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Abstract: We address the question of the intrinsic relation between mass, gravity, spacetime symmetry,
and the Higgs mechanism implied by involvement of the de Sitter vacuum as its basic ingredient
(a false vacuum). Incorporating the de Sitter vacuum, the Higgs mechanism implicitly incorporates
the generic relation between mass, gravity, and spacetime symmetry revealed in the frame of General
Relativity for all objects involving the de Sitter vacuum. We overview two observational cases which
display and verify this relation, the case known as “negative mass square problem” for neutrino,
and appearance of a minimal length scale in e+e− annihilation.
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1. Introduction

In the Higgs mechanism, fermions acquire masses via spontaneous symmetry breaking of
incorporated scalar fields so that a symmetry of the Lagrangian is not respected by the vacuum
states [1–3] (for overview [4,5]).

In the current literature, there exist proposals concerning the relation of mass with spacetime
symmetry [6,7] and the relation of mass with gravity [8].

The first proposal is developed on the basis of the concept of spontaneous breaking of the Lorentz
symmetry [6]. The related mechanism for mass generation [7] is called Higgs-like since it appeals
to the basic idea of the Higgs mechanism, but presents an alternative mechanism for generation of
fermion masses within the frame of the standard theory without introducing arbitrary parameters
for charged leptons. This mechanism does not involve the Yukawa couplings depending on arbitrary
parameters neither requires the preparation of right-handed singlets in advance to distinguish charged
leptons from neutrinos and generates the mass of a charged lepton by the vacuum expectation
values of gauge potentials. In this mechanism, a right-handed fermion is generated from a left-handed
doublet by absorbing the Nambu-Goldstone mesons generated by spontaneous breaking of the Lorentz
symmetry [7].

In the second proposal, a mass is related to gravity presented in the frame of ratio gravity
(RG) which considers gravity as gravitational field in the flat (Minkowski) spacetime; the curvature
originates from a deformation of a cross ratio, resulting in a mathematical structure similar to general
relativity ([9,10] and references therein). Mass generation is considered in a simple RG model in the
flat spacetime, in which equations admit two wave solutions coupled to a symmetry broken scalar
field. Theory based on the Lagrangian with massless fermion doublets coupling a scalar field, gives in
one-loop approximation the positive masses for the lepton and quark families originated by different
SU2 algebras of gauge transformation [8].
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In this paper, we point out the generic relation of the Higgs mechanism for mass generation with
gravity and spacetime symmetry, implicitly encoded in it due to involvement of the de Sitter vacuum
(as a false vacuum with p = −ρ), and overview two observational cases which display and verify this
relation. The point is that by invoking the spontaneous symmetry breaking for scalar fields, the Higgs
mechanism incorporates the de Sitter vacuum as its basic ingredient. The key point is that in the frame
of General Relativity mass of an object involving de Sitter vacuum as its basic ingredient (instead
of a central singularity), is generically related to gravity and breaking of spacetime symmetry [11].
Incorporating de Sitter vacuum, the Higgs mechanism actually implicitly incorporates the relation of a
particle mass with gravity and spacetime symmetry.

In all cases of appearance of the de Sitter vacuum in a compact object its stress-energy tensor in the
Einstein equations has the algebraic structure such that Tt

t = Tr
r , where Tt

t and Tr
r are the eigenvalues

of a stress-energy tensor in the comoving reference frame (co-rotating in the case of a spinning object),
identified as Tt

t = ρ; Tt
t = −pr; Tθ

θ = Tφ
φ = −p⊥ in the spherical and axial coordinates r, θ, φ centered

in the origin of an object (ρ is the density and pr, p⊥ are the principal pressures). In this case mass
of an object is generically related to its interior de Sitter vacuum, Tµ

ν = Λδ
µ
ν , Λ = 8πGρ(r → 0),

and breaking of spacetime symmetry from the de Sitter group in its origin to the Poincaré group at
infinity in the asymptotically flat spacetime, (de Sitter group) 0← r → ∞ (Poincare group) [11],
or to the de Sitter group with another value of vacuum density in the de Sitter background,
Tµ

ν = λδ
µ
ν , λ = 8πGρ(r → ∞), with λ < Λ (for a review [12]). This is the basic property of all

objects described by regular solutions of this class independently on a physical origin of a source term
in the Einstein equations. It is well known that there exists infinitely many distributions of matter
which contribute to a source term in the Einstein equation which behaves as a cosmological constant,
Tµν = (8πG)−1)Λgµν; Λ = 8πGρ = const (see, e.g., [13]), responsible for repulsive gravity due to
basic properties of the de Sitter geometry, independently of an underlying particular model. In the
case of the Higgs mechanism it is the scalar field in the state of the de Sitter vacuum that represents the
matter distribution responsible for the de Sitter geometry.

The direct consequence of involvement of de Sitter geometry generated by the de Sitter vacuum
with the non-zero energy density is the essential and intrinsic involvement of gravity in the interaction
vertex. The symmetry group induced by the Higgs mechanism in the gravito-electroweak vertex is the
de Sitter group, and particles in the vertex are presented by the eigenstates of the Casimir operators in
the de Sitter spacetime. The further evolution of particle states in the Minkowski background results
in the symmetry change. One can expect that the flavor could emerge due to breaking of spacetime
symmetry from the de Sitter group around the vertex [14,15].

Applying this approach to the observational case of neutrino mass-square differences, we find that
the de Sitter symmetry in the gravito-electroweak vertex leads to the exact bi-maximal mixing which
allows explaining the anomalous results known as “negative mass squared problem” for neutrino
and to estimate the gravito-electroweak scale from the data on the solar and atmospheric neutrino
which yields the same scale, Muni f ∼ (6− 15) TeV, as predicted by theories of gravito-electroweak
unification [14–16].

Another observational case is the appearance of a minimal length scale in e+e− annihilation.
Experimental data collected during fourteen years and worked out by the standard QED methods
with the O(α3) accuracy, reveal with a 5σ significance the existence of a characteristic minimal length
le = 1.57× 10−17 cm at the scale E = 1.253 TeV in the annihilation reaction e+e− → γγ(γ) [17,18].
It is the purely electromagnetic reaction and we can base analysis on the results obtained in the
nonlinear electrodynamics coupled to gravity (NED-GR) and satisfying the weak energy condition
(WEC) which requires non-negative energy density as measured by any local observer and ensures
positivity of density in the de Sitter interiors.

The NED-GR equations predict, for an arbitrary gauge invariant lagrangian without any
additional requirements except WEC, the existence of spinning electrically charged electromagnetic
solitons related by electromagnetic and gravitational interactions, with the gyromagnetic ratio g = 2 for
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a distant observer. They are described in the self-consistent way by the source-free NED-GR dynamical
equations; the source term in the Einstein equations is presented by the nonlinear electromagnetic
field itself which always has the algebraic structure Tt

t = Tr
r . The basic generic model-independent

feature of the electromagnetic soliton is the equatorial disk of the de Sitter vacuum with properties
of a perfect conductor and ideal diamagnetic [19]. Along the ring confining the de Sitter disk
flows a superconducting current which serves as a nondissipative source of the electromagnetic
fields responsible for an unlimited life time of a spinning object [20], and as the source of its
intrinsic magnetic momentum [21]. For electromagnetic spinning soliton with the parameters of
the electron, mea = h̄/2, g = 2, a superconducting ring current is evaluated as jφ = 79.277A [21].
Basic model-independent features of an electromagnetic soliton visualizing the electron as an extended
particle, can shed some light on the physical mechanism underlying appearance of a minimal length
scale in annihilation [18].

This case suggests and illustrates also another direct consequence of the intrinsic involvement
of the de Sitter vacuum in mass generation by the Higgs mechanism - the implicit promotion of an
extended (instead of a point-like) massive particle with the de Sitter vacuum trapped in its interior.

In what follows, we overview these two observational cases which show and verify the deep
intrinsic relation between the Higgs mechanism, gravity and spacetime symmetry existing due to
intrinsic involvement of the de Sitter vacuum.

In Section 2 we overview the case of negative mass-squared difference for neutrinos, and in
Section 3 the case of the minimal length in annihilation and its possible explanation by the basic
properties of spinning electrically charged electromagnetic soliton. Section 4 contains conclusions.

2. Spacetime Symmetry as Origin of Mass-Square Differences for Neutrino and
Gravito-Electroweak Scale

In particle physics theory, masses of particles are exactly zero only if they are protected by
the unbroken gauge symmetry, for example the photon is protected by U(1) gauge symmetry of
electromagnetism, associated with the conservation of the electric charge. There is no corresponding
exact gauge symmetry to protect the lepton number, so it is expected to be violated and neutrinos to
acquire masses. This is the generally accepted interpretation of the observed neutrino oscillations,
eventually due to mixing the non-degenerate mass eigenstates [22,23]. The origin of particle masses is
expected to be found at energies ∼103 GeV [22].

The appearance of the de Sitter vacuum in the interaction region, induced by the Higgs mechanism
intrinsically involving false vacuum, requires the description of a particle state by the eigenstates of
the Casimir operators in the de Sitter spacetime.

In the interaction vertex, a particle is described by an eigenstate of the de Sitter Casimir invariants,
|I′1, I′2〉 which are the eigenvalues of the de Sitter Casimir operators I1 and I2 [24]. To study influence
of de Sitter vacuum on a mass we need I1 which reads

I1 = −ΠµΠµ − 1
2r2

0
Jµν Jµν (1)

where

Πµ =

(
1 +

r2 − c2t2

4r2
0

)
Pµ +

1
2r2

0
xν Jµν. (2)

The scale r0 is the characteristic de Sitter radius related to the vacuum density ρ0 as r2
0 =

3c2/(8πGρ0). In the interaction region r2 − c2t2 � r2
0 [14], and the operator I1 is approximated by

I1 ≈ −PµPµ − 1
r2

0

(
J2 −K2

)
(3)
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where Jij = −Jji = εijk Jk and Ji0 = −J0i = −Ki, the indices i, j, k take the values 1, 2, 3. The operators J
are generators of rotation and K are generators of Lorentz boosts:

JR = h̄
σ

2
, KR = −ih̄

σ

2
; JL = h̄

σ

2
, KL = +ih̄

σ

2
(4)

for the right-handed and left-handed fields, respectively. Here σ denotes the Pauli matrices.
This gives for the Casimir operator I1 and its eigenvalues which are denoted by the prime

I1 ≈ −− PµPµ − h̄2

2r2
0

σ2; I′1 = µ2c2 ± h̄2

2r2
0

. (5)

where the additional term±h̄2/2r2
0 is related to the eigenvalues of the unit matrix which is the product

of the Pauli matrices σ. De Sitter spacetime has the same maximal symmetry as the Minkowski
spacetime, since it is spacetime of the constant (positive) curvature which is its only but essential
difference from the Minkowski spacetime. In the case when its curvature radius r0 → ∞ (Minkowski
spacetime) the additional term disappears.

When the state |I′1〉 propagates in the Minkowski space, it appears as a linear superposition of
two different mass eigenstates [14]

m2
1 = µ2 +

h̄2

2c2r2
0

, m2
2 = µ2 − h̄2

2c2r2
0

(6)

with the equal weights. The de Sitter symmetry in the gravito-electroweak vertex produces an exact
bi-maximal mixing for neutrinos. For h̄2/(2r2

0) > µ2c2, m2
2 becomes negative.

De Sitter bi-maximal mixing offers the natural explanation [16] for the anomalous results referred
to as the “negative mass square problem”. The average value given by the Particle Data Group in
1994 [25] m2

ν = −54± 30 eV2/c4 displays a shift to the unphysical region. Later measurements confirm
this effect [26–33], e.g., m2

νe
= −22± 4.8 eV2/c4 [27].

The data on the solar and atmospheric neutrino yield, in two-flavor mixing approximation,
the following values of mass-squared difference for the neutrino oscillation [23]

∆m2
atm = 2.5× 10−3 eV2; ∆m2

sol = 6.9× 10−5 eV2 (7)

which allow relating the gravito-electroweak unification scale from the observational data. With taking
into account r2

0 = 3c2/(8πGρ0), the mass-squared difference reads

∆m2 =
h̄2

c2r2
0
=

8π

3
ρ0

ρPl
m2

Pl (8)

for both the right and left handed fields [14].
Identifying ρ0 as the gravito-electroweak scale Muni f , we obtain the relation which connects the

mass-squared difference with the unification scale [14]

∆m2 =
8π

3

(Muni f

mPl

)4

m2
Pl , (9)

and the unification scale is immediately read off from (9) as

Muni f =

[
3

8π

(
∆m2

m2
Pl

)]1/4

mPl . (10)

For the mass-squared differences of neutrinos produced by the de Sitter mixing, the mass-squared
difference for atmospheric and solar neutrino data in (7) yield the unification scale

Muni f (atm) ' 14.5 TeV; Muni f (sol) ' 5.9 TeV (11)
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These values correspond to r0(atm) = 0.4× 10−3 cm, and r0(sol) = 2.3× 10−3 cm, which justifies
accuracy of approximation (3): for a particle with mass < m >νe= 0.39 eV, characteristic geometrical
size rs ∝ (r2

0rg)1/3 (where rg = 2Gmc−2) is rs ∼ 10−23, and the Compton size λc = h̄/mc is λc ∼
10−5 cm.

Estimates for the gravito-electroweak scale (11) appear at the same scale as predicted by theories
of the gravito-electroweak unification [34–36].

3. Minimal Length Scale in e+e− Annihilation

3.1. Observational Case

Research on the annihilation reaction e+e− → γγ(γ)has been carried out since 1989 to 2003 with
the data from VENUS, TOPAZ, ALEPH, DELPHI, L3 and OPAL at energies from

√
s = 55 GeV to

207 GeV where
√

s is the center-of-mass energy. It resulted in the limit on the maximal resolution at
the energy E = 1.253 TeV by the length scale le ' 1.57× 10−17 cm with the 5σ significance [17,18].
The 2.6σ effect was reported for the e+e− → e+e−(γ)reaction [37]. In our case the higher significance
resulted from the richer statistics with including in the χ2 test the most extensive available data set,
which ultimately allowed to get the convincing minimum in the χ2 curve shown in Figure 1 [17,18].

The reaction e+e− → γγ(γ)is purely electromagnetic. It proceeds via the exchange of a virtual
electron in the t- and u-channels with the forbidden s-channel, and is not interfered by the Z0 decay.
Differential cross sections have been measured at the energies ranging from

√
s = 55 GeV to 207

GeV [38–46]. The calculations in the frame of QED-α3 with the radiative corrections up to O(α3)

and comparison of the QED predictions with the experimental data has been carried out [47] by
constraining the models with an excited electron replacing the virtual electron [48–50] and with
the deviation from QED due to an effective interaction with the non-standard e+e−γ couplings
and e+e−γγ contact terms [51–53]. Applying the standard QED methods assumes a scattering
center as a point. For an extended particle, the QED cross section would be modified provided
that the characteristic particle size exceeds the test distances (corresponding to the CM-scattering
energies). For the electron, both its Compton size λe = h̄/(mec) = 3.9× 10−11 cm and its classical
electromagnetic radius re = e2/(mec2) = 2.8× 10−13 cm are much larger than the characteristic length
le = 1.57× 10−17 cm appeared in the χ2 test. The applied QED hypotheses predict an increase in the
total QED-α3 cross-section. Contrary to the QED predictions, the χ2 fit displays with the 5σ significance,
the minimum with the negative fit parameter P = (1/Λ4)best = −(4.05± 0.73)× 10−13 GeV−4 [17,18],
where Λ is the QED cutoff parameter.

4Λ1/

-0.5 -0.4 -0.3 -0.2 -0.1 -0 0.1 0.2 0.3 0.4 0.5

-9
10×

2 χ
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200
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Figure 1. A minimum in the χ2 fit with P = 1/Λ4.
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The minimum in the χ2 fit corresponds to the distance of the closest approach of annihilating
particles, le = 1.57 × 10−17 cm at the energy E = 1.253 TeV. This case suggests a description of
annihilating particles as extended objects and requires some idea about their internal structure. Story
of an extended electron goes back to its discovery by Sir Joseph John Thomson in 1897. The early
models of an extended electron involving a charge distribution, encountered the problem of preventing
an electron from scattering apart by the Coulomb repulsion, which enforced to introduce cohesive forces
of non-electromagnetic origin (the Poincaré stress) [54] (for a review [18]). At present time various
comprehensive models have been developed without appealing to a charge distribution ([20,55–58]
and references therein).

To look for a physical mechanism responsible for appearance of the minimal length in annihilation
by involving gravity and the de Sitter vacuum which is able to prevent a formation of singularities
(and related divergences of physical quantities) by its intrinsic negative pressure, we appeal to the
relevant generic model-independent feature of a spinning electrically charged NED-GR soliton—its
interior de Sitter vacuum [19] (for a review [59–61]).

3.2. Basic Features of Spinning Electromagnetic Soliton

In nonlinear electrodynamics developed by Born and Infeld with the aim (i) to describe particles
and electromagnetic field in the frame of one physical entity and (ii) to avoid the divergences of
physical quantities [62], electromagnetic energy was made finite by imposing an upper cut-off on the
electric field related to the electron radius, but geometry remained singular [62]. Five decades later
NED theories were identified as the effective low-energy limits of the string/M-theories [63–65].

Both basic points of the Born-Infeld program can be realized in the self-consistent way in nonlinear
electrodynamics minimally coupled to gravity. Source-free NED-GR equations admit the class of regular
solutions, which describe regular electrically charged objects [19,59,66] including electromagnetic
spinning solitons defined, following Coleman [67], as non-singular non-dissipative particle-like structures
keeping themselves together by their self-interaction (in this case electromagnetic and gravitational).

The NED-GR dynamical equations are obtained with the action

S =
1

16πG

∫
d4x
√
−g[R−L(F)]; F = FµνFµν (12)

where R is the scalar curvature, and Fµν = ∂µ Aν − ∂ν Aµ is the electromagnetic field.
The gauge-invariant electromagnetic Lagrangian L(F) is an arbitrary function of the field invariant F.
The Lagrangian L(F) and its derivative LF = dL(F)/dF must have the Maxwell limits in the weak
field region (details and subtleties of the Lagrange dynamics for regular electrically charged structures
have been analyzed in [68]).

The source-free dynamic field equations for electromagnetic field read

∇µ(LFFµν) = 0; ∇µ
∗Fµν = 0; ?Fµν =

1
2

ηµναβFαβ; η0123 = − 1√−g
(13)

where g is the determinant of the metric tensor gµν.
The stress-energy tensor of a nonlinear electromagnetic field, calculated in the standard way with

the electromagnetic lagrangian L(F)

Tµ
ν = −2LFFναFµα +

1
2

δ
µ
νL (14)

provides the source of the gravitational field for the Einstein equations Tµ
ν = −8πGTµ

ν .
Stress-energy tensors of electromagnetic fields have the algebraic structure such as Tt

t = Tr
r (pr = −ρ).

Spherically symmetric metrics typically applied for constructing axially symmetric solutions which
describe spinning objects, belong to the Kerr-Schild class ([60] and references therein)
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ds2 = g(r)dt2 − dr2

g(r)
− r2dΩ2; g(r) = 1− 2M(r)

r
; M(r) = 4π

∫ r

0
ρ(x)x2dx (15)

and can be transformed in general model-independent setting to the axially symmetric metrics by
the Gürses-Gürsey formalism [69] (which includes the Newman-Janis algorithm [70] most frequently
applied for obtaining the axial metrics). In the Boyer-Lindquist coordinates the metric has the form

ds2 =
2 f − Σ

Σ
dt2 +

Σ
∆

dr2 + Σdθ2 − 4a f sin2 θ

Σ
dtdφ +

(
r2 + a2 +

2 f a2 sin2 θ

Σ

)
sin2 θdφ2 (16)

where the Lorentz signature is [−+++], and

Σ = r2 + a2 cos2 θ; ∆ = r2 + a2 − 2 f (r); f (r) = rM(r). (17)

In the case when spherical solutions satisfy WEC, M(r) monotonically grows from M(r) =

4πρ(0)r3/3 as r → 0 and toM(r) = m− e2/2r as r → ∞ [66], where m is the total gravitational mass
of an object, and the metric (16) asymptotically goes to the Kerr-Newman metric with the associated
electromagnetic potential Ai = −(er/Σ)[1; 0, 0,−a sin2 θ] [71]. The parameter e appears as a constant of
integration identified as an electric charge by the asymptotic Coulomb behavior in the weak field regime.

The Kerr-Newman metric represents the exterior fields of a rotating charged object as seen by a
distant observer. As was discovered by Carter [72], the basic parameter a couples with the mass m
producing the angular momentum J = ma, and with the charge e producing an asymptotic magnetic
momentum µ = ea, which yields the same gyromagnetic ratio g = 2 as predicted by the Dirac equation
for a spinning particle [72].

In the axially symmetric geometry the surfaces r = constant are the confocal ellipsoids

r4 − (x2 + y2 + z2 − a2)r2 − a2z2 = 0 (18)

which for r = 0 degenerate to the equatorial disk

x2 + y2 ≤ a2, z = 0 (19)

confined by the ring x2 + y2 = a2, z = 0 [73].
The eigenvalues of the stress-energy tensor (14) in the co-rotating references frame with the

angular velocity ω(r) = uφ/ut = a/(r2 + a2), are defined as Σ2ρ = 2( f ′r − f ) = r4ρ̃(r); pr = −ρ;
Σ2 p⊥ = 2( f ′r− f )− f ′′Σ [69], where p⊥ is the transversal pressure, and ρ̃(r) is the density profile of a
related spherical solution. The prime denotes the derivative with respect to r.

In the equatorial plane (p⊥ + ρ) = −r3ρ̃′(r)/2Σ [19]. For the spherical solutions satisfying WEC
regularity requires rρ̃′(r)→ 0 as r → 0 [66]. As a result, on the disk (19) p⊥ + ρ = 0→ p⊥ = pr = p,
and the equation of state

p = −ρ (20)

represents the rotating de Sitter vacuum in the corotating frame [19].
Introducing the field vectors E = {Fβ0}; D = {LFF0β}; B = {∗Fβ0}; H = {LF

∗F0β}, we can write
the field Equation (13) in the conventional form of the Maxwell equations ∇ ·D = 0; ∇×H = ∂D/∂t;
∇ · B = 0; ∇× E = −∂B/∂t.

The electric induction D and magnetic induction B are connected with the electric and magnetic
field intensities E and H by Dα = εα

βEβ; Bα = µα
βHβ, where ε

β
α and µ

β
α are the tensors of the electric

and magnetic permeability [19]



Symmetry 2020, 12, 634 8 of 13

εr
r =

(r2 + a2)

∆
LF; εθ

θ = LF; µr
r =

(r2 + a2)

∆LF
; µθ

θ =
1
LF

. (21)

The field Equations (13) form the system of four equations for two independent functions.
The condition of compatibility for this system [59], and the dynamical Equations (13) are satisfied
by the functions [19,59] F01 = −e(Σ2LF)

−1(r2 − a2 cos2 θ); F02 = e(Σ2LF)
−1a2r sin 2θ; F31 =

a sin2 θF10; aF23 = (r2 + a2)F02 in the strongly nonlinear regime, which is the case on the disk (19)
where the density achieves the maximum. Applying these solutions we obtain [19,59]

LF =
2e2

Σ2(p⊥ + ρ)
; F = − (p⊥ + ρ)2Σ2

2e2 . (22)

As a result on the disk LF → ∞, the magnetic permeability µr
r = µθ

θ = 1/LF vanishes, the electric
permeability εr

r = εθ
θ = LF tends to infinity, and the disk (19) displays the properties of a perfect

conductor and ideal diamagnetic [19,59].
The surface current is defined by 4π jk = [eα

(k)Fαβnβ], where eα
(k) are the base vectors related to the

coordinates on the disk t, φ, 0 ≤ ξ ≤ π/2; the vector nα = δ1
α(1 + q2/a2)−1/2 cos ξ is the unit normal

to the disk, and the symbol [..] denotes a jump across the disk in the direction orthogonal to it [74].
On the de Sitter disk µr

r = µθ
θ = µ, this gives [20]

jφ = − ec
2πa

√
1 + e2/a2 sin2 ξ

µ

cos3 ξ
. (23)

Due to the zero magnetic permeability µ, the surface current jφ zeros out over the whole disk
except the ring ξ = π/2, where both terms in the second fraction vanish independently, as a result
the current can be any and amount to a non-zero total value, which is the general criterion for a
superconducting current [75]. Such a current flows without resistance in the region with the perfect
conductor behavior, and represents a non-dissipative source of the electromagnetic fields, which can in
principle ensure a practically unlimited life time of an object [20].

For the electromagnetic soliton with the parameters of the electron mac = h̄/2. In the region of
the distant observers r � λe we get [20]

Er = −
e
r2

(
1− h̄2

m2
e c2

3 cos2 θ

4r2

)
; Eθ =

eh̄2

m2
e c2

sin 2θ

4r3 ; (24)

Br = − eh̄
mec

cos θ

r3 = 2µe
cos θ

r3 ; Bθ = −µe
sin θ

r4 . (25)

The Planck constant enters here in accordance with discovered by Carter ability of the
Kerr-Newman asymptotics to represent the electron as seen by a distant observer [72]. In terms
of the Coleman lump, the leading term in Er evidently presents the Coulomb law as the classical limit
h̄ = 0, while the higher terms give the quantum corrections [20].

A circular superconducting current (23) produces a magnetic momentum µin which is intrinsic
since the dynamical Equations (13) are source-free [21]. This concerns all regular spinning electrically
charged NED-GR objects.

At approaching the disk (19), r → 0 and the function f (r) in (16) achieves the de Sitter
asymptotic 2 f (r) → r4/r2

0; r2
0 = 3/8πGρ(0), the disk is thus intrinsically flat [19] and the magnetic

momentum is simply µin = c−1 jφS where S is the disk area. Expressing the current (23) in the form
jφ = −(ec/2πa)

√
1 + e2/a2U where U is an uncertain coefficient, we rewrite the magnetic momentum

as µin = −(eS/2πa)
√

1 + q2/a2U. When the intrinsic magnetic moment of the spinning object is
known, the uncertain coefficient U can be restored from µin. For an electromagnetic soliton with the
parameters of the electron this gives jφ = 79.277 A [21].
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3.3. Origin of the Minimal Length in Annihilation

The outlined above results are obtained by analysis of regular solutions of source-free NED-GR
equations for an arbitrary gauge-invariant Lagrangian. Asymptotic solutions for electromagnetic
fields in the interior region determine the behavior of fields on the disk, while the stress-energy tensor
calculated with these asymptotic solutions determines the equation of state and generic behavior of
geometry on the de Sitter disk in the model-independent way.

The fundamental generic property of an electromagnetic spinning soliton with the positive energy density
is the existence of the de Sitter vacuum disk in its deep interior.

This basic property of the electromagnetic soliton suggests some idea about the origin of the
minimal length scale le. The evident feature of annihilation process is that at its certain stage a region of
interaction is neutral and spinless. Keeping in mind de Sitter interiors of annihilating particles, we can
roughly model it by a spherical lump with the de Sitter vacuum interior, asymptotically Schwarzschild
as r → ∞.

The basic inherent property of the de Sitter geometry is the repulsive gravity. The gravitational
acceleration, ä ∝ −a(ρ + 3p) for a homogeneous and isotropic medium, in the de Sitter vacuum with
p = −ρ changes the sign and becomes repulsive. Due to this fundamental property, de Sitter vacuum
is able to power the inflationary dynamics in the very early Universe and to support its observed
accelerated expansion.1 For all structures with the de Sitter interior, there exists the characteristic zero
gravity surface r∗ ∼ (r2

0rg)1/3 at which the strong energy condition (ρ + ∑ pk ≥ 0) is violated and
beyond which the gravitational acceleration becomes repulsive [78,79].

Adopting for the interior de Sitter vacuum the electroweak scale EEW = 246 GeV related to
the electron mass [4], we obtain the de Sitter radius r0 = 1.374 cm. For a lump with the energy
E ' 1.253 TeV, the characteristic radius of zero gravity surface is r∗ ∼ 0.86× 10−16 cm, so that the scale
le = 1.57× 10−17 cm fits inside a region where gravity is repulsive. The minimal length scale le can
be thus understood as a distance at which electromagnetic attraction is stopped by the gravitational
repulsion of the interior de Sitter vacuum.

Regular NED-GR solutions provide a de Sitter cutoff on self-interaction whose numerical value
depends on the choice of a density profile. Qualitatively it can be evaluated by [66]

e2

r4
c
' 8πGρ0 =

3
r2

0
. (26)

This gives rc ' 1.05× 10−17 cm as a characteristic distance where electromagnetic attraction
is balanced by de Sitter gravitational repulsion which is sufficiently close to the minimal length le
revealed in experiments [18].

4. Conclusions

The Higgs mechanism endows a particle with a mass via spontaneous symmetry breaking of
intrinsically incorporated scalar fields in a false vacuum state which satisfies the equation of state for
the de Sitter vacuum, p = −ρ.

The direct consequence of the involvement of the de Sitter vacuum with the non-zero energy
density is the essential and generic involvement of gravity presented by the de Sitter geometry,
and breaking of spacetime symmetry from the de Sitter group.

1 Description of both these stages in the Universe evolution in the frame of a single self-consistent theoretical scheme
is possible by introducing a cosmological term with the reduced symmetry, pr = −ρ (Tt

t = Tr
r ) which represents the

time-dependent and spatially inhomogeneous vacuum dark energy. Relaxation of the cosmological constant from the initial
big value to the presently observed value can be described in general setting by the spherically symmetric cosmology of the
Lemaître class ([76,77] and references therein).
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This picture is confirmed by two observational cases. The first concerns the negative mass
square problem for neutrino. The symmetry group implicitly induced by the Higgs mechanism
around the gravito-electroweak vertex is the de Sitter group, and particles in the vertex are
described by the eigenstates of the Casimir operators in the de Sitter spacetime. Their further
propagation in the Minkowski spacetime involves breaking the spacetime symmetry to the Poincaré
group. This leads to an exact bi-maximal mixing for neutrino which provides an explanation for
negative mass square problem and allows connecting the mass-squared differences for neutrino
with the gravito-electroweak unification scale and to read off the energy values characterizing this
scale from the solar and atmospheric neutrino data (in accordance with predictions of theories of
gravito-electroweak unification).

The second observational case concerns the appearance of the minimal length scale in the e+e−

annihilation reaction which can be approached by applying nonlinear electrodynamics coupled
to gravity. NED-GR dynamical equations admit the class of regular solutions describing in the
self-consistent way the electrically charged spinning electromagnetic solitons whose basic generic
property is the existence of the de Sitter vacuum disks in their deep interiors. The minimal length scale
in e+e− annihilation is related to the distance of the closest approach of annihilating particles at which
their electromagnetic attraction is balanced by the gravitational repulsion of the intrinsically involved
de Sitter vacuum.

All of this allows concluding that the deep generic relation of a particle mass with gravity and
spacetime symmetry is implicitly encoded in the Higgs mechanism. Incorporating the de Sitter
vacuum, the Higgs mechanism implicitly incorporates the generic relation between mass, gravity,
and spacetime symmetry breaking revealed in the frame of General Relativity for all objects involving
de Sitter vacuum.
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