The Particle-Tracking Simulation of a New Photocathode RF Gun in the Free-Electron Laser Facility, KU-FEL
Abstract
:1. Introduction
2. Methods and Parameters
3. Results and Discussions
3.1. Study on the Availability of the DCD Method
3.2. Study on the Electron-Beam Properties at the Undulator
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zen, H.; Kii, T.; Masuda, K.; Ohgaki, H.; Yamazaki, T. Development of IR-FEL facility for Energy Science in Kyoto University. Infrared Phys. Technol. 2008, 51, 382–385. [Google Scholar] [CrossRef]
- Zen, H.; Suphakul, S.; Kii, T.; Masuda, K.; Ohgaki, H. Present Status and Perspectives of Long Wavelength Free Electron Lasers at Kyoto University. Phys. Procedia 2016, 84, 47. [Google Scholar]
- Hajima, R. Few-cycle Infrared Pulse Evolving in FEL Oscillators and Its Application to High-Harmonic Generation for Attosecond Ultraviolet and X-ray Pulses. Atoms 2021, 9, 15. [Google Scholar] [CrossRef]
- Pelletier, J.; Pomot, C. Work Function of Sintered Lanthanum Hexaboride. Appl. Phys. Lett. 1979, 34, 249. [Google Scholar] [CrossRef]
- O’Shea, O.P.G.; Lancaster, J.A.; Sachtschale, R. Radio Frequency Photoinjector using LaB6 cathode and a nitrogen drive laser. Appl. Phys. Lett. 1998, 73, 411. [Google Scholar] [CrossRef]
- Bamford, D.J.; Bakshi, M.H.; Deacon, D.A.G. The Search for Rugged, Efficient Photocathode Materials. Nucl. Instrum. Methods A 1992, 318, 377–380. [Google Scholar] [CrossRef]
- Mogren, S.; Reifenberger, R. Thermionic and Threshold Photoemission Energy Distributions from LaB6(110). Surf. Sci. 1987, 186, 232–246. [Google Scholar] [CrossRef]
- Boussoukaya, M.; Bergeret, H.; Chehab, R.; Leblond, B. Pulsed Photocurrents from Lanthanum Hexaboride Cathodes in the ns Regime. Nucl. Instrum. Methods A 1988, 264, 131–134. [Google Scholar] [CrossRef]
- Torgasin, K.; Morita, K.; Zen, H.; Masuda, K.; Katsurayama, T.; Murata, T.; Suphakul, S.; Yamashita, H.; Nogi, T.; Kii, T.; et al. Thermally Assisted Photoemission Effect on CeB6 and LaB6 for Application as Photocathodes. Phys. Rev. Accel. Beams 2017, 20, 073401. [Google Scholar] [CrossRef] [Green Version]
- Zen, H.; Suphakul, S.; Kii, T.; Ohgaki, H.; Kuroda, R.; Taira, T. Development of Photocathode Drive Laser System for RF Guns in KU-FEL. In Proceedings of the 36th International Free Electron Laser Conference, Basel, Switzerland, 25–29 August 2014; pp. 828–831. [Google Scholar]
- Zen, H.; Ohgaki, H. Upgrade of Photocathode Drive Laser System for Long Macro-pulse Photocathode Operation of KU-FEL. In Proceedings of the 16th Annual Meeting of Particle Accelerator Society of Japan, Kyoto, Japan, 31 July–3 August 2019; pp. 786–788. (In Japanese). [Google Scholar]
- Zen, H.; Ohgaki, H.; Hajima, R. Record High Extraction Efficiency of Free Electron Laser Oscillator. Appl. Phys. Express 2020, 13, 102007. [Google Scholar] [CrossRef]
- Zen, H.; Hajima, R.; Ohgaki, H. Full Characterization of Superradiant Pulses Generated from a Free-Electron Laser Oscillator. Sci. Rep. 2023, 13, 6350. [Google Scholar] [CrossRef]
- Piovella, N. Transient regime and superradiance in a short-pulse free-electron-laser oscillator. Phys. Rev. E 1995, 51, 5147. [Google Scholar] [CrossRef]
- Piovella, N.; Chaix, P.; Shvets, G.; Jaroszynski, D. Analytical theory of short-pulse free-electron laser oscillator. Phys. Rev. E 1995, 52, 5470. [Google Scholar] [CrossRef]
- Bakker, R.J.; Knippels, G.M.H.; van der Meer, A.F.G.; Oepts, D.; Jaroszynski, D.A.; van Amersfoort, P.W. Dynamic Cavity Desynchronization of a Free-Electron Laser Rasonator. Phys. Rev. E 1993, 48, R3256. [Google Scholar] [CrossRef]
- Alley, R.; Bharadwaj, V.; Clendenin, J.; Emma, P.; Fisher, A.; Frisch, J.; Kotseroglou, T.; Miller, R.H.; Palmer, D.T.; Schmerge, J.; et al. The Design for the LCLS RF Photoinjector. Nucl. Instrum. Methods A 1999, 429, 324–331. [Google Scholar] [CrossRef]
- Penco, G.; Trovò, M.; Lidia, S. The RF Injector for the Fermi@elettra Seeded X-ray FEL. In Proceedings of the 27th International Free Electron Laser Conference, Palo Alto, CA, USA, 21–26 August 2005; pp. 620–623. [Google Scholar]
- Hong, J.; Han, J.-H.; Park, S.J.; Jung, Y.G.; Kim, D.E.; Kang, H.-S.; Pflueger, J. A Study on Low Emittance Injector and Undulator for PAL-XFEL. High Power Laser Sci. Eng. 2015, 3, e21. [Google Scholar] [CrossRef] [Green Version]
- Kuroda, R.; Sei, N.; Yasumoto, M.; Toyokawa, H.; Ogawa, H.; Koike, M.; Yamada, K. Generation of 0.1 THz Coherent Synchrotron Radiation with Compact S-band Linac at AIST. Infrared Phys. Technol. 2008, 51, 390–393. [Google Scholar] [CrossRef]
- Liu, W.-X.; Huang, W.-H.; Du, Y.-C.; Yan, L.-X.; Wu, D.; Tang, C.-X. Terahertz Coherent Transition Radiation based on an Ultrashort Electron Bunching Beam. Chin. Phys. B 2011, 20, 074102. [Google Scholar] [CrossRef]
- Kan, K.; Yang, J.; Ogata, A.; Kondoh, T.; Gohdo, M.; Shibata, H.; Yoshida, Y. Generation of Terahertz Waves Using Ultrashort Electron Beams from a Photocathode Radio-Frequency Gun Linac. Electron. Commun. Jpn. 2015, 99, 22–31. [Google Scholar] [CrossRef]
- Krainara, S.; Zen, H.; Chatani, S.; Kii, T.; Ohgaki, H. Properties of THz Coherent Undulator Radiation Generated from a Compact Accelerator Source at Kyoto University. Rev. Sci. Instrum. 2019, 90, 103307. [Google Scholar] [CrossRef]
- Tadenuma, Y.; Sakaue, K.; Toida, T.; Nishida, M.; Brameld, M.; Murakami, T.; Yanagisawa, R.; Washio, M.; Kuroda, R. Generation of Coherent THz Cherenkov Radiation by Electron Bunch Tilt Control. Phys. Rev. Accel. Beams 2022, 25, 110102. [Google Scholar] [CrossRef]
- Fukuda, M.; Araki, S.; Deshpande, A.; Higashi, Y.; Honda, Y.; Sakaue, K.; Sasao, N.; Taniguchi, T.; Terunuma, N.; Urakawa, J. Upgrade of the Accelerator for the Laser Undulator Compact X-ray Source (LUCX). Nucl. Instrum. Methods A 2011, 637, S67–S71. [Google Scholar] [CrossRef]
- Yang, J.; Gen, K.; Naruse, N.; Sakakibara, S.; Yoshida, Y. A Compact Ultrafast Electron Diffractometer with Relativistic Femtosecond Electron Pulses. Quantum Beam Sci. 2020, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Palmer, D.T.; Miller, R.H.; Wnick, H.; Wang, X.J.; Batchelor, K.; Woodle, M.H.; BenZvi, I. Microwave Measurements and Beam Dynamics Simulations of the BNL/SLAC/UCLA Emittance-compensated 1.6-cell Photocathode RF Gun. In Proceedings of the SPIE’s 1995 International Symposium on Optical Science, Engineering, and Instrumentation, San Diego, CA, USA, 9–14 July 1995; Volume 2522, p. 514. [Google Scholar]
- Pirez, E.; Musumeci, P.; Maxson, J.; Alesini, D. S-band 1.4 Cell Photoinjector Design for High Brightness Beam Generation. Nucl. Instrum. Methods A 2017, 865, 109–113. [Google Scholar] [CrossRef]
- Song, Y.; Yang, J.; Wang, J.; Urakawa, J.; Takatomi, T.; Fan, K. Development of a 1.4-cell RF photocathode gun for single-shot MeV ultrafast electron diffraction devices with femtosecond resolution. Nucl. Instrum. Methods A 2022, 1031, 166602. [Google Scholar] [CrossRef]
- Pulsar Physics and the General Particle Tracer (GPT) Code. Available online: https://www.pulsar.nl/gpt/index.html (accessed on 3 April 2023).
- Yang, J.; Kan, K.; Kondoh, T.; Gohdo, M.; Yoshida, Y.; Takatomi, T.; Urakawa, J. Upgrade of RF gun based Linear Accelerators at Osaka University. In Proceedings of the 11th Annual Meeting of Particle Accelerator Society of Japan, Aomori, Japan, 8–12 August 2014; pp. 857–861. (SAP118) (In Japanese). [Google Scholar]
- Menzel, M.T.; Stokes, H.K. User’s Guide Poisson/Superfish Group of Codes; Los Alamos National Laboratory: Los Alamos, NM, USA, 1987.
- Zen, H.; Ohgaki, H.; Hajima, R. High-Extraction-Efficiency Operation of a Midinfrared Free Electron Laser Enabled by Dynamic Cavity Desynchronization. Phys. Rev. Accel. Beams 2020, 23, 070701. [Google Scholar] [CrossRef]
- Carlsten, B.E. New Photoelectric Injector Design for the Los Alamos National Laboratory XUV FEL accelerator. Nucl. Instrum. Methods A 1989, 285, 313–319. [Google Scholar] [CrossRef] [Green Version]
- Miyajima, T.; (High Energy Accelerator Research Organization, Tsukuba, Ibaraki, Japan). Private communication, 2021.
- Zen, H.; Nakajima, T.; Kii, T.; Masuda, K.; Ohgaki, H. Pulse Duration Measurement of Pico-second DUV Photocathode Driving Laser by Autocorrelation Technique using Two-photon Absorption in Bulk Material. In Proceedings of the 38th International Free Electron Laser Conference, Santa Fe, NM, USA, 20–25 August 2017; pp. 439–441. [Google Scholar]
- Aseyev, S.A.; Ryabov, E.A.; Mironov, B.N.; Ischenko, A.A. The Development of Ultrafast Electron Microscopy. Crystals 2020, 10, 452. [Google Scholar] [CrossRef]
- Palmer, D.T.; Wang, X.J.; Miller, R.H.; Babzien, M.; Ben-Zvi, I.; Pellegrini, C.; Sheehan, J.; Skaritka, J.; Winick, H.; Woodle, M.; et al. Emittance studies of the BNL/SLAC/UCLA 1.6 cell photocathode RF gun. In Proceedings of the 1997 Particle Accelerator Conference, Vancouver, BC, Canada, 16 May 1997; pp. 2687–2689. [Google Scholar]
- Ohgaki, H.; Kii, T.; Masuda, K.; Sasaki, S.; Shiiyama, T.; Zen, H.; Kuriki, M.; Terunuma, N.; Urakawa, J.; Kamiya, Y.; et al. Numerical Evaluation of Oscillator FEL with Multibunch Photo-cathode RF-gun in Kyoto University. In Proceedings of the 29th International Free Electron Laser Conference 2007, Novosibirsk, Russia, 26–31 August 2007; pp. 390–393. [Google Scholar]
Beam Parameter | 1.6-Cell RF Gun | 4.5-Cell RF Gun [39] |
---|---|---|
Bunch Charge | 1 nC | 120 pC |
RMS Bunch Length | 0.42 ps | 0.43 ps |
Peak Current | 1011 A | 120 A |
RMS Energy Spread | 1.1% | 0.4% |
RMS Normalized Emittance | 5.8 mm-mrad | 4.7 mm-mrad |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Zen, H.; Ohgaki, H. The Particle-Tracking Simulation of a New Photocathode RF Gun in the Free-Electron Laser Facility, KU-FEL. Particles 2023, 6, 638-646. https://doi.org/10.3390/particles6020037
Zhao Y, Zen H, Ohgaki H. The Particle-Tracking Simulation of a New Photocathode RF Gun in the Free-Electron Laser Facility, KU-FEL. Particles. 2023; 6(2):638-646. https://doi.org/10.3390/particles6020037
Chicago/Turabian StyleZhao, Yuhao, Heishun Zen, and Hideaki Ohgaki. 2023. "The Particle-Tracking Simulation of a New Photocathode RF Gun in the Free-Electron Laser Facility, KU-FEL" Particles 6, no. 2: 638-646. https://doi.org/10.3390/particles6020037
APA StyleZhao, Y., Zen, H., & Ohgaki, H. (2023). The Particle-Tracking Simulation of a New Photocathode RF Gun in the Free-Electron Laser Facility, KU-FEL. Particles, 6(2), 638-646. https://doi.org/10.3390/particles6020037