. [Google Scholar] [CrossRef]
- Klebanov, I.R.; Strassler, M.J. Supergravity and a confining gauge theory: Duality cascades and chi SB resolution of naked singularities. J. High Energy Phys. 2008, 2008, 052. [Google Scholar] [CrossRef]
- Falkowski, A.; Lebedev, O.; Mambrini, Y. SUSY phenomenology of KKLT flux compactifications. J. High Energy Phys. 2005, 2005, 034. [Google Scholar] [CrossRef]
- Baer, H.; Barger, V.; Serce, H.; Tata, X. Natural generalized mirage mediation. Phys. Rev. D 2016, 94, 115017. [Google Scholar] [CrossRef]
- Aad, G.; Abbott, B.; Abbott, D.C.; Abed Abud, A.; Abeling, K.; Abhayasinghe, D.K.; Abidi, S.H.; AbouZeid, O.S.; Abraham, N.L.; Abramowicz, H.; et al. Searches for electroweak production of supersymmetric particles with compressed mass spectra in = 13 TeV pp collisions with the ATLAS detector. Phys. Rev. D 2020, 101, 052005. [Google Scholar] [CrossRef]
- Tumasyan, A.; Adam, W.; Andrejkovic, J.W.; Bergauer, T.; Chatterjee, S.; Dragicevic, M.; Escalante Del Valle, A.; Fruehwirth, R.; Jeitler, M.; Krammer, N.; et al. Search for supersymmetry in final states with two or three soft leptons and missing transverse momentum in proton-proton collisions at = 13 TeV. J. High Energy Phys. 2022, 2022, 091. [Google Scholar] [CrossRef]
- Baer, H.; Barger, V.; Huang, P. Hidden SUSY at the LHC: The light higgsino-world scenario and the role of a lepton collider. J. High Energy Phys. 2011, 2011, 31. [Google Scholar] [CrossRef]
- Han, Z.; Kribs, G.D.; Martin, A.; Menon, A. Hunting quasidegenerate Higgsinos. Phys. Rev. D 2014, 89, 075007. [Google Scholar] [CrossRef]
- Baer, H.; Mustafayev, A.; Tata, X. Monojet plus soft dilepton signal from light higgsino pair production at LHC14. Phys. Rev. D 2014, 90, 115007. [Google Scholar] [CrossRef]
- Han, C.; Kim, D.; Munir, S.; Park, M. Accessing the core of naturalness, nearly degenerate higgsinos, at the LHC. J. High Energy Phys. 2015, 2015, 132. [Google Scholar] [CrossRef]
- Kitano, R.; Nomura, Y. Supersymmetry, naturalness, and signatures at the LHC. Phys. Rev. D 2006, 73, 095004. [Google Scholar] [CrossRef]
- Baer, H.; Barger, V.; Salam, S.; Sengupta, D.; Tata, X. The LHC higgsino discovery plane for present and future SUSY searches. Phys. Lett. B 2020, 810, 135777. [Google Scholar] [CrossRef]
- Baer, H.; Barger, V.; Sengupta, D.; Tata, X. New angular and other cuts to improve the Higgsino signal at the LHC. Phys. Rev. D 2022, 105, 095017. [Google Scholar] [CrossRef]
- Baer, H.; Barger, V.; Sengupta, D.; Tata, X. Angular cuts to reduce the τj background to the higgsino signal at the LHC. arXiv 2022, arXiv:2203.03700. [Google Scholar]
- Baer, H.; Barger, V.; Huang, P.; Mickelson, D.; Mustafayev, A.; Sreethawong, W.; Tata, X. Same sign diboson signature from supersymmetry models with light higgsinos at the LHC. Phys. Rev. Lett. 2013, 110, 151801. [Google Scholar] [CrossRef]
- Baer, H.; Barger, V.; Huang, P.; Mickelson, D.; Mustafayev, A.; Sreethawong, W.; Tata, X. Radiatively-driven natural supersymmetry at the LHC. J. High Energy Phys. 2013, 2013, 013, Erratum in J. High Energy Phys. 2015, 6, 053. [Google Scholar] [CrossRef]
- Baer, H.; Barger, V.; Gainer, J.S.; Savoy, M.; Sengupta, D.; Tata, X. Aspects of the same-sign diboson signature from wino pair production with light higgsinos at the high luminosity LHC. Phys. Rev. D 2018, 97, 035012. [Google Scholar] [CrossRef]
- Baer, H.; Tata, X.; Woodside, J. Searching for 100-GeV–300-GeV gluinos at the tevatron and ssc. Phys. Rev. D 1990, 42, 1568–1576. [Google Scholar] [CrossRef]
- Barnett, R.M.; Gunion, J.F.; Haber, H.E. Like sign dileptons as a signal for gluino production. In Proceedings of the 1988 DPF Summer Study on High-energy Physics in the 1990s (Snowmass 88), Snowmass, CO, USA, 27 June–15 July 1988. [Google Scholar]
- Baer, H.; Tata, X.; Woodside, J. Gluino Cascade Decay Signatures at the Tevatron Collider. Phys. Rev. D 1990, 41, 906–915. [Google Scholar] [CrossRef]
- Barnett, R.M.; Gunion, J.F.; Haber, H.E. Discovering supersymmetry with like sign dileptons. Phys. Lett. B 1993, 315, 349–354. [Google Scholar] [CrossRef]
- Paige, F.E.; Protopopescu, S.D.; Baer, H.; Tata, X. ISAJET 7.69: A Monte Carlo event generator for pp, anti-p p, and e+e- reactions. arXiv 2003, arXiv:hep-ph/0312045. [Google Scholar]
- Bae, K.J.; Baer, H.; Barger, V.; Sengupta, D. Revisiting the SUSY μ problem and its solutions in the LHC era. Phys. Rev. D 2019, 99, 115027. [Google Scholar] [CrossRef]
- Baer, H.; Barger, V.; Savoy, M. Upper bounds on sparticle masses from naturalness or how to disprove weak scale supersymmetry. Phys. Rev. D 2016, 93, 035016. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baer, H.; Barger, V.; Zhang, K. Decoding the Gaugino Code Naturally at High-Lumi LHC. Particles 2024, 7, 927-938. https://doi.org/10.3390/particles7040056
Baer H, Barger V, Zhang K. Decoding the Gaugino Code Naturally at High-Lumi LHC. Particles. 2024; 7(4):927-938. https://doi.org/10.3390/particles7040056
Chicago/Turabian StyleBaer, Howard, Vernon Barger, and Kairui Zhang. 2024. "Decoding the Gaugino Code Naturally at High-Lumi LHC" Particles 7, no. 4: 927-938. https://doi.org/10.3390/particles7040056
APA StyleBaer, H., Barger, V., & Zhang, K. (2024). Decoding the Gaugino Code Naturally at High-Lumi LHC. Particles, 7(4), 927-938. https://doi.org/10.3390/particles7040056