Image of the Electron Suggested by Nonlinear Electrodynamics Coupled to Gravity
Abstract
:1. Introduction. Electron Story
“The electron is inexhaustible”[1]
2. Electromagnetic Spinning Soliton of NED-GR
2.1. Basic Equations and Spacetime Structure
2.2. Dynamics of Electromagnetic Fields
3. Summary and Discussion
Funding
Conflicts of Interest
References
- Ilyin, V. Materialism and Empirio-Criticism; Zveno: Moscow, Russia, 1909. [Google Scholar]
- Abraham, M. Prinzipien der dynamik des electrons. Ann. Phys. 1903, 10, 105–179. [Google Scholar]
- Lorentz, H.A. Electromagnetic phenomena in a system moving with any velocity smaller than that of light. Proc. R. Neth. Acad. Arts Sci. 1904, 6, 809–831. [Google Scholar]
- Lorentz, H.A. Theory of Electrons, 2nd ed.; Dover: New York, NY, USA, 1952. [Google Scholar]
- Dirac, P.A.M. Classical theory of radiating electrons. Proc. R. Soc. Lond. 1938, A167, 148–169. [Google Scholar]
- Frenkel, J. Die Elektrodynamik des rotierenden Elektrons. Z. Phys. 1926, 37, 243–262. [Google Scholar] [CrossRef]
- Mathisson, M. Neue Mechanik materieller Systeme. Acta Phys. Pol. 1937, 6, 163–200. [Google Scholar]
- Kramers, L.H. Quantentheorie des Electron und der Strahlung; Akademische Verlagsgesellschaft: Lepzig, Germany, 1938. [Google Scholar]
- Hönl, H.; Papapetrou, A. Uber die innere Bewegung des Elektrons. Z. Phys. 1939, 112, 512–540. [Google Scholar] [CrossRef]
- Bhabha, H.J.; Corben, A.C. General classical theory of spinning particles in a Maxwell field. Proc. R. Soc. 1941, A178, 273. [Google Scholar]
- Bargman, V.; Michel, L.; Telegdxi, V.L. Precession of the polarization of particles moving in a homogeneous electromagnetic field. Phys. Rev. Lett. 1959, 2, 435–436. [Google Scholar] [CrossRef]
- Nash, P.L. A Lagrangian theory of the classical spinning electron. J. Math. Phys. 1984, 25, 2104–2108. [Google Scholar] [CrossRef]
- Plyushchay, M.S. Relativistic massive particle with higher curvatures as a model for the description of bosons and fermions. Phys. Lett. 1990, B235, 47–51. [Google Scholar] [CrossRef]
- Yee, K.; Bander, M. Equations of motion for spinning particles in external electromagnetic and gravitational fields. Phys. Rev. 1993, D48, 2797–2799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolte, J.; Keppeler, S. Semiclassical form factor for chaotic systems with spin. J. Phys. 1999, 32, 8863–8880. [Google Scholar] [CrossRef]
- Nesterenko, V.V. Singular Lagrangians with higher derivatives. J. Phys. A Math. Gen. 1989, 22, 1673–1687. [Google Scholar] [CrossRef]
- Rylov, Y.A. Spin and wave function as attributes of ideal fluid. J. Math. Phys. 1999, 40, 256–278. [Google Scholar] [CrossRef]
- Rivas, M. Kinematical Theory of Spinning Particles; Kluwer: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Rivas, M. The dynamical equation of the spinning electron. J. Phys. A Math. Gen. 2003, 36, 4703–4716. [Google Scholar] [CrossRef] [Green Version]
- Schrödinger, E. Über die kräftefreie Bewegung in der relativistischen Quantenmechanik. Sitzunber. Preuss. Akad. Wiss. Phys. Math. Kl. 1930, 24, 418–428. [Google Scholar]
- Weyssenhoff, J.; Raabe, A. Relativistic dynamics of spin fluids and spin-particles. Acta Phys. Pol. 1947, 9, 7–18. [Google Scholar]
- Pryce, M.H.L. The mass-centre in the restricted theory of relativity and its connexion with the quantum theory of elementary particles. Proc. R. Soc. 1948, A195, 62–81. [Google Scholar]
- Fleming, C.N. Covariant position operators, spin, and locality. Phys. Rev. 1965, B 137, 188–197. [Google Scholar] [CrossRef]
- Riewe, F. Generalized mechanics of a spinning particle. Lett. Nuovo Cim. 1971, 1, 807–808. [Google Scholar] [CrossRef]
- Barut, A.O.; Zanghí, N. Classical model of the Dirac electron. Phys. Rev. Lett. 1984, 52, 2009–2012. [Google Scholar] [CrossRef]
- Pavšič, M. Classical motion of membranes, strings and point particles with extrinsic curvature. Phys. Lett. 1988, B205, 231–236. [Google Scholar] [CrossRef]
- Pavšič, M.; Recami, E.; Rodrigues, W.A., Jr. Spin and electron structure. Phys. Lett. 1993, B318, 481–488. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; Mobed, N. Effects of space-time curvature on Spin-1/2 particle zitterbewegung. Class. Quant. Grav. 2009, 26, 185007. [Google Scholar] [CrossRef]
- Barut, A.O.; Bracken, A.J. The Zitterbewegung and the Internal Geometry of the Electron. Phys. Rev. 1981, D23, 2454. [Google Scholar]
- Staruszkiewicz, A. Fundamental relativistic rotator. Acta Phys. Pol. 2008, B1, 109–112. [Google Scholar]
- Kassandrov, V.; Markova, N.; Schäfer, G.; Wipf, A. On a model of a classical relativistic particle of constant and universal mass and spin. J. Phys. A Math. Theor. 2009, 42, 315204. [Google Scholar] [CrossRef]
- Dirac, P.A.M. A new classical theory of electrons. Proc. R. Soc. Lond. 1951, A209, 291–296. [Google Scholar]
- Dirac, P.A.M. An extensible model of the electron. Proc. R. Soc. Lond. 1962, A268, 57–67. [Google Scholar]
- Righi, R.; Venturi, G. Nonlinear approach to electrodynamics. Intern. J. Theor. Phys. 1982, 21, 63–82. [Google Scholar] [CrossRef]
- Rodrigues, W.A., Jr.; Vaz, J., Jr.; Recami, E. A Generalization of Dirac Non Linear Electrodynamics, and Spinning Charged Particles. Found. Phys. 1993, 23, 469–481. [Google Scholar] [CrossRef] [Green Version]
- Boyer, R.H. Rotating fluid masses in general relativity. Math. Proc. Camb. Phil. Soc. 1965, 61, 527–530. [Google Scholar] [CrossRef]
- Boyer, R.H. Rotating fluid masses in general relativity. II. Math. Proc. Camb. Phil. Soc. 1966, 62, 495–501. [Google Scholar] [CrossRef]
- Cohen, J.M. Note on the Kerr metric and rotating masses. J. Math. Phys. 1967, 8, 1477–1478. [Google Scholar] [CrossRef]
- Trümper, M. Einsteinsche Feldgleichungen für das axialsymmetrische stationäre Gravitiationsfeld im Innern einer starr rotierenden idealen Flüssigkeit. Z. Naturforschung 1967, 22a, 1347. [Google Scholar] [CrossRef]
- Newman, E.T.; Cough, E.; Chinnapared, K.; Exton, A.; Prakash, A.; Torrence, R. Metric of a Rotating, Charged Mass. J. Math. Phys. 1965, 6, 918–919. [Google Scholar] [CrossRef]
- Carter, B. Clobal structure of the Kerr family of gravitational fields. Phys. Rev. 1968, 174, 1559–1571. [Google Scholar] [CrossRef] [Green Version]
- Israel, W. Source of the Kerr metric. Phys. Rev. 1970, D2, 641–646. [Google Scholar] [CrossRef]
- Newman, E.T.; Janis, A.J. Note on the Kerr Spinning Particle Metric. J. Math. Phys. 1965, 6, 915–917. [Google Scholar] [CrossRef]
- Gürses, M.; Gürsey, F. Lorentz covariant treatment of the Kerr-Schild geometry. J. Math. Phys. 1975, 16, 2385–2390. [Google Scholar] [CrossRef] [Green Version]
- Kerr, R.P.; Schild, A. Some algebraically degenerate solutions of Einstein’s gravitational field equations. Proc. Symp. Appl. Math. 1965, 17, 199. [Google Scholar]
- Chandrasekhar, S. The Mathematical Theory of Black Holes; Clarendon Press: New York, NY, USA, 1983. [Google Scholar]
- Janis, A.I.; Newman, E.T. Structure of Gravitational Sources. J. Math. Phys. 1965, 6, 902–905. [Google Scholar] [CrossRef]
- Burinskii, A.Y. Some properties of the Kerr solution to low-energy string theory. Phys. Rev. 1995, D52, 5826–5831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burinskii, A. Structure of Spinning Particle suggested by Gravity, Supergravity and Low Energy String Theory. Czech. J. Phys. 2000, 50, 201–206. [Google Scholar] [CrossRef] [Green Version]
- Burinskii, A. Wonderful Consequences of the Kerr Theorem. Grav. Cosmol. 2005, 11, 301. [Google Scholar]
- Burinskii, A. Gravitational strings beyond quantum theory: Electron as a closed heterotic string. J. Phys. Conf. Ser. 2012, 361, 012032. [Google Scholar] [CrossRef]
- Burinskii, A. Stringlike structures in Kerr-Shild geometry. Theor. Math. Phys. 2013, 177, 1492–1504. [Google Scholar] [CrossRef]
- Krasiński, A. Ellipsoidal space-times, sources for the Kerr metric. Ann. Phys. 1978, 112, 22–40. [Google Scholar] [CrossRef]
- López, C.A. Material and electromagnetic sources of the Kerr-Newman geometry. Nuovo Cim. 1983, B76, 9–27. [Google Scholar] [CrossRef]
- Carter, B. Complete Analytic Extension of the Symmetry Axis of Kerr’s Solution of Einstein’s Equations. Phys. Rev. 1966, 141, 1242–1247. [Google Scholar] [CrossRef]
- Gautreau, R.L. A Kruskal-like extension of the Kerr metric along the symmetry axis. Nuovo Cim. 1967, A50, 120–128. [Google Scholar] [CrossRef]
- Hamity, V.H. An “interior” of the Kerr metric. Phys. Lett. 1976, A56, 77. [Google Scholar] [CrossRef]
- Tiomno, J. Electromagnetic field of rotating charged bodies. Phys. Rev. 1973, D7, 992–997. [Google Scholar] [CrossRef]
- López, C.A. Extended model of the electron in general relativity. Phys. Rev. 1984, D30, 313–316. [Google Scholar] [CrossRef]
- Grøn, Ø. Repulsive gravitation and electron models. Phys. Rev. 1985, D31, 2129. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.M.; Cohen, M.D. Exact fields of charge and mass distributions in general relativity. Nuovo Cim. 1969, 60, 241–248. [Google Scholar] [CrossRef]
- Tiwari, R.N.; Rao, J.R.; Kanakamedala, R.R. Electromagnetic mass models in general relativity. Phys. Rev. 1984, D30, 489. [Google Scholar] [CrossRef]
- Burinskii, A. Supersymmetric superconducting bag as a core of Kerr spinning particle. Grav. Cosmol. 2002, 8, 261. [Google Scholar]
- Burinskii, A. Kerr Spinning Particle, Strings, and Superparticle Models. Phys. Rev. 1998, D57, 2392–2396. [Google Scholar] [CrossRef] [Green Version]
- Burinskii, A.; Elizalde, E.; Hildebrandt, S.R.; Magli, G. Regular sources of the Kerr-Schild class for rotating and nonrotating black hole solutions. Phys. Rev. 2002, D65, 064039. [Google Scholar] [CrossRef] [Green Version]
- Burinskii, A. Kerr-Newman electron as spinning soliton. Intern. J. Mod. Phys. 2014, A29, 1450133. [Google Scholar] [CrossRef] [Green Version]
- Burinskii, A. Gravitating lepton bag model. J. Exper. Theor. Phys. 2015, 121, 194–205. [Google Scholar] [CrossRef] [Green Version]
- Burinskii, A. Source of the Kerr-Newman solution as a supersymmetric domain-wall bubble: 50 years of the problem. Phys. Lett. 2016, B754, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Burinskii, A. Supersymmetric bag model for unification of gravity with spinning particles. Phys. Part. Nucl. 2018, 49, 958. [Google Scholar] [CrossRef]
- Pope, T.; Hofer, W. Spin in the extended electron model. Front. Phys. 2017, 12, 128503. [Google Scholar] [CrossRef] [Green Version]
- Burinskii, A. Features of spinning gravity in particle physics: Supersymmetric core of the Kerr-Newman electron. J. Phys. Conf. Ser. 2019, 1275, 012031. [Google Scholar] [CrossRef]
- Burinskii, A.; Hildebrandt, S.R. New type of regular black hole solutions from nonlinear electrodynamics. Phys. Rev. 2002, D65, 104017. [Google Scholar]
- Ayon-Beato, E.; Garcia, A. New regular black hole solution from nonlinear electrodynamics. Phys. Lett. 1999, B464, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Born, M.; Infeld, L. Foundations of the new field theory. Proc. R. Soc. Lond. 1934, A144, 425–451. [Google Scholar] [CrossRef]
- Fradkin, E.S.; Tseytlin, A.A. Nonlinear electrodynamics from quantized strings. Phys. Lett. B 1985, 163, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Tseytlin, A.A. Vector field effective action in the open superstring theory. Nucl. Phys. B 1986, 276, 391–428. [Google Scholar] [CrossRef]
- Siberg, N.; Witten, E. String theory and noncommutative geometry. J. High Energy Phys. 1999, 1999, 032. [Google Scholar] [CrossRef] [Green Version]
- Coleman, S. Classical lumps and their quantum descendants. In New Phenomena in Subnuclear Physics; Zichichi, A., Ed.; Plenum: New York, NY, USA, 1977; p. 297. [Google Scholar]
- Ayon-Beato, E.; Garcia, A. Regular black hole in general relativity coupled to nonlinear electrodynamics. Phys. Rev. Lett. 1998, 80, 5056–5059. [Google Scholar] [CrossRef] [Green Version]
- Ayon-Beato, E.; Garcia, A. Non-singular charged black hole solution for non-linear source. Gen. Rel. Grav. 1999, 31, 629–633. [Google Scholar] [CrossRef] [Green Version]
- Ayon-Beato, E.; Garcia, A. Four parametric regular black hole solution. Gen. Rel. Grav. 2005, 37, 635–641. [Google Scholar] [CrossRef]
- Dymnikova, I. Regular electrically charged vacuum structures with de Sitter center in nonlinear electrodynamics coupled to general relativity. Class. Quant. Grav. 2004, 21, 4417–4428. [Google Scholar] [CrossRef]
- Salazar, H.; Garcia, A.; Plebański, J. Duality rotations and type D solutions to Einstein equations with nonlinear electromagnetic sources. J. Math. Phys. 1987, 28, 2171–2181. [Google Scholar] [CrossRef]
- Bronnikov, K.A. Regular magnetic black holes and monopoles from nonlinear electrodynamics. Phys. Rev. D 2001, 63, 044005. [Google Scholar] [CrossRef] [Green Version]
- Dymnikova, I.; Galaktionov, E.; Tropp, E. Existence of electrically charged structures with regular center in nonlinear electrodynamics minimally coupled to gravity. Adv. Math. Phys. 2015, 2015, 496475. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Classical Theory of Fields; Pergamon Press: Oxford, UK, 1975. [Google Scholar]
- Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Space-Time; Cambridge University Press: Cambridge, UK, 1973. [Google Scholar]
- Dymnikova, I.G. Vacuum nonsingular black hole. Gen. Rel. Grav. 1992, 24, 235–242. [Google Scholar] [CrossRef]
- Dymnikova, I.G. Algebraic structure of cosmological term in spherically symmetric solutions. Phys. Lett. 2000, B 472, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Dymnikova, I. The cosmological term as a source of mass. Class. Quant. Grav. 2002, 19, 725–740. [Google Scholar] [CrossRef] [Green Version]
- Dymnikova, I. Mass, Spacetime Symmetry, de Sitter Vacuum, and the Higgs Mechanism. Symmetry 2020, 12, 634. [Google Scholar] [CrossRef] [Green Version]
- Dymnikova, I. Spinning superconducting electrovacuum soliton. Phys. Lett. 2006, B639, 368–372. [Google Scholar] [CrossRef] [Green Version]
- Dymnikova, I.; Galaktionov, E. Regular rotating electrically charged black holes and solitons in nonlinear electrodynamics minimally coupled to gravity. Class. Quant. Grav. 2015, 32, 165015. [Google Scholar] [CrossRef]
- Dymnikova, I.; Galaktionov, E. Dynamics of Electromagnetic Fields and Structure of Regular Rotating Electrically Charged Black Holes and Solitons in Nonlinear Electrodynamics Minimally Coupled to Gravity. Universe 2019, 5, 205. [Google Scholar] [CrossRef] [Green Version]
- Dymnikova, I.; Galaktionov, E. Basic Generic Properties of Regular Rotating Black Holes and Solitons. Adv. Math. Phys. 2017, 2017, 1035381. [Google Scholar] [CrossRef] [Green Version]
- Landau, L.D.; Lifshitz, E.M. Electrodynamics of Continued Media; Pergamon Press: Oxford, UK, 1993. [Google Scholar]
- Dymnikova, I. Electromagnetic source for the Kerr-Newman geometry. Intern. J. Mod. Phys. 2015, D24, 1550094. [Google Scholar] [CrossRef]
- Dymnikova, I. Elementary Superconductivity in Nonlinear Electrodynamics Coupled to Gravity. J. Gravity. 2015, 2015, 904171. [Google Scholar] [CrossRef] [Green Version]
- Dymnikova, I. Origin of the magnetic momentum for regular electrically charged objects described by nonlinear electrodynamics coupled to gravity. Intern. J. Mod. Phys. 2019, D28, 1950011. [Google Scholar] [CrossRef]
- Nakamura, K.; Particle Data Group. Review of Particle Physics. J. Phys. G Nucl. Part. Phys. 2010, 37, 075021. [Google Scholar] [CrossRef] [Green Version]
- Dymnikova, I.; Sakharov, A.; Ulbricht, J. Minimal Length Scale in Annihilation. arXiv 2009, arXiv:0907.0629. [Google Scholar]
- Dymnikova, I.; Sakharov, A.; Ulbricht, J. Appearance of a minimal length in e+e- annihilation. Adv. High Energy Phys. 2014, 2014, 707812. [Google Scholar] [CrossRef] [Green Version]
- Dymnikova, I. De Sitter-Schwarzschild black hole: Its particlelike core and thermodynamical properties. Int. J. Mod. Phys. 1996, D5, 529–540. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dymnikova, I. Image of the Electron Suggested by Nonlinear Electrodynamics Coupled to Gravity. Particles 2021, 4, 129-145. https://doi.org/10.3390/particles4020013
Dymnikova I. Image of the Electron Suggested by Nonlinear Electrodynamics Coupled to Gravity. Particles. 2021; 4(2):129-145. https://doi.org/10.3390/particles4020013
Chicago/Turabian StyleDymnikova, Irina. 2021. "Image of the Electron Suggested by Nonlinear Electrodynamics Coupled to Gravity" Particles 4, no. 2: 129-145. https://doi.org/10.3390/particles4020013
APA StyleDymnikova, I. (2021). Image of the Electron Suggested by Nonlinear Electrodynamics Coupled to Gravity. Particles, 4(2), 129-145. https://doi.org/10.3390/particles4020013