Energy-Momentum Complex in Higher Order Curvature-Based Local Gravity
Abstract
:1. Introduction
2. Several Definitions of Gravitational Energy–Momentum Pseudo-Tensor in General Relativity
2.1. Einstein Energy–Momentum Complex
2.2. Landau–Lifshitz Energy–Momentum Pseudo-Tensor
2.3. Møller Energy–Momentum Complex
2.4. Papapetrou Energy–Momentum Pseudo-Tensor
2.5. Weinberg Gravitational Energy–Momentum Pseudo-Tensor
3. Energy–Momentum Complex in Curvature Based Gravity
3.1. The Gravitational Energy–Momentum “Tensor”’ of Order Lagrangian
3.2. Non-Covariance of Gravitational Energy–Momentum Tensor
3.3. The Gravitational Energy–Momentum Pseudo-Tensor of Gravity
3.4. The Gravitational Energy–Momentum Pseudo-Tensor of Higher Order Gravity
3.5. The Weak-Field Limit of Energy–Momentum Pseudo-Tensor
4. Power Emitted Carried by a Gravitational Wave
4.1. The Average of the Energy–Momentum Pseudo-Tensor
5. Energy–Momentum Complex of Gravity in Palatini Approach
5.1. The Gravitational Pseudo-Tensor of Gravity in Palatini Formulation
6. Cosmological Applications Both in Palatini and Metric Approach in Gravity
6.1. Palatini Formalism
6.2. Metric Approach
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. The Average of and Terms
Appendix A.2. The Polarizations of Gravitational Waves
References
- Landau, L.D.; Lifshitz, E.M. The Classical Theory of Fields; Pergamon Press: Oxford, UK, 1971. [Google Scholar]
- Einstein, A. Zur Allgemeinen Relativitätstheorie. Sitzungsber. Preus. Akad. Wiss. Berlin (Math. Phys.) 1915, 47, 778–779. [Google Scholar]
- Hestenes, D. Energy–Momentum Complex in General Relativity and Gauge Theory. Adv. Appl. Clifford Algebra 2021, 31, 51. [Google Scholar] [CrossRef]
- Goldberg, J.N. Conservation Laws in General Relativity. Phys. Rev. 1958, 111, 315. [Google Scholar] [CrossRef]
- Bak, D.; Cangemi, D.; Jackiw, R. Energy-momentum conservation in gravity theories. Phys. Rev. D 1994, 49, 5173. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.L.; Lightman, A.P.; Ni, W.T. Conservation laws and variational principles in metric theories of gravity. Phys. Rev. D 1974, 10, 1685. [Google Scholar] [CrossRef]
- Rosen, N. The Energy of the Universe. Gen. Rel. Grav. 1994, 26, 319. [Google Scholar] [CrossRef]
- Lessner, G. Møller’s energy-momentum complex—Once again. Gen. Relativ. Gravit. 1996, 28, 527. [Google Scholar] [CrossRef]
- Palmer, T.N. Gravitational energy-momentum: The Einstein pseudotensor reexamined. Gen. Relat. Gravit. 1980, 12, 149. [Google Scholar] [CrossRef]
- Ferraris, M.; Francaviglia, M. Covariant first-order Lagrangians, energy-density and superpotentials in general relativity. Gen. Relat. Gravit. 1990, 22, 965–985. [Google Scholar] [CrossRef]
- Capozziello, S.; De Laurentis, M. Extended Theories of Gravity. Phys. Rept. 2011, 509, 167. [Google Scholar] [CrossRef]
- Capozziello, S.; Francaviglia, M. Extended Theories of Gravity and their Cosmological and Astrophysical Applications. Gen. Rel. Grav. 2008, 40, 357. [Google Scholar] [CrossRef]
- Bogdanos, C.; Capozziello, S.; De Laurentis, M.; Nesseris, S. Massive, massless and ghost modes of gravitational waves from higher-order gravity. Astropart. Phys. 2010, 34, 236. [Google Scholar] [CrossRef]
- Canfora, F.; Vilasi, G.; Vitale, P. Nonlinear gravitational waves and their polarization. Phys. Lett. B 2002, 545, 373. [Google Scholar] [CrossRef]
- Mikhail, F.I.; Wanas, M.I.; Hindawi, A.; Lashin, E.I. Energy-Momentum Complex in Møller’s Tetrad Theory Of Gravitation. Int. J. Theor. Phys. 1993, 32, 1627. [Google Scholar] [CrossRef]
- Multamaki, T.; Putaja, A.; Vilja, I.; Vagenas, E.C. Energy-momentum complexes in f(R) theories of gravity. Class. Quant. Grav. 2008, 25, 075017. [Google Scholar] [CrossRef]
- Capozziello, S.; Capriolo, M.; Transirico, M. The gravitational energy-momentum pseudo-tensor of higher order theories of gravity. Ann. Phys. 2017, 525, 1600376. [Google Scholar] [CrossRef]
- Capozziello, S.; Capriolo, M.; Transirico, M. The gravitational energy-momentum pseudo-tensor: The cases of f(R) and f(T) gravity. Int. J. Geom. Meth. Mod. Phys. 2018, 15, 1850164. [Google Scholar] [CrossRef]
- Capozziello, S.; Capriolo, M.; Caso, L. Weak field limit and gravitational waves in f(T, B) teleparallel gravity. Eur. Phys. J. C 2020, 80, 156. [Google Scholar] [CrossRef]
- Capozziello, S.; Capriolo, M.; Caso, L. Gravitational waves in higher order teleparallel gravity. Class. Quantum Grav. 2020, 37, 235013. [Google Scholar] [CrossRef]
- Xulu, S.S. The Energy-Momentum Problem in General Relativity. arXiv 2003, arXiv:hep-th/0308070. [Google Scholar] [CrossRef]
- Weinberg, S. Gravitation and Cosmology; Wiley: New York, NY, USA, 1972. [Google Scholar]
- Capozziello, S.; Stabile, A. Gravitational waves in fourth order gravity. Astrophys. Space Sci. 2015, 358, 27. [Google Scholar] [CrossRef]
- Stelle, K.S. Classical Gravity with Higher Derivatives. Gen. Rel. Grav. 1978, 9, 353. [Google Scholar] [CrossRef]
- Capozziello, S.; Stabile, A.; Troisi, A. The Post-Minkowskian Limit of f(R)-gravity. Int. J. Theor. Phys. 2010, 49, 1251. [Google Scholar] [CrossRef]
- Greiner, R.; Reinhardt, J. Field Quantization; Springer: Berlin, Germany, 1996. [Google Scholar]
- Capozziello, S.; Faraoni, V. Beyond Einstein Gravity; FTP 170; Springer: New York, NY, USA, 2011. [Google Scholar]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; Freeman and Co.: New York, NY, USA, 1971. [Google Scholar]
- Straumann, N. General Relativity; Springer: New York, NY, USA, 2013. [Google Scholar]
- Pauli, W. Theory of Relativity; Pergamon Press: Oxford, UK, 1958. [Google Scholar]
- Dirac, P.A.M. General Theory of Relativity; Princeton University Press: Princeton, BJ, USA, 1996. [Google Scholar]
- Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Spacetime; Cambridge University Press: Cambridge, MA, USA, 1973. [Google Scholar]
- Schutz, B. A First Course in General Relativity; Cambridge University Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Ohanian, H.C.; Ruffini, R. Gravitation and Spacetime; Cambridge University Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Stephani, H. General Relativity; Cambridge University Press: Cambridge, MA, USA, 1990. [Google Scholar]
- Modesto, L.; Rachwal, L. Universally finite gravitational and gauge theories. Nucl. Phys. B 2015, 900, 147. [Google Scholar] [CrossRef]
- Giaccari, S.; Modesto, L. Classical and Quantum Nonlocal Supergravity. arXiv 2016, arXiv:1605.03906. [Google Scholar]
- Briscese, F.; Pucheu, M.L. Palatini formulation of non-local gravity. Int. J. Geom. Methods Mod. Phys. 2017, 14, 1750019. [Google Scholar] [CrossRef]
- Modesto, L.; Shapiro, I.L. Super-renormalizable quantum gravity with complex ghosts. Phys. Lett. B 2016, 755, 279. [Google Scholar] [CrossRef]
- Modesto, L. Super-renormalizable or finite Lee-Wick quantum gravity. Nucl. Phys. B 2016, 909, 584. [Google Scholar] [CrossRef]
- Quandt, I.; Schmidt, H.J. The Newtonian limit of fourth and higher order gravity. Astron. Nachr. 1991, 312, 97. [Google Scholar]
- Capozziello, S.; Capriolo, M.; Caso, L. Weak field limit and gravitational waves in higher order gravity. Int. J. Geom. Methods Mod. Phys. 2019, 16, 1950047. [Google Scholar] [CrossRef]
- Abedi, H.; Capozziello, S.; Capriolo, M.; Abbassi, A.M. Gravitational energy–momentum pseudo-tensor in Palatini and metric f(R) gravity. Ann. Phys. 2022, 439, 168796. [Google Scholar] [CrossRef]
- Allemandi, G.; Capone, M.; Capozziello, S.; Francaviglia, M. Conformal aspects of Palatini approach in extended theories of gravity. Gen. Rel. Grav. 2006, 38, 33–60. [Google Scholar] [CrossRef]
- Dick, R. Covariant conservation laws from the Palatini formalism. Int. J. Theor. Phys. 1993, 32, 109–120. [Google Scholar] [CrossRef]
- Barraco, D.E.; Dominguez, E.; Guibert, R. Conservation laws, symmetry properties, and the equivalence principle in a class of alternative theories of gravity. Phys. Rev. D 1999, 60, 044012. [Google Scholar] [CrossRef]
- Koivisto, T. Covariant conservation of energy momentum in modified gravities. Class. Quant. Grav. 2006, 23, 4289–4296. [Google Scholar] [CrossRef]
- Barragan, C.; Olmo, G.J.; Sanchis-Alepuz, H. Bouncing Cosmologies in Palatini f(R) Gravity. Phys. Rev. D 2009, 80, 024016. [Google Scholar] [CrossRef]
- Szydłowski, M.; Stachowski, A.; Borowiec, A.; Wojnar, A. Do sewn up singularities falsify the Palatini cosmology? Eur. Phys. J. C 2016, 76, 567. [Google Scholar] [CrossRef]
- Goheer, N.; Larena, J.; Dunsby, P.K.S. Power-law cosmic expansion in f(R) gravity models. Phys. Rev. D 2009, 80, 061301. [Google Scholar] [CrossRef]
- Buoninfante, L.; Lambiase, G.; Petruzziello, L. Quantum interference in external gravitational fields beyond General Relativity. Eur. Phys. J. C 2021, 81, 928. [Google Scholar] [CrossRef]
- Buoninfante, L.; Lambiase, G.; Miyashita, Y.; Takebe, W.; Yamaguchi, M. Generalized ghost-free propagators in nonlocal field theories. Phys. Rev. D 2020, 101, 084019. [Google Scholar] [CrossRef]
- Buoninfante, L.; Lambiase, G.; Yamaguchi, M. Nonlocal generalization of Galilean theories and gravity. Phys. Rev. D 2019, 100, 026019. [Google Scholar] [CrossRef]
- Buoninfante, L.; Ghoshal, A.; Lambiase, G.; Mazumdar, A. Transmutation of nonlocal scale in infinite derivative field theories. Phys. Rev. D 2019, 99, 044032. [Google Scholar] [CrossRef]
- Buoninfante, L.; Cornell, A.S.; Harmsen, G.; Koshelev, A.S.; Lambiase, G.; Mazumadra, A. Towards nonsingular rotating compact object in ghost-free infinite derivative gravity. Phys. Rev. D 2018, 98, 084041. [Google Scholar] [CrossRef]
- Buoninfante, L.; Lambiase, G.; Mazumdar, A. Ghost-free infinite derivative quantum field theory. Nucl. Phys. B 2019, 944, 114646. [Google Scholar] [CrossRef]
- Buoninfante, L.; Koshelev, A.S.; Lambiase, G.; Mazumdar, A. Classical properties of non-local, ghost- and singularity-free gravity. J. Cosmol. Astropart. Phys. 2018, 9, 034. [Google Scholar] [CrossRef]
- Capozziello, S.; Capriolo, M. Gravitational waves in non-local gravity. Class. Quantum Grav. 2021, 38, 175008. [Google Scholar] [CrossRef]
- Capozziello, S.; Capriolo, M.; Nojiri, S. Considerations on gravitational waves in higher-order local and non-local gravity. Phys. Lett. B 2020, 810, 135821. [Google Scholar] [CrossRef]
- Capriolo, M. Gravitational radiation in higher order non-local gravity. Int. J. Geom. Methods Mod. Phys. 2022. [Google Scholar] [CrossRef]
- Gottlober, S.; Schmidt, H.J.; Starobinsky, A.A. Sixth Order Gravity and Conformal Transformations. Class. Quant. Grav. 1990, 7, 893. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capozziello, S.; Capriolo, M.; Lambiase, G. Energy-Momentum Complex in Higher Order Curvature-Based Local Gravity. Particles 2022, 5, 298-330. https://doi.org/10.3390/particles5030026
Capozziello S, Capriolo M, Lambiase G. Energy-Momentum Complex in Higher Order Curvature-Based Local Gravity. Particles. 2022; 5(3):298-330. https://doi.org/10.3390/particles5030026
Chicago/Turabian StyleCapozziello, Salvatore, Maurizio Capriolo, and Gaetano Lambiase. 2022. "Energy-Momentum Complex in Higher Order Curvature-Based Local Gravity" Particles 5, no. 3: 298-330. https://doi.org/10.3390/particles5030026
APA StyleCapozziello, S., Capriolo, M., & Lambiase, G. (2022). Energy-Momentum Complex in Higher Order Curvature-Based Local Gravity. Particles, 5(3), 298-330. https://doi.org/10.3390/particles5030026