Constraints on CP-Odd ALP Couplings from EDM Limits of Fermions
Abstract
:1. Introduction
2. Constraints for Leptophilic Scenario
3. Constraints for Hadrophilic Scenario
4. Constraints on ALP Coupling with -Boson and Electron
5. Bounds on Combination of Couplings
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Generation of Coupling of ALPs with SM Fermions
References
- Peccei, R.D.; Quinn, H.R. CP Conservation in the Presence of Instantons. Phys. Rev. Lett. 1977, 38, 1440. [Google Scholar] [CrossRef] [Green Version]
- Peccei, R.D.; Quinn, H.R. Constraints Imposed by CP Conservation in the Presence of Instantons. Phys. Rev. D 1977, 16, 1791. [Google Scholar] [CrossRef]
- Weinberg, S. A New Light Boson? Phys. Rev. Lett. 1978, 40, 223. [Google Scholar] [CrossRef]
- Wilczek, F. Problem of Strong P and T Invariance in the Presence of Instantons. Phys. Rev. Lett. 1978, 40, 279. [Google Scholar] [CrossRef]
- Alekhin, S.; Altmannshofer, W.; Asaka, T.; Batell, B.; Bezrukov, F.; Bondarenko, K.; Boyarsky, A.; Choi, K.Y.; Corral, C.; Craig, N.; et al. A facility to Search for Hidden Particles at the CERN SPS: The SHiP physics case. Rept. Prog. Phys. 2016, 79, 124201. [Google Scholar] [CrossRef] [Green Version]
- Castillo-Felisola, O.; Corral, C.; Kovalenko, S.; Schmidt, I.; Lyubovitskij, V.E. Axions in gravity with torsion. Phys. Rev. D 2015, 91, 085017. [Google Scholar] [CrossRef] [Green Version]
- Georgi, H.; Kaplan, D.B.; Randall, L. Manifesting the Invisible Axion at Low-energies. Phys. Lett. 1986, 169B, 73. [Google Scholar] [CrossRef]
- Bauer, M.; Neubert, M.; Thamm, A. Collider Probes of Axion-Like Particles. J. High Energy Phys. 2017, 1712, 044. [Google Scholar] [CrossRef] [Green Version]
- Bauer, M.; Heiles, M.; Neubert, M.; Thamm, A. Axion-Like Particles at Future Colliders. Eur. Phys. J. C 2019, 79, 74. [Google Scholar] [CrossRef] [Green Version]
- Irastorza, I.G.; Redondo, J. New experimental approaches in the search for axion-like particles. Prog. Part. Nucl. Phys. 2018, 102, 89. [Google Scholar] [CrossRef] [Green Version]
- Gibbons, G.W.; Maeda, K.I. Black Holes and Membranes in Higher Dimensional Theories with Dilaton Fields. Nucl. Phys. B 1988, 298, 741. [Google Scholar] [CrossRef]
- Garfinkle, D.; Horowitz, G.T.; Strominger, A. Charged black holes in string theory. Phys. Rev. D 1991, 43, 3140. [Google Scholar] [CrossRef] [PubMed]
- Shapere, A.D.; Trivedi, S.; Wilczek, F. Dual dilaton dyons. Mod. Phys. Lett. A 1991, 6, 2677. [Google Scholar] [CrossRef]
- Gutsche, T.; Lyubovitskij, V.E.; Schmidt, I.; Vega, A. Dilaton in a soft-wall holographic approach to mesons and baryons. Phys. Rev. D 2012, 85, 076003. [Google Scholar] [CrossRef] [Green Version]
- Faessler, A.; Gutsche, T.; Ivanov, M.A.; Lyubovitskij, V.E.; Wang, P. Pion and sigma meson properties in a relativistic quark model. Phys. Rev. D 2003, 68, 014011. [Google Scholar] [CrossRef] [Green Version]
- Giacosa, F.; Gutsche, T.; Lyubovitskij, V.E. On the two-photon decay width of the sigma meson. Phys. Rev. D 2008, 77, 034007. [Google Scholar] [CrossRef] [Green Version]
- Branz, T.; Gutsche, T.; Lyubovitskij, V.E. Strong and radiative decays of the scalars f(0)(980) and a(0)(980) in a hadronic molecule approach. Phys. Rev. D 2008, 78, 114004. [Google Scholar] [CrossRef] [Green Version]
- Clark, T.E.; Leung, C.N.; Love, S.T. Properties of the Dilaton. Phys. Rev. D 1987, 35, 997. [Google Scholar] [CrossRef]
- Ahmed, A.; Mariotti, A.; Najjari, S. A light dilaton at the LHC. J. High Energy Phys. 2020, 2005, 093. [Google Scholar] [CrossRef]
- Liu, L.; Qiao, H.; Wang, K.; Zhu, J. A Light Scalar in the Minimal Dilaton Model in Light of LHC Constraints. Chin. Phys. C 2019, 43, 023104. [Google Scholar] [CrossRef] [Green Version]
- Bandyopadhyay, P.; Coriano, C.; Costantini, A.; Rose, L.D. Bounds on the Conformal Scale of a Minimally Coupled Dilaton and Multi-Leptonic Signatures at the LHC. J. High Energy Phys. 2016, 1609, 084. [Google Scholar] [CrossRef] [Green Version]
- Megias, E.; Pujolas, O.; Quiros, M. On dilatons and the LHC diphoton excess. J. High Energy Phys. 2016, 1605, 137. [Google Scholar] [CrossRef] [Green Version]
- Goncalves, V.P.; Sauter, W.K. Probing the dilaton in central exclusive processes at the LHC. Phys. Rev. D 2015, 91, 035004. [Google Scholar] [CrossRef] [Green Version]
- Efrati, A.; Kuflik, E.; Nussinov, S.; Soreq, Y.; Volansky, T. Constraining the Higgs-Dilaton with LHC and Dark Matter Searches. Phys. Rev. D 2015, 91, 055034. [Google Scholar] [CrossRef] [Green Version]
- Jung, D.W.; Ko, P. Higgs-dilaton(radion) system confronting the LHC Higgs data. Phys. Lett. B 2014, 732, 364. [Google Scholar] [CrossRef] [Green Version]
- Cox, P.; Medina, A.D.; Ray, T.S.; Spray, A. Radion/Dilaton-Higgs Mixing Phenomenology in Light of the LHC. J. High Energy Phys. 2014, 1402, 032. [Google Scholar] [CrossRef] [Green Version]
- Barger, V.; Ishida, M.; Keung, W.Y. Differentiating the Higgs boson from the dilaton and the radion at hadron colliders. Phys. Rev. Lett. 2012, 108, 101802. [Google Scholar] [CrossRef] [Green Version]
- Abu-Ajamieh, F.; Lee, J.S.; Terning, J. The light radion window. J. High Energy Phys. 2018, 1810, 050. [Google Scholar] [CrossRef] [Green Version]
- Kirpichnikov, D.V.; Lyubovitskij, V.E.; Zhevlakov, A.S. Implication of hidden sub-GeV bosons for the (g − 2)μ, 8Be-4He anomaly, proton charge radius, EDM of fermions, and dark axion portal. Phys. Rev. D 2020, 102, 095024. [Google Scholar] [CrossRef]
- Dzuba, V.; Flambaum, V.; Samsonov, I.; Stadnik, Y. New constraints on axion-mediated P, T-violating interaction from electric dipole moments of diamagnetic atoms. Phys. Rev. D 2018, 98, 035048. [Google Scholar] [CrossRef] [Green Version]
- Stadnik, Y.; Dzuba, V.; Flambaum, V. Improved Limits on Axionlike-Particle-Mediated P, T -Violating Interactions between Electrons and Nucleons from Electric Dipole Moments of Atoms and Molecules. Phys. Rev. Lett. 2018, 120, 013202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamanaka, N.; Sahoo, B.; Yoshinaga, N.; Sato, T.; Asahi, K.; Das, B. Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation. Eur. Phys. J. A 2017, 53, 54. [Google Scholar] [CrossRef]
- Yanase, K.; Yoshinaga, N.; Higashiyama, K.; Yamanaka, N. Electric dipole moment of 199Hg atom from P, CP-odd electron-nucleon interaction. Phys. Rev. D 2019, 99, 075021. [Google Scholar] [CrossRef] [Green Version]
- Flambaum, V.; Pospelov, M.; Ritz, A.; Stadnik, Y. Sensitivity of EDM experiments in paramagnetic atoms and molecules to hadronic CP violation. Phys. Rev. D 2020, 102, 035001. [Google Scholar] [CrossRef]
- Pospelov, M.; Ritz, A. CKM benchmarks for electron electric dipole moment experiments. Phys. Rev. D 2014, 89, 056006. [Google Scholar] [CrossRef] [Green Version]
- Essig, R.; Harnik, R.; Kaplan, J.; Toro, N. Discovering New Light States at Neutrino Experiments. Phys. Rev. D 2010, 82, 113008. [Google Scholar] [CrossRef] [Green Version]
- Lees, J.P.; Poireau, V.; Tisser, V.; Grauges, E.; Palano, A.; Eigen, G.; Brown, D.N.; Kolomensky, Y.G.; Koch, H.; et al. Search for a muonic dark force at BABAR. Phys. Rev. D 2016, 94, 011102. [Google Scholar] [CrossRef] [Green Version]
- Armengaud, E.; Arnaud, Q.; Augier, C.; Benoit, A.; Bergé, L.; Bergmann, T.; Blümer, J.; Broniatowski, A.; Brudanin, V.; Camus, P.; et al. Axion searches with the EDELWEISS-II experiment. JCAP 2013, 1311, 067. [Google Scholar] [CrossRef]
- Andreev, V.; Hutzler, N.R.; ACME Collaboration. Improved limit on the electric dipole moment of the electron. Nature 2018, 562, 355. [Google Scholar]
- Dolan, M.J.; Kahlhoefer, F.; McCabe, C.; Schmidt-Hoberg, K. A taste of dark matter: Flavour constraints on pseudoscalar mediators. J. High Energy Phys. 2015, 1503, 171. [Google Scholar] [CrossRef] [Green Version]
- Anastassopoulos, V.; Andrianov, S.; Baartman, R.; Baessler, S.; Bai, M.; Benante, J.; Berz, M.; Blaskiewicz, M.; Bowcock, T.; Brown, K.; et al. A Storage Ring Experiment to Detect a Proton Electric Dipole Moment. Rev. Sci. Instrum. 2016, 87, 115116. [Google Scholar] [CrossRef] [PubMed]
- Bennett, G.W.; Bousquet, B.; Brown, H.N.; Bunce, G.; Carey, R.M.; Cushman, P.; Danby, G.T.; Debevec, P.T.; Deile, M.; Deng, H.; et al. An Improved Limit on the Muon Electric Dipole Moment. Phys. Rev. D 2009, 80, 052008. [Google Scholar] [CrossRef] [Green Version]
- Graner, B.; Chen, Y.; Lindahl, E.G.; Heckel, B.R. Reduced Limit on the Permanent Electric Dipole Moment of Hg199. Phys. Rev. Lett. 2016, 116, 161601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirch, K.; Schmidt-Wellenburg, P. Search for electric dipole moments. EPJ Web Conf. 2020, 234, 01007. [Google Scholar] [CrossRef]
- Bouchiat, C. A Limit on Scalar-Pseudoscalar Weak Neutral Currents from a New Interpretation of Atomic Electric Dipole Measurements. Phys. Lett. B 1975, 57, 284. [Google Scholar] [CrossRef]
- Hardy, E.; Lasenby, R. Stellar cooling bounds on new light particles: Plasma mixing effects. J. High Energy Phys. 2017, 2, 033. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
V. Kirpichnikov, D.; E. Lyubovitskij, V.; S. Zhevlakov, A. Constraints on CP-Odd ALP Couplings from EDM Limits of Fermions. Particles 2020, 3, 719-728. https://doi.org/10.3390/particles3040047
V. Kirpichnikov D, E. Lyubovitskij V, S. Zhevlakov A. Constraints on CP-Odd ALP Couplings from EDM Limits of Fermions. Particles. 2020; 3(4):719-728. https://doi.org/10.3390/particles3040047
Chicago/Turabian StyleV. Kirpichnikov, Dmitri, Valery E. Lyubovitskij, and Alexey S. Zhevlakov. 2020. "Constraints on CP-Odd ALP Couplings from EDM Limits of Fermions" Particles 3, no. 4: 719-728. https://doi.org/10.3390/particles3040047
APA StyleV. Kirpichnikov, D., E. Lyubovitskij, V., & S. Zhevlakov, A. (2020). Constraints on CP-Odd ALP Couplings from EDM Limits of Fermions. Particles, 3(4), 719-728. https://doi.org/10.3390/particles3040047