Pre/Post-Merger Consistency Test for Gravitational Signals from Binary Neutron Star Mergers
Abstract
1. Introduction
2. Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BBH | Binary black hole |
BNS | Binary neutron star |
EOB | Effective-one-body |
EOS | Equation of state |
GW | Gravitational wave |
NR | Numerical relativity |
PE | Parameter estimation |
PPM | Pre/post-merger |
QUR | Quasi-universal relation |
SNR | Signa-to-noise ratio |
References
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Callister, T.A.; et al. Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. Astrophys. J. 2017, 851, L16. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Bulten, H.J. Properties of the binary neutron star merger GW170817. Phys. Rev. 2019, X9, 011001. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Buonanno, A.; et al. Search for gravitational waves from a long-lived remnant of the binary neutron star merger GW170817. Astrophys. J. 2019, 875, 160. [Google Scholar] [CrossRef]
- Chatziioannou, K.; Clark, J.A.; Bauswein, A.; Millhouse, M.; Littenberg, T.B.; Cornish, N. Inferring the post-merger gravitational wave emission from binary neutron star coalescences. Phys. Rev. 2017, D96, 124035. [Google Scholar] [CrossRef]
- Torres-Rivas, A.; Chatziioannou, K.; Bauswein, A.; Clark, J.A. Observing the post-merger signal of GW170817-like events with improved gravitational-wave detectors. Phys. Rev. 2019, D99, 044014. [Google Scholar] [CrossRef]
- Breschi, M.; Bernuzzi, S.; Godzieba, D.; Perego, A.; Radice, D. Constraints on the Maximum Densities of Neutron Stars from Postmerger Gravitational Waves with Third-Generation Observations. Phys. Rev. Lett. 2022, 128, 161102. [Google Scholar] [CrossRef]
- Bauswein, A.; Bastian, N.U.F.; Blaschke, D.B.; Chatziioannou, K.; Clark, J.A.; Fischer, T.; Oertel, M. Identifying a first-order phase transition in neutron star mergers through gravitational waves. Phys. Rev. Lett. 2019, 122, 061102. [Google Scholar] [CrossRef]
- Breschi, M.; Bernuzzi, S.; Zappa, F.; Agathos, M.; Perego, A.; Radice, D.; Nagar, A. kiloHertz gravitational waves from binary neutron star remnants: Time-domain model and constraints on extreme matter. Phys. Rev. 2019, D100, 104029. [Google Scholar] [CrossRef]
- Weih, L.R.; Hanauske, M.; Rezzolla, L. Postmerger Gravitational-Wave Signatures of Phase Transitions in Binary Mergers. Phys. Rev. Lett. 2020, 124, 171103. [Google Scholar] [CrossRef] [PubMed]
- Prakash, A.; Radice, D.; Logoteta, D.; Perego, A.; Nedora, V.; Bombaci, I.; Kashyap, R.; Bernuzzi, S.; Endrizzi, A. Signatures of deconfined quark phases in binary neutron star mergers. Phys. Rev. D 2021, 104, 083029. [Google Scholar] [CrossRef]
- Raithel, C.A.; Most, E.R. Characterizing the breakdown of quasi-universality in the post-merger gravitational waves from binary neutron star mergers. arXiv 2022, arXiv:2201.03594. [Google Scholar]
- Wijngaarden, M.; Chatziioannou, K.; Bauswein, A.; Clark, J.A.; Cornish, N.J. Probing neutron stars with the full pre-merger and post-merger gravitational wave signal from binary coalescences. Phys. Rev. 2022, 105, 104019. [Google Scholar]
- Sekiguchi, Y.; Kiuchi, K.; Kyutoku, K.; Shibata, M. Effects of hyperons in binary neutron star mergers. Phys. Rev. Lett. 2011, 107, 211101. [Google Scholar] [CrossRef]
- Radice, D.; Bernuzzi, S.; Del Pozzo, W.; Roberts, L.F.; Ott, C.D. Probing Extreme-Density Matter with Gravitational Wave Observations of Binary Neutron Star Merger Remnants. Astrophys. J. 2017, 842, L10. [Google Scholar] [CrossRef]
- Most, E.R.; Papenfort, L.J.; Dexheimer, V.; Hanauske, M.; Schramm, S.; Stöcker, H.; Rezzolla, L. Signatures of quark-hadron phase transitions in general-relativistic neutron-star mergers. Phys. Rev. Lett. 2019, 122, 061101. [Google Scholar] [CrossRef]
- Fujimoto, Y.; Fukushima, K.; Hotokezaka, K.; Kyutoku, K. Gravitational Wave Signal for Quark Matter with Realistic Phase Transition. Phys. Rev. Lett. 2023, 130, 091404. [Google Scholar] [CrossRef]
- Breschi, M.; Gamba, R.; Borhanian, S.; Carullo, G.; Bernuzzi, S. Kilohertz Gravitational Waves from Binary Neutron Star Mergers: Inference of Postmerger Signals with the Einstein Telescope. arXiv 2022, arXiv:2205.09979. [Google Scholar]
- Bernuzzi, S.; Nagar, A.; Balmelli, S.; Dietrich, T.; Ujevic, M. Quasi-universal properties of neutron star mergers. Phys. Rev. Lett. 2014, 112, 201101. [Google Scholar] [CrossRef]
- Yagi, K.; Yunes, N. Approximate Universal Relations for Neutron Stars and Quark Stars. Phys. Rept. 2017, 681, 1–72. [Google Scholar] [CrossRef]
- Bauswein, A.; Stergioulas, N. Semi-analytic derivation of the threshold mass for prompt collapse in binary neutron star mergers. Mon. Not. Roy. Astron. Soc. 2017, 471, 4956. [Google Scholar] [CrossRef]
- Godzieba, D.A.; Gamba, R.; Radice, D.; Bernuzzi, S. Updated universal relations for tidal deformabilities of neutron stars from phenomenological equations of state. Phys. Rev. D 2021, 103, 063036. [Google Scholar] [CrossRef]
- Bernuzzi, S.; Dietrich, T.; Nagar, A. Modeling the complete gravitational wave spectrum of neutron star mergers. Phys. Rev. Lett. 2015, 115, 091101. [Google Scholar] [CrossRef]
- Tsang, K.W.; Dietrich, T.; Van Den Broeck, C. Modeling the postmerger gravitational wave signal and extracting binary properties from future binary neutron star detections. Phys. Rev. 2019, D100, 044047. [Google Scholar] [CrossRef]
- Breschi, M.; Bernuzzi, S.; Chakravarti, K.; Camilletti, A.; Prakash, A.; Perego, A. Kilohertz Gravitational Waves From Binary Neutron Star Mergers: Numerical-relativity Informed Postmerger Model. arXiv 2022, arXiv:2205.09112. [Google Scholar]
- Puecher, A.; Dietrich, T.; Tsang, K.W.; Kalaghatgi, C.; Roy, S.; Setyawati, Y.; Van Den Broeck, C. Unraveling information about supranuclear-dense matter from the complete binary neutron star coalescence process using future gravitational-wave detector networks. arXiv 2022, arXiv:2210.09259. [Google Scholar] [CrossRef]
- Ghosh, A.; Ghosh, A.; Johnson-McDaniel, N.K.; Mishra, C.K.; Ajith, P.; Del Pozzo, W.; London, L. Testing general relativity using golden black-hole binaries. Phys. Rev. 2016, D94, 021101. [Google Scholar] [CrossRef]
- Breschi, M.; O’Shaughnessy, R.; Lange, J.; Birnholtz, O. Inspiral-Merger-Ringdown Consistency Tests with Higher Modes on Gravitational Signals from the Second Observing Run of LIGO and Virgo. arXiv 2019, arXiv:1903.05982. [Google Scholar]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Cahillane, C. Tests of General Relativity with the Binary Black Hole Signals from the LIGO-Virgo Catalog GWTC-1. Phys. Rev. D 2019, 100, 104036. [Google Scholar] [CrossRef]
- Veitch, J.; Vecchio, A. Bayesian coherent analysis of in-spiral gravitational wave signals with a detector network. Phys. Rev. 2010, D81, 062003. [Google Scholar] [CrossRef]
- Veitch, J.; Raymond, V.; Farr, B.; Farr, W.; Graff, P.; Vitale, S.; Wade, L. Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library. Phys. Rev. 2015, D91, 042003. [Google Scholar] [CrossRef]
- Breschi, M.; Gamba, R.; Bernuzzi, S. Bayesian inference of multimessenger astrophysical data: Methods and applications to gravitational waves. Phys. Rev. D 2021, 104, 042001. [Google Scholar] [CrossRef]
- Nagar, A.; Bernuzzi, S.; Del Pozzo, W.; Riemenschneider, G.; Akcay, S.; Carullo, G.; Damour, T. Time-domain effective-one-body gravitational waveforms for coalescing compact binaries with nonprecessing spins, tides and self-spin effects. Phys. Rev. 2018, D98, 104052. [Google Scholar] [CrossRef]
- Lackey, B.D.; Bernuzzi, S.; Galley, C.R.; Meidam, J.; Van Den Broeck, C. Effective-one-body waveforms for binary neutron stars using surrogate models. Phys. Rev. 2017, D95, 104036. [Google Scholar] [CrossRef]
- Bernuzzi, S. Neutron Star Merger Remnants. Gen. Rel. Grav. 2020, 52, 108. [Google Scholar] [CrossRef]
- Carullo, G.; Del Pozzo, W.; Veitch, J. Observational Black Hole Spectroscopy: A time-domain multimode analysis of GW150914. Phys. Rev. D 2019, 99, 123029, Erratum in Phys. Rev. D 2019, 100, 089903. [Google Scholar] [CrossRef]
- Isi, M.; Farr, W.M. Analyzing black-hole ringdowns. arXiv 2021, arXiv:2107.05609. [Google Scholar]
- Zackay, B.; Venumadhav, T.; Roulet, J.; Dai, L.; Zaldarriaga, M. Detecting gravitational waves in data with non-stationary and non-Gaussian noise. Phys. Rev. D 2021, 104, 063034. [Google Scholar] [CrossRef]
- Capano, C.D.; Cabero, M.; Westerweck, J.; Abedi, J.; Kastha, S.; Nitz, A.H.; Wang, Y.F.; Nielsen, A.B.; Krishnan, B. Observation of a multimode quasi-normal spectrum from a perturbed black hole. arXiv 2021, arXiv:2105.05238. [Google Scholar]
- Dietrich, T.; Radice, D.; Bernuzzi, S.; Zappa, F.; Perego, A.; Brügmann, B.; Chaurasia, S.V.; Dudi, R.; Tichy, W.; Ujevic, M. CoRe database of binary neutron star merger waveforms. Class. Quant. Grav. 2018, 35, 24LT01. [Google Scholar] [CrossRef]
- Gonzalez, A.; Zappa, F.; Breschi, M.; Bernuzzi, S.; Radice, D.; Adhikari, A.; Tichy, W. Second release of the CoRe database of binary neutron star merger waveforms. Class. Quant. Grav. 2023, 40, 085011. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Bulik, T. Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Rev. Rel. 2016, 21, 3, Erratum in Living Rev. Rel. 2016, 19, 1. [Google Scholar] [CrossRef]
- Acernese, F.A.; Agathos, M.; Agatsuma, K.; Aisa, D.; Allemou, N.; Allocca, A.; Meidam, J. Advanced Virgo: A second-generation interferometric gravitational wave detector. Class. Quant. Grav. 2015, 32, 024001. [Google Scholar] [CrossRef]
- LIGO Scientific Collaboration. LIGO Algorithm Library-LALSuite. Free Software (GPL). 2018. Available online: https://doi.org/10.7935/GT1W-FZ16 (accessed on 30 April 2023).
- Punturo, M.; Abernathy, M.; Acernese, F.; Allen, B.; Andersson, N.; Arun, K.; Barone, F.; Barr, B.; Barsuglia, M.; Beker, M. The third generation of gravitational wave observatories and their science reach. Class. Quant. Grav. 2010, 27, 084007. [Google Scholar] [CrossRef]
- Hild, S. Beyond the Second Generation of Laser-Interferometric Gravitational Wave Observatories. Class. Quant. Grav. 2012, 29, 124006. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Breschi, M.; Carullo, G.; Bernuzzi, S. Pre/Post-Merger Consistency Test for Gravitational Signals from Binary Neutron Star Mergers. Particles 2023, 6, 731-738. https://doi.org/10.3390/particles6030045
Breschi M, Carullo G, Bernuzzi S. Pre/Post-Merger Consistency Test for Gravitational Signals from Binary Neutron Star Mergers. Particles. 2023; 6(3):731-738. https://doi.org/10.3390/particles6030045
Chicago/Turabian StyleBreschi, Matteo, Gregorio Carullo, and Sebastiano Bernuzzi. 2023. "Pre/Post-Merger Consistency Test for Gravitational Signals from Binary Neutron Star Mergers" Particles 6, no. 3: 731-738. https://doi.org/10.3390/particles6030045
APA StyleBreschi, M., Carullo, G., & Bernuzzi, S. (2023). Pre/Post-Merger Consistency Test for Gravitational Signals from Binary Neutron Star Mergers. Particles, 6(3), 731-738. https://doi.org/10.3390/particles6030045