Neutron Star Cooling Within the Equation of State With Induced Surface Tension
Abstract
:1. Introduction
2. Equation of State
3. Cooling Processes
4. Results
Description of the Cas A Temperature Evolution
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lattimer, J.M.; Pethick, C.J.; Prakash, M.; Haensel, P. Direct URCA process in neutron stars. Phys. Pev. Lett. 1991, 66, 2701. [Google Scholar] [CrossRef]
- Page, D.; Geppert, U.; Weber, F. The cooling of compact stars. Nucl. Phys. A 2006, 777, 497. [Google Scholar] [CrossRef]
- Potekhin, A.Y.; Pons, J.A.; Page, D. Neutron stars-cooling and transport. Sp. Sci. Rev. 2015, 191, 239. [Google Scholar] [CrossRef] [Green Version]
- Andronic, A.; Braun-Munzinger, P.; Stachel, J. Hadron production in central nucleus nucleus collisions at chemical freeze-out. Nucl. Phys. A 2006, 772, 167. [Google Scholar] [CrossRef] [Green Version]
- Bugaev, K.A.; Sagun, V.V.; Ivanytskyi, A.I.; Yakimenko, I.P.; Nikonov, E.G.; Taranenko, A.V.; Zinovjev, G.M. Going beyond the second virial coefficient in the hadron resonance gas model. Nucl. Phys. A 2018, 970, 133. [Google Scholar] [CrossRef]
- Sagun, V.V.; Ivanytskyi, A.I.; Bugaev, K.A.; Mishustin, I.N. The statistical multifragmentation model for liquid-gas phase transition with a compressible nuclear liquid. Nucl. Phys. A 2014, 924, 24. [Google Scholar] [CrossRef] [Green Version]
- Sagun, V.V.; Bugaev, K.A.; Ivanytskyi, A.I.; Yakimenko, I.P.; Nikonov, E.G.; Taranenko, A.V.; Greiner, C.; Blaschke, D.B.; Zinovjev, G.M. Hadron resonance gas model with induced surface tension. Eur. Phys. J. A 2018, 54, 100. [Google Scholar] [CrossRef] [Green Version]
- Sagun, V.V.; Bugaev, K.A.; Ivanytskyi, A.I.; Oliinychenko, D.R.; Mishustin, I.N. Effects of induced surface tension in nuclear and hadron matter. Eur. Phys. J. Web Conf. 2017, 137, 09007. [Google Scholar] [CrossRef] [Green Version]
- Ivanytskyi, A.I.; Bugaev, K.A.; Sagun, V.V.; Bravina, L.V.; Zabrodin, E.E. Influence of flow constraints on the properties of the critical endpoint of symmetric nuclear matter. Phys. Rev. C 2018, 97, 064905. [Google Scholar] [CrossRef] [Green Version]
- Danielewicz, P.; Lacey, R.; Lynch, W.G. Determination of the equation of state of dense matter. Science 2002, 198, 1592. [Google Scholar] [CrossRef] [Green Version]
- Sagun, V.V.; Lopes, I.; Ivanytskyi, A.I. The Induced surface tension contribution for the equation of state of neutron stars. Astrophys. J. 2019, 871, 157. [Google Scholar] [CrossRef] [Green Version]
- Sagun, V.; Lopes, I.; Ivanytskyi, A. Neutron stars meet constraints from high and low energy nuclear physics. Nucl. Phys. A 2019, 982, 883. [Google Scholar] [CrossRef]
- Sagun, V.V.; Lopes, I. Neutron stars: A novel equation of state with induced surface tension. Astrophys. J. 2017, 850, 75. [Google Scholar] [CrossRef] [Green Version]
- Haensel, P.; Zdunik, J.L. Non-equilibrium processes in the crust of an accreting neutron star. Astron. Astrophys. 1990, 229, 117. [Google Scholar]
- Negele, J.W.; Vautherin, D. Neutron star matter at sub-nuclear densities. Nucl. Phys. A 1973, 207, 298. [Google Scholar] [CrossRef]
- Flowers, E.; Ruderman, M.; Sutherl, P. Neutrino pair emission from finite-temperature neutron superfluid and the cooling of young neutron stars. Astrophys. J. 1976, 205, 541. [Google Scholar] [CrossRef]
- Yakovlev, D.G.; Kaminker, A.D.; Gnedin, O.Y.; Haensel, P. Neutrino emission from neutron stars. Phys. Rep. 2001, 354, 1. [Google Scholar] [CrossRef] [Green Version]
- Heinke, C.O.; Ho, W.C.G. Direct observation of the cooling of the Cassiopeia A neutron star. Astrophys. J. 2010, 719, L167. [Google Scholar] [CrossRef] [Green Version]
- Elshamouty, K.G.; Heinke, C.O.; Sivakoff, G.R.; Ho, W.C.G.; Shternin, P.S.; Yakovlev, D.G.; Patnaude, D.J.; David, L. Measuring the Cooling of the Neutron Star in Cassiopeia A with all Chandra X-Ray Observatory Detectors. Astrophys. J. 2013, 777, 22. [Google Scholar] [CrossRef] [Green Version]
- Posselt, B.; Pavlov, G.G. Upper limits on the rapid cooling of the central compact object in Cas A. Astrophys. J. 2018, 864, 135. [Google Scholar] [CrossRef]
- Wijngaarden, M.J.P.; Ho, W.C.G.; Chang, P.; Heinke, C.O.; Page, D.; Beznogov, M.; Patnaude, D.J. Diffusive nuclear burning in cooling simulations and application to new temperature data of the Cassiopeia A neutron star. Mon. Not. R. Astron. Soc. 2019, 484, 974. [Google Scholar] [CrossRef] [Green Version]
- Ho, W.C.G.; Heinke, O.C. A neutron star with a carbon atmosphere in the Cassiopeia A supernova remnant. Nature 2009, 462, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yakovlev, D.G.; Ho, W.C.G.; Shternin, P.S.; Heinke, C.O.; Potekhin, A.Y. Cooling rates of neutron stars and the young neutron star in the Cassiopeia A supernova remnant. Mon. Not. R. Astron. Soc. 2011, 411, 1977. [Google Scholar] [CrossRef] [Green Version]
- Shternin, P.S.; Yakovlev, D.G.; Heinke, C.O.; Ho, W.C.G.; Patnaude, D.J. Cooling neutron star in the Cassiopeia A supernova remnant: Evidence for superfluidity in the core. Mon. Not. R. Astron. Soc. 2011, 412, L108. [Google Scholar] [CrossRef] [Green Version]
- Page, D.; Prakash, M.; Lattimer, J.M.; Steiner, A.W. Rapid Cooling of the Neutron Star in Cassiopeia A Triggered by Neutron Superfluidity in Dense Matter. Phys. Rev. Lett. 2011, 106, 081101. [Google Scholar] [CrossRef] [Green Version]
- Taranto, G.; Burgio, F.G.; Schulze, H.-J. Cassiopeia A and direct Urca cooling. Mon. Not. R. Astron. Soc. 2016, 456, 1451–1458. [Google Scholar] [CrossRef] [Green Version]
- Blaschke, D.; Grigorian, H.; Voskresensky, D.N.; Weber, F. Cooling of the neutron star in Cassiopeia A. Phys. Rev. C 2012, 85, 022802. [Google Scholar] [CrossRef] [Green Version]
- Blaschke, D.; Grigorian, H.; Voskresensky, D.N. Nuclear medium cooling scenario in light of new Cas A cooling data and the 2.0 M⊙ pulsar mass measurements. Phys. Rev. C 2013, 88, 065805. [Google Scholar] [CrossRef] [Green Version]
- Sedrakian, A. Rapid cooling of Cassiopeia A as a phase transition in dense QCD. Astron. Astrophys. 2013, 555, L10. [Google Scholar]
- Noda, T.; Hashimoto, M.; Yasutake, N.; Maruyama, T.; Tatsumi, T.; Fujimoto, M. Cooling of compact stars with color superconducting phase in quark-hadron mixed phase. Astrophys. J. 2013, 765, 1. [Google Scholar] [CrossRef] [Green Version]
- Bonanno, A.; Baldo, M.; Burgio, G.F.; Urpin, V. The neutron star in Cassiopeia A: Equation of state, superfluidity, and Joule heating. Astron. Astrophys. 2013, 561, L5. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.-H.; Pi, C.-M.; Zheng, X.-P. Rapid Cooling of the Neutron Star in Cassiopeia A and r-mode Damping in the Core. Astrophys. J. Lett. 2011, 735, L29. [Google Scholar] [CrossRef] [Green Version]
- Page, D.; Reddy, S. Dense matter in compact stars: Theoretical developments and observational constraints. Annu. Rev. Nucl. Part Sci. 2006, 56, 327. [Google Scholar] [CrossRef] [Green Version]
- Sagun, V.; Panotopoulos, G.; Lopes, I. Asteroseismology: Radial oscillations of neutron stars with realistic equation of state. Phys. Rev. D 2020, 101, 063025. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. (LIGO and Virgo Collab.) GW170817: Observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [Green Version]
- Antoniadis, J.; Freire, P.C.C.; Wex, N.; Tauris, T.M.; Lynch, R.S.; van Kerkwijk, M.H.; Kramer, M.; Bassa, C.; Dhillon, V.S.; Driebe, T.; et al. A massive pulsar in a compact relativistic binary. Science 2013, 340, 448. [Google Scholar] [CrossRef] [Green Version]
- Cromartie, H.T.; Fonseca, E.; Ransom, S.M.; Demorest, P.B.; Arzoumanian, Z.; Blumer, H.; Brook, P.R.; DeCesar, M.E.; Dolch, T.; Ellis, J.A.; et al. Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar. Nat. Astr. 2020, 4, 72. [Google Scholar] [CrossRef] [Green Version]
- Steiner, A.W.; Lattimer, J.M.; Brown, E.F. The equation of state from observed masses and radii of neutron stars. Astrophys. J. 2010, 722, 33. [Google Scholar] [CrossRef]
- Steiner, A.W.; Lattimer, J.M.; Brown, E.F. The neutron star mass-radius relation and the equation of state of dense matter. Astrophys. J. 2013, 765, L5. [Google Scholar] [CrossRef]
- Özel, F.; Freire, P. Masses, radii, and the equation of state of neutron stars. An. Rev. Astr. Astroph. 2016, 54, 401. [Google Scholar] [CrossRef] [Green Version]
- Alam, N.; Agrawal, B.K.; Fortin, M.; Pais, H.; Providência, C.; Raduta, A.R.; Sulaksono, A. Strong correlations of neutron star radii with the slopes of nuclear matter incompressibility and symmetry energy at saturation. Phys. Rev. C 2016, 94, 052801. [Google Scholar] [CrossRef]
- Li, B.-A.; Magno, M. Curvature-slope correlation of nuclear symmetry energy and its imprints on the crust-core transition, radius and tidal deformability of canonical neutron stars. Phys. Rev. C 2020, 102, 045807. [Google Scholar] [CrossRef]
- Li, B.-A.; Han, X. Constraining the neutron-proton effective mass splitting using empirical constraints on the density dependence of nuclear symmetry energy around normal density. Phys. Rev. B 2013, 727, 276. [Google Scholar] [CrossRef] [Green Version]
- Oertel, M.; Hempel, M.; Klähn, T.; Typel, S. Equations of state for supernovae and compact stars. Rev. Mod. Phys. 2017, 89, 015007. [Google Scholar] [CrossRef]
- Lalazissis, G.A.; König, J.; Ring, P. New parametrization for the Lagrangian density of relativistic mean field theory. Phys. Rev. C 1997, 55, 540. [Google Scholar] [CrossRef] [Green Version]
- Carriere, J.; Horowitz, C.J.; Piekarewicz, J. Low-mass neutron stars and the equation of state of dense matter. Astrophys. J. 2003, 593, 463. [Google Scholar] [CrossRef] [Green Version]
- Pais, H.; Providência, C. Vlasov formalism for extended relativistic mean field models: The crust-core transition and the stellar matter equation of state. Phys. Rev. C 2016, 94, 015808. [Google Scholar] [CrossRef]
- Kaminker, A.D.; Haensel, P.; Yakovlev, D.G. Nucleon superfluidity vs. observations of cooling neutron stars. Astron. Astrophys. 2001, 373, 2. [Google Scholar]
- Bardeen, J.; Cooper, L.N.; Schrieffer, J.R. Theory of superconductivity. Phys. Rev. 1957, 108, 1175. [Google Scholar] [CrossRef] [Green Version]
- Becker, W. Neutron Stars and Pulsars; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Schwenk, A.; Friman, B.; Brown, G.E. Renormalization group approach to neutron matter: Quasiparticle interactions, superfluid gaps and the equation of state. Nucl. Phys. A 2003, 713, 191. [Google Scholar] [CrossRef] [Green Version]
- Takatsuka, T. Energy gap in neutron-star matter. Prog. Theor. Phys. 1972, 48, 1517. [Google Scholar] [CrossRef] [Green Version]
- Amundsen, L.; Østgaard, E. Superfluidity of neutron matter: (I). Singlet pairing. Nucl. Phys. A 1985, 437, 487. [Google Scholar] [CrossRef]
- Amundsen, L.; Østgaard, E. Superfluidity of neutron matter: (II). Triplet pairing. Nucl. Phys. A 1985, 442, 163. [Google Scholar] [CrossRef]
- Chen, J.M.C.; Clark, J.W.; Davé, R.D.; Khodel, V.V. Pairing gaps in nucleonic superfluids. Nucl. Phys. A 1993, 555, 59. [Google Scholar] [CrossRef]
- Ho, W.C.G.; Elshamouty, K.G.; Heinke, C.O.; Potekhin, A.Y. Tests of the nuclear equation of state and superfluid and superconducting gaps using the Cassiopeia A neutron star. Phys. Rev. C 2015, 91, 015806. [Google Scholar] [CrossRef]
- Yakovlev, D.G.; Urpin, V.A. Thermal and electrical conductivity in white dwarfs and neutron stars. Soviet Astron. 1980, 24, 303. [Google Scholar]
- Potekhin, A.Y.; Yakovlev, D.G.; Chabrier, G.; Gnedin, O.Y. Thermal structure and cooling of superfluid neutron stars with accreted magnetized envelopes. Astrophys. J. 2003, 594, 404. [Google Scholar] [CrossRef] [Green Version]
- Beznogov, M.V.; Yakovlev, D.G. Statistical theory of thermal evolution of neutron stars. Mon. Not. R. Astron. Soc. 2015, 447, 1598–1609. [Google Scholar] [CrossRef] [Green Version]
- Ho, W.C.G.; Wijngaarden, M.J.P.; Chang, P.; Heinke, C.O.; Page, D.; Beznogov, M.; Patnaude, D.J. Cooling of the Cassiopeia A neutron star and the effect of diffusive nuclear burning. AIP Conf. Proc. 2019, 2127, 020007. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsiopelas, S.; Sagun, V. Neutron Star Cooling Within the Equation of State With Induced Surface Tension. Particles 2020, 3, 693-705. https://doi.org/10.3390/particles3040045
Tsiopelas S, Sagun V. Neutron Star Cooling Within the Equation of State With Induced Surface Tension. Particles. 2020; 3(4):693-705. https://doi.org/10.3390/particles3040045
Chicago/Turabian StyleTsiopelas, Stefanos, and Violetta Sagun. 2020. "Neutron Star Cooling Within the Equation of State With Induced Surface Tension" Particles 3, no. 4: 693-705. https://doi.org/10.3390/particles3040045
APA StyleTsiopelas, S., & Sagun, V. (2020). Neutron Star Cooling Within the Equation of State With Induced Surface Tension. Particles, 3(4), 693-705. https://doi.org/10.3390/particles3040045