A Study of the Properties of the QCD Phase Diagram in High-Energy Nuclear Collisions
Abstract
:1. Introduction
2. Beam Energy Dependence of the Collectivity
3. Beam Energy Dependence of the Higher-Order Cumulants of Net-Particle Multiplicity Distributions and Light Nuclei Productions
4. Beam Energy Dependence of the Heavy-Flavor Production
5. Future Upgrades and Physics Program at High Baryon Density Region
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arsene, I.; Bearden, I.; Beavis, D.; Besliu, C.; Budick, B.; Boggild, H.; Chasman, C.; Christensen, C.; Christiansen, P.; Cibor, J.; et al. Quark-gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment. Nucl. Phys. A 2005, 757, 1. [Google Scholar] [CrossRef] [Green Version]
- Back, B.B.; Baker, M.; Ballintijn, M.; Barton, D.; Becker, B.; Betts, R.; Bickley, A.; Bindel, R.; Budzanowski, A.; Busza, W.; et al. The PHOBOS perspective on discoveries at RHIC. Nucl. Phys. A 2005, 757, 28. [Google Scholar] [CrossRef] [Green Version]
- Adams, J.; Aggarwal, M.; Ahammed, Z.; Amonett, J.; Anderson, B.; Arkhipkin, D.; Averichev, G.; Badyal, S.; Bai, Y.; Balewski, Q.; et al. Experimental and theoretical challenges in the search for the quark–gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 2005, 757, 102. [Google Scholar]
- Adcox, K.; Adler, S.; Afanasiev, S.; Aidala, C.; Ajitanand, N.; Akiba, Y.; Al-Jamel, A.; Alexander, J.; Amirikas, R.; Aoki, K.; et al. Formation of dense partonic matter in relativistic nucleus–nucleus collisions at RHIC: Experimental evaluation by the PHENIX Collaboration. Nucl. Phys. A 2005, 757, 184. [Google Scholar]
- Aoki, Y.; Endrodi, G.; Fodor, Z.; Katz, S.; Szabo, K. The order of the quantum chromodynamics transition predicted by the standard model of particle physics. Nature 2006, 443, 675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bazavov, A.; Bhattacharya, T.; Cheng, M.; DeTar, C.; Ding, H.; Gottlieb, S.; Gupta, R.; Hegde, P.; Heller, U.; Karsch, F.; et al. The chiral and deconfinement aspects of the QCD transition. Phys. Rev. D 2012, 85, 054503. [Google Scholar] [CrossRef] [Green Version]
- Bazavov, A.; Ding, H.; Hegde, P.; Kaczmarek, O.; Karsch, F.; Karthik, N.; Laermann, E.; Lahiri, A.; Larsen, R.; Li, S.; et al. Chiral crossover in QCD at zero and non-zero chemical potentials. Phys. Lett. B 2019, 795, 15–21. [Google Scholar] [CrossRef]
- Bellwied, R.; Borsanyi, S.; Fodor, Z.; Günther, J.; Katz, S.D.; Ratti, C.; Szabo, K.K. The QCD phase diagram from analytic continuation. Phys. Lett. B 2015, 751, 559–564. [Google Scholar] [CrossRef] [Green Version]
- Borsanyi, S.; Fodor, Z.; Guenther, J.; Kara, R.; Katz, S.; Parotto, P.; Pasztor, A.; Ratti, C.; Szabo, K. The QCD crossover at finite chemical potential from lattice simulations. arXiv 2020, arXiv:2002.02821. [Google Scholar]
- Bazavov, A.; Ding, H.; Hegde, P.; Kaczmarek, O.; Karsch, F.; Laermann, E.; Mukherjee, S.; Ohno, H.; Petreczky, P.; Rinaldi, E.; et al. Skewness and kurtosis of net baryon-number distributions at small values of the baryon chemical potential. Phys. Rev. D 2017, 96, 074510. [Google Scholar] [CrossRef] [Green Version]
- Bazavov, A.; Ding, H.; Hegde, P.; Kaczmarek, O.; Karsch, F.; Laermann, E.; Maezawa, Y.; Mukherjee, S.; Ohno, H.; Petreczky, P.; et al. QCD equation of state to O(mu(6)(B)) from lattice QCD. Phys. Rev. D 2017, 95, 054504. [Google Scholar] [CrossRef] [Green Version]
- Adamczyk, L.; Adkins, J.; Agakishiev, G.; Aggarwal, M.; Ahammed, Z.; Ajitanand, N.; Alekseev, I.; Anderson, D.; Aoyama, R.; Aparin, A.; et al. Bulk properties of the medium produced in relativistic heavy-ion collisions from the beam energy scan program. Phys. Rev. C 2017, 96, 044904. [Google Scholar]
- Fukushima, K.; Hatsuda, T. The phase diagram of dense QCD. Rept. Prog. Phys. 2011, 74, 014001. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://drupal.star.bnl.gov/ (accessed on 28 February 2020).
- Available online: http://nica.jinr.ru/ (accessed on 28 February 2020).
- Available online: https://fair-center.eu/ (accessed on 28 February 2020).
- Available online: http://hiaf.impcas.ac.cn/ (accessed on 28 February 2020).
- Bazavov, A.; Ding, H.; Hegde, P.; Kaczmarek, O.; Karsch, F.; Laermann, E.; Mukherjee, S.; Petreczky, P.; Schmidt, C.; Smith, D.; et al. Freeze-out Conditions in Heavy Ion Collisions from QCD Thermodynamics. Phys. Rev. Lett. 2012, 109, 192302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borsanyi, S.; Fodor, Z.; Katz, S.D.; Krieg, S.; Ratti, C.; Szabo, K.K. Freeze-out parameters from electric charge and baryon number fluctuations: Is there consistency? Phys. Rev. Lett. 2014, 113, 052301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bazavov, A.; Ding, H.; Hegde, P.; Kaczmarek, O.; Karsch, F.; Laermann, E.; Mukherjee, S.; Ohno, H.; Petreczky, P.; Schmidt, C.; et al. Curvature of the freeze-out line in heavy-ion collisions. Phys. Rev. D 2016, 93, 014512. [Google Scholar] [CrossRef] [Green Version]
- Alba, P.; Alberico, W.; Bellwied, R.; Bluhm, M.; Sarti, V.; Nahrgang, M.; Ratti, C. Freeze-out conditions from net-proton and net-charge fluctuations at RHIC. Phys. Lett. B 2014, 738, 305. [Google Scholar] [CrossRef] [Green Version]
- Bluhm, M.; Nahrgang, M. Freeze-out conditions from strangeness observables at RHIC. Eur. Phys. J. C 2019, 79, 155. [Google Scholar] [CrossRef] [Green Version]
- Poberezhnyuk, R.; Vovchenko, V.; Motornenko, A.; Gorenstein, M.I.; Stoecker, H. Chemical freeze-out conditions and fluctuations of conserved charges in heavy-ion collisions within quantum van der Waals model. Phys. Rev. C 2019, 100, 054904. [Google Scholar] [CrossRef] [Green Version]
- Alba, P.; Sarti, V.M.; Noronha-Hostler, J.; Parotto, P.; Portillo-Vazquez, I.; Ratti, C.; Stafford, J.M. Influence of hadronic resonances on the chemical freeze-out in heavy-ion collisions. arXiv 2020, arXiv:2002.12395. [Google Scholar]
- Acharya, S.; Adamova, D.; Adolfsson, J.; Aggarwal, M.; Aglieri, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S.; Aiola, S.; et al. Production of 4He and 4He− in Pb+Pb collisions at 2.76 TeV at the LHC. Nucl. Phys. A 2018, 971, 1c. [Google Scholar]
- Andronic, A.; Braun-Munzinger, P.; Redlich, K.; Stachel, J. Decoding the phase structure of QCD via particle production at high energy. Nature 2018, 561, 321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaczmarek, O.; Karsch, F.; Laermann, E.; Miao, C.; Mukherjee, S.; Petreczky, P.; Schmidt, C.; Soeldner, W.; Unger, W. Phase boundary for the chiral transition in (2+1) -flavor QCD at small values of the chemical potential. Phys. Rev. D 2011, 83, 014504. [Google Scholar] [CrossRef] [Green Version]
- Andronic, A.; Braun-Munzinger, P.; Stachel, J. The horn, the hadron mass spectrum and the QCD phase diagram? The statistical model of hadron production in central nucleus-nucleus collisions. Nucl. Phys. A 2010, 834, 237c. [Google Scholar] [CrossRef] [Green Version]
- Cleymans, J.; Oeschler, H.; Redlich, K.; Wheaton, S. Comparison of chemical freeze-out criteria in heavy-ion collisions. Phys. Rev. C 2006, 73, 034905. [Google Scholar] [CrossRef]
- Chatterjee, S.; Godbole, R.M.; Gupta, S. Stabilizing hadron resonance gas models. Phys. Rev. C 2010, 81, 044907. [Google Scholar]
- Adler, C.; Ahammed, Z.; Allgower, C.; Amonett, J.; Anderson, B.; Anderson, M.; Averichev, G.; Balewski, J.; Barannikova, O.; Barnby, L.; et al. Azimuth Anisotropy of and Λ + Production at Midrapidity from Au+Au Collisions at = 130 GeV. Phys. Rev. Lett. 2002, 89, 132301. [Google Scholar] [CrossRef]
- Adams, J.; Aggarwal, M.; Ahammed, Z.; Amonett, J.; Anderson, B.; Arkhipkin, D.; Averichev, G.; Badyal, S.; Bai, Y.; Balewski, Q.; et al. Multistrange Baryon Elliptic Flow in Au + Au Collisions at = 200 GeV. Phys. Rev. Lett. 2005, 95, 122301. [Google Scholar] [CrossRef] [Green Version]
- Afanasiev, S.; Aidala, C.; Ajitanand, N.; Akiba, Y.; Alexander, J.; Al-Jamel, A.; Aoki, K.; Aphecetche, L.; Armendariz, R.; Aronson, S.; et al. Elliptic Flow for ϕ Mesons and (Anti)deuterons in Au + Au Collisions at = 200 GeV. Phys. Rev. Lett. 2007, 99, 052301. [Google Scholar] [CrossRef] [Green Version]
- Abelev, B.; Aggarwal, M.; Ahammed, Z.; Anderson, B.; Arkhipkin, D.; Averichev, G.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L.; et al. Partonic Flow and ϕ-Meson Production in Au + Au Collisions at = 200 GeV. Phys. Rev. Lett. 2007, 99, 112301. [Google Scholar] [CrossRef] [Green Version]
- Abelev, B.; Aggarwal, M.; Ahammed, Z.; Anderson, B.; Arkhipkin, D.; Averichev, G.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L.; et al. Centrality dependence of charged hadron and strange hadron elliptic flow from = 200 GeV Au + Au collisions. Phys. Rev. C 2008, 77, 054901. [Google Scholar] [CrossRef] [Green Version]
- Abelev, B.; Aggarwal, M.; Ahammed, Z.; Anderson, B.; Arkhipkin, D.; Averichev, G.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L.; et al. Charged and strange hadron elliptic flow in Cu + Cu collisions at = 62.4 and 200 GeV. Phys. Rev. C 2010, 81, 044902. [Google Scholar] [CrossRef]
- Adamczyk, L.; Adkins, J.; Agakishiev, G.; Aggarwal, M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E.; Averichev, G.; et al. Centrality and Transverse Momentum Dependence of Elliptic Flow of Multistrange Hadrons and ϕ Meson in Au + Au Collisions at = 200 GeV. Phys. Rev. Lett. 2016, 116, 062301. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk, L.; Adkins, J.; Agakishiev, G.; Aggarwal, M.; Ahammed, Z.; Ajitanand, N.; Alekseev, I.; Anderson, D.; Aoyama, R.; Aparin, A.; et al. Measurement of D0 Azimuthal Anisotropy at Midrapidity in Au + Au Collisions at = 200 GeV. Phys. Rev. Lett. 2017, 118, 212301. [Google Scholar] [CrossRef] [Green Version]
- Schnedermann, E.; Sollfrank, J.; Heinz, U.W. Thermal phenomenology of hadrons from 200A GeV S+S collisions. Phys. Rev. C 1993, 48, 2462. [Google Scholar] [CrossRef] [Green Version]
- Akiba, Y.; Ahle, L.; Akiba, Y.; Ashktorab, K.; Baker, M.; Beavis, D.; Britt, H.; Chang, J.; Chasman, C.; Chen, Z.; et al. Particle production in Au + Au collisions from BNL E866. Nucl. Phys. A 1996, 610, 139c. [Google Scholar] [CrossRef] [Green Version]
- Ahle, L.; Akiba, Y.; Ashktorab, K.; Baker, M.; Beavis, D.; Britt, H.; Chang, J.; Chasman, C.; Chen, Z.; Chi, C.; et al. Particle production at high baryon density in central Au+Au reactions at 11.6A GeV/c. Phys. Rev. C 1998, 57, R466. [Google Scholar] [CrossRef]
- Ahle, L.; Akiba, Y.; Ashktorab, K.; Baker, M.; Beavis, D.; Britt, H.; Chang, J.; Chasman, C.; Chen, Z.; Chi, C.; et al. Proton and deuteron production in Au+Au reactions at 11.6A GeV/c. Phys. Rev. C 1999, 60, 064901. [Google Scholar] [CrossRef]
- Ahle, L.; Akiba, Y.; Ashktorab, K.; Baker, M.; Beavis, D.; Beery, P.; Britt, H.; Budick, B.; Chang, J.; Chasman, C.; et al. Centrality dependence of kaon yields in Si+A and Au+Au collisions at relativistic energies. Phys. Rev. C 1999, 60, 044904. [Google Scholar] [CrossRef] [Green Version]
- Ahle, L.; Akiba, Y.; Ashktorab, K.; Baker, M.; Beavis, D.; Budick, B.; Chang, J.; Chasman, C.; Chen, Z.; Chu, Y.; et al. Excitation function of K+ and π+ production in Au+Au reactions at 2-10 AGeV. Phys. Lett. B 2000, 476, 1. [Google Scholar] [CrossRef] [Green Version]
- Ahle, L.; Akiba, Y.; Ashktorab, K.; Baker, M.; Beavis, D.; Budick, B.; Chang, J.; Chasman, C.; Chen, Z.; Chu, Y.; et al. An excitation function of K- and K+ production in Au+Au reactions at the AGS. Phys. Lett. B 2000, 490, 53. [Google Scholar] [CrossRef] [Green Version]
- Barrette, J.; Bellwied, R.; Bennett, S.; Bersch, R.; Braun-Munzinger, P.; Chang, W.; Cleland, W.; Clemen, M.; Cole, J.; Cormier, T.; et al. Proton and pion production in Au+Au collisions at 10.8A GeV/c. Phys. Rev. C 2000, 62, 024901. [Google Scholar] [CrossRef] [Green Version]
- Klay, J.; Ajitanand, N.; Alexander, J.; Anderson, M.; Best, D.; Brady, F.; Case, T.; Caskey, W.; Cebra, D.; Chance, J.; et al. Longitudinal Flow of Protons from (2-8)A GeV Collisions. Phys. Rev. Lett. 2002, 88, 102301. [Google Scholar] [CrossRef] [Green Version]
- Afanasiev, S.; Anticic, T.; Barna, D.; Bartke, J.; Barton, R.; Behler, M.; Betev, L.; Bialkowska, H.; Billmeier, A.; Blume, C.; et al. Energy dependence of pion and kaon production in central Pb+Pb collisions. Phys. Rev. C 2002, 66, 054902. [Google Scholar] [CrossRef]
- Anticic, T.; Baatar, B.; Barna, D.; Bartke, J.; Behler, M.; Betev, L.; Bialkowska, H.; Billimeier, A.; Blume, C.; Boimska, B.; et al. Energy and centrality dependence of deuteron and proton production in Pb+Pb collisions at relativistic energies. Phys. Rev. C 2004, 69, 024902. [Google Scholar] [CrossRef] [Green Version]
- Alt, C.; Anticic, T.; Baatar, B.; Barna, D.; Bartke, J.; Betev, L.; Bialkowska, H.; Blume, C.; Boimska, B.; Botje, M.; et al. Energy and centrality dependence of p and production and the / ratio in Pb+Pb collisions between 20A GeV and 158A GeV. Phys. Rev. C 2006, 73, 044910. [Google Scholar] [CrossRef] [Green Version]
- Alt, C.; Anticic, T.; Baatar, B.; Barna, D.; Bartke, J.; Betev, L.; Bialkowska, H.; Blume, C.; Boimska, B.; Botje, M.; et al. Pion and kaon production in central Pb+Pb collisions at 20A and 30A GeV: Evidence for the onset of deconfinement. Phys. Rev. C 2008, 77, 024903. [Google Scholar] [CrossRef] [Green Version]
- Abelev, B.; Aggarwal, M.; Ahammed, Z.; Anderson, B.; Arkhipkin, D.; Averichev, G.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L.; et al. Systematic measurements of identified particle spectra in pp, d+Au, and Au+Au collisions at the STAR detector. Phys. Rev. C 2009, 79, 034909. [Google Scholar] [CrossRef]
- Adam, J.; Adamczyk, L.; Adams, J.; Adkins, J.; Agakishiev, G.; Aggarwal, M.; Ahammed, Z.; Alekseev, I.; Anderson, D.; Aparin, A. Bulk Properties of the System Formed in Au+Au Collisions at = 14.5 GeV at STAR. arXiv 2019, arXiv:1908.03585v1. [Google Scholar]
- Abelev, B.; Adam, J.; Adamova, D.; Adare, A.; Aggarwal, M.; Aglieri, G.; Agnello, M.; Agocs, A.; Agostinelli, A.; Ahammed, Z.; et al. Centrality dependence of π, K and p production in Pb-Pb collisions at = 2.76 TeV. Phys. Rev. C 2013, 88, 044910. [Google Scholar] [CrossRef] [Green Version]
- Pinkenburg, C.; Ajitanand, N.; Alexander, J.; Anderson, M.; Best, D.; Brady, F.; Case, T.; Caskey, W.; Cebra, D.; Chance, J.; et al. Elliptic Flow: Transition from Out-of-Plane to In-Plane Emission in Au+Au Collisions. Phys. Rev. Lett. 1999, 83, 1295. [Google Scholar] [CrossRef] [Green Version]
- Alt, C.; Anticic, T.; Baatar, B.; Barna, D.; Bartke, J.; Behler, M.; Betev, L.; Bialkowska, H.; Billimeier, A.; Blume, C.; et al. Directed and elliptic flow of charged pions and protons in Pb+Pb collisions at 40A and 158A GeV. Phys. Rev. C 2003, 68, 034903. [Google Scholar] [CrossRef] [Green Version]
- Andronic, A.; Barret, V.; Basrak, Z.; Bastid, N.; Benabderrahmane, L.; Berek, G.; Caplar, R.; Cordier, P.; Crochet, P.; Dupieux, P.; et al. Excitation function of elliptic flow in Au + Au collisions and the nuclear matter equation of state. Phys. Lett. B 2005, 612, 173. [Google Scholar] [CrossRef] [Green Version]
- Braun-Munzinger, P.; Stachel, J. Dynamics of ultra-relativistic nuclear collisions with heavy beams: An experimental overview. Nucl. Phys. A 1998, 638, 3c. [Google Scholar] [CrossRef] [Green Version]
- Appelshauser, H. New results from CERES. Nucl. Phys. A 2002, 698, 253c. [Google Scholar] [CrossRef]
- Aamodt, K.; Abelev, B.; Abrahantes, A.; Adamova, D.; Adare, A.; Aggarwal, M.; Aglieri, G.; Agocs, A.; Aguilar, S.; Ahammed, Z.; et al. Elliptic Flow of Charged Particles in Pb+Pb Collisions at = 2.76 TeV. Phys. Rev. Lett. 2010, 105, 252302. [Google Scholar] [CrossRef] [Green Version]
- Voloshin, S.A.; Poskanzer, A.M.; Snellings, R. Collective phenomena in non-central nuclear collisions. In Relativistic Heavy Ion Physics; Springer: Berlin/Heidelberg, Germany, 2010; pp. 293–333. [Google Scholar]
- Adams, J.; Aggarwal, M.; Ahammed, Z.; Amonett, J.; Anderson, B.; Arkhipkin, D.; Averichev, G.; Badyal, S.; Bai, Y.; Balewski, Q.; et al. Azimuthal anisotropy in Au+Au collisions at = 200 GeV. Phys. Rev. C 2005, 72, 014904. [Google Scholar] [CrossRef] [Green Version]
- Adler, C.; Ahammed, Z.; Allgower, C.; Amonett, J.; Anderson, B.; Anderson, M.; Averichev, G.; Balewski, J.; Barannikova, O.; Barnby, L.; et al. Elliptic flow from two- and four-particle correlations in Au+Au collisions at = 130 GeV. Phys. Rev. C 2002, 66, 034904. [Google Scholar] [CrossRef] [Green Version]
- Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N.; Akiba, Y.; Al-Bataineh, H.; Alexander, J.; Al-Jamel, A.; Aoki, K.; Aphecetche, L.; et al. Scaling Properties of Azimuthal Anisotropy in Au+Au and Cu+Cu Collisions at = 200 GeV. Phys. Rev. Lett. 2007, 98, 162301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alver, B.; Back, B.; Baker, M.; Ballintijn, M.; Barton, D.; Betts, R.; Bickley, A.; Bindel, R.; Busza, W.; Carroll, A.; et al. System Size, Energy, Pseudorapidity, and Centrality Dependence of Elliptic Flow. Phys. Rev. Lett. 2007, 98, 242302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamczyk, L.; Agakishiev, G.; Aggarwal, M.; Ahammed, Z.; Alakhverdyants, A.; Alekseev, I.; Alford, J.; Anderson, B.; Anson, C.; Arkhipkin, D.; et al. Inclusive charged hadron elliptic flow in Au+Au collisions at = 7.7–39 GeV. Phys. Rev. C 2012, 86, 054908. [Google Scholar] [CrossRef]
- Shi, S. Event anisotropy v2 in Au+Au collisions at = 7.7–62.4 GeV with STAR. Nucl. Phys. A 2013, 904-905, 895c. [Google Scholar] [CrossRef] [Green Version]
- Kolb, P.F.; Sollfrank, J.; Heinz, U. Anisotropic transverse flow and the quark-hadron phase transition. Phys. Rev. C 2000, 62, 054909. [Google Scholar] [CrossRef] [Green Version]
- Sorge, H. Highly Sensitive Centrality Dependence of Elliptic Flow: A Novel Signature of the Phase Transition in QCD. Phys. Rev. Lett. 1999, 82, 2048. [Google Scholar] [CrossRef] [Green Version]
- Heinz, U.W. Relativistic Heavy Ion Physics; Stock, R., Ed.; Landolt- Bornstein Data Collection Series; Springer: New York, NY, USA, 2010; Volume I/23. [Google Scholar]
- Bass, S.; Belkacem, M.; Bleicher, M.; Brandstetter, M.; Bravina, L.; Ernst, C.; Gerland, L.; Hofmann, M.; Hofmann, S.; Konopka, J.; et al. Microscopic models for ultrarelativistic heavy ion collisions. Prog. Part. Nucl. Phys. 1998, 41, 255. [Google Scholar] [CrossRef] [Green Version]
- Bleicher, M.; Zabrodin, E.; Spieles, C.; Bass, S.; Ernst, C.; Soff, S.; Bravina, L.; Belkacem, M.; Weber, H.; Stocker, H.; et al. Relativistic Hadron-Hadron Collisions in the Ultra-Relativistic Quantum Molecular Dynamics Model (UrQMD). J. Phys. G 1999, 25, 1859. [Google Scholar] [CrossRef]
- Rischke, D.; Maruhn, J.; Stocker, H.; Greiner, W. The phase transition to the quark-gluon plasma and its effect on hydrodynamic flow. Heavy Ion Phys. 1996, 1, 309. [Google Scholar]
- Stocker, H. Collective flow signals the quark gluon plasma. Nucl. Phys. A 2005, 750, 121. [Google Scholar] [CrossRef] [Green Version]
- Adamczyk, L.; Adkins, J.; Agakishiev, G.; Aggarwal, M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C.; Aparin, A.; Arkhipkin, D.; et al. Beam-Energy Dependence of the Directed Flow of Protons, Antiprotons, and Pions in Au+Au Collisions. Phys. Rev. Lett. 2014, 112, 162301. [Google Scholar] [CrossRef]
- Adamczyk, L.; Adam, J.; Adamczyk, L.; Adams, J.; Adkins, J.; Agakishiev, G.; Aggarwal, M.; Ahammed, Z.; Ajitanand, N.; Alekseev, I.; et al. Beam-Energy Dependence of Directed Flow of Λ, , K±, , and ϕ in Au+Au Collisions. Phys. Rev. Lett. 2018, 120, 062301. [Google Scholar] [CrossRef] [Green Version]
- Nayak, K.; Shi, S.; Xu, N.; Lin, Z.-W. Energy dependence study of directed flow in Au+Au collisions using an improved coalescence in a multiphase transport model. Phys. Rev. C 2019, 100, 054903. [Google Scholar] [CrossRef] [Green Version]
- Adamczyk, L.; Adkins, J.; Agakishiev, G.; Aggarwal, M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C.; Aparin, A.; Arkhipkin, D.; et al. Observation of an Energy-Dependent Difference in Elliptic Flow between Particles and Antiparticles in Relativistic Heavy Ion Collisions. Phys. Rev. Lett. 2013, 110, 142301. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk, L.; Adkins, J.; Agakishiev, G.; Aggarwal, M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C.; Aparin, A.; Arkhipkin, D.; et al. Elliptic flow of identified hadrons in Au + Au collisions at = 7.7–62.4 GeV. Phys. Rev. C 2013, 88, 014902. [Google Scholar] [CrossRef]
- Adamczyk, L.; Adkins, J.; Agakishiev, G.; Aggarwal, M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E.; Averichev, G.; et al. Centrality dependence of identified particle elliptic flow in relativistic heavy-ion collisions at = 7.7–62.4 GeV. Phys. Rev. C 2016, 93, 014907. [Google Scholar] [CrossRef]
- Shor, A. ϕ-Meson production as a probe of the quark-gluon plasma. Phys. Rev. Lett. 1985, 54, 1122. [Google Scholar] [CrossRef]
- Van Hecke, H.; Sorge, H.; Xu, N. Evidence of early mul- tistrange hadron freeze-out in high energy nuclear collisions. Phys. Rev. Lett. 1998, 81, 5764. [Google Scholar] [CrossRef] [Green Version]
- Shi, S. An Experimental Review on Elliptic Flow of Strange and Multistrange Hadrons in Relativistic Heavy Ion Collisions. Adv. High Energy Phys. 2016, 2016, 1987432. [Google Scholar] [CrossRef] [Green Version]
- Steinheimer, J.; Koch, V.; Bleicher, M. Hydrodynamics at large baryon densities: Understanding proton versus anti-proton v2 and other puzzles. Phys. Rev. C 2012, 86, 044903. [Google Scholar] [CrossRef] [Green Version]
- Hatta, Y.; Monnai, A.; Xiao, B.-W. Flow harmonics vn at finite density. Phys. Rev. D 2015, 92, 114010. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Song, T.; Ko, C.; Li, F. Elliptic flow splitting as a probe of the QCD phase structure at finite baryon chemical potential. Phys. Rev. Lett. 2014, 112, 012301. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Wang, F.; Sun, K.; Xu, J.; Ko, C. Isospin splitting of pion elliptic flow in relativistic heavy-ion collisions. Phys. Lett. B 2019, 798, 135002. [Google Scholar] [CrossRef]
- Biao, T.; Shi, S.; Liu, F. Elliptic flow of transported and produced protons in Au+Au collisions with the UrQMD model. Chin. Rhys. C 2019, 43, 054106. [Google Scholar]
- Ejiri, S.; Karsch, F.; Redlich, K. Hadronic fluctuations at the QCD phase transition. Phys. Lett. B 2006, 633, 275–283. [Google Scholar] [CrossRef] [Green Version]
- Stephanov, M.A. Non-Gaussian fluctuations near the QCD critical point. Phys. Rev. Lett. 2009, 102, 032301. [Google Scholar] [CrossRef] [Green Version]
- Asakawa, M.; Ejiri, S.; Kitazawa, M. Third moments of conserved charges as probes of QCD phase structure. Phys. Rev. Lett. 2009, 103, 262301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, X.; Xu, N. Search for the QCD Critical Point with Fluctuations of Conserved Quantities in Relativistic Heavy-Ion Collisions at RHIC: An Overview. Nucl. Sci. Tech. 2017, 28, 112. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Luo, X.; Mohanty, B.; Ritter, H.G.; Xu, N. Scale for the Phase Diagram of Quantum Chromodynamics. Science 2011, 332, 1525. [Google Scholar] [CrossRef] [Green Version]
- Stephanov, M.A. On the sign of kurtosis near the QCD critical point. Phys. Rev. Lett. 2011, 107, 052301. [Google Scholar] [CrossRef] [Green Version]
- Kitazawa, M.; Luo, X. Properties and uses of factorial cumulants in relativistic heavy-ion collisions. Phys. Rev. C 2017, 96, 024910. [Google Scholar] [CrossRef]
- Ding, H.T.; Karsch, F.; Mukherjee, S. Thermodynamics of strong-interaction matter from Lattice QCD. Int. J. Mod. Phys. E 2015, 24, 1530007. [Google Scholar] [CrossRef] [Green Version]
- Bzdak, A.; Esumi, S.; Koch, V.; Liao, J.; Stephanov, M.; Xu, N. Mapping the Phases of Quantum Chromodynamics with Beam Energy Scan. arXiv 2019, arXiv:1906.00936. [Google Scholar]
- Bazavov, A.; Bollweg, D.; Ding, H.; Enns, P.; Goswami, J.; Hegde, P.; Kaczmarek, O.; Karsch, F.; Larsen, R.; Mukherjee, S.; et al. Skewness, kurtosis and the 5th and 6th order cumulants of net baryon-number distributions from lattice QCD confront high-statistics STAR data. arXiv 2020, arXiv:2001.08530. [Google Scholar]
- Fu, W.J.; Liu, Y.X.; Wu, Y.L. Fluctuations and Correlations of Conserved Charges in QCD at Finite Temperature with Effective Models. Phys. Rev. D 2010, 81, 014028. [Google Scholar] [CrossRef] [Green Version]
- Fu, W.J.; Wu, Y.L. Fluctuations and Correlations of Conserved Charges near the QCD Critical Point. Phys. Rev. D 2010, 82, 074013. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Du, Y.; Cui, Z.F.; Zong, H.S. Critical behaviors near the (tri-)critical end point of QCD within the NJL model. Eur. Phys. J. C 2015, 75, 495. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.W.; Deng, J.; Kohyama, H.; Labun, L. Robust characteristics of nongaussian fluctuations from the NJL model. Phys. Rev. D 2016, 93, 034037. [Google Scholar] [CrossRef] [Green Version]
- Fan, W.; Luo, X.; Zong, H.S. Mapping the QCD phase diagram with susceptibilities of conserved charges within Nambu–Jona-Lasinio model. Int. J. Mod. Phys. A 2017, 32, 1750061. [Google Scholar] [CrossRef]
- Fan, W.; Luo, X.; Zong, H. Probing the QCD phase structure with higher order baryon number susceptibilities within the NJL model. Chin. Phys. C 2019, 43, 033103. [Google Scholar] [CrossRef]
- Li, Z.; Xu, K.; Wang, X.; Huang, M. The kurtosis of net baryon number fluctuations from a realistic Polyakov–Nambu–Jona-Lasinio model along the experimental freeze-out line. Eur. Phys. J. C 2019, 79, 245. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.K.; Luo, X.; Zong, H.S. QCD phase diagram in chiral imbalance with self-consistent mean field approximation. Phys. Rev. D 2019, 100, 094012. [Google Scholar] [CrossRef] [Green Version]
- Friman, B.; Karsch, F.; Redlich, K.; Skokov, V. Fluctuations as probe of the QCD phase transition and freeze-out in heavy-ion collisions at LHC and RHIC. Eur. Phys. J. C 2011, 71, 1694. [Google Scholar] [CrossRef] [Green Version]
- Fu, W.J.; Pawlowski, J.M.; Rennecke, F.; Schaefer, B.J. Baryon number fluctuations at finite temperature and density. Phys. Rev. D 2016, 94, 116020. [Google Scholar] [CrossRef] [Green Version]
- Fu, W.J.; Pawlowski, J.M.; Rennecke, F. The QCD phase structure at finite temperature and density. arXiv 2019, arXiv:1909.02991. [Google Scholar] [CrossRef] [Green Version]
- Fischer, C.S.; Luecker, J. Propagators and phase structure of Nf=2 and Nf=2+1 QCD. Phys. Lett. B 2013, 718, 1036. [Google Scholar] [CrossRef]
- Shi, C.; Wang, Y.L.; Jiang, Y.; Cui, Z.F.; Zong, H.S. Locate QCD Critical End Point in a Continuum Model Study. JHEP 2014, 1407, 14. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Liu, Y.X. QCD phase transitions via a refined truncation of Dyson-Schwinger equations. Phys. Rev. D 2016, 94, 076009. [Google Scholar] [CrossRef] [Green Version]
- Fischer, C.S. QCD at finite temperature and chemical potential from Dyson–Schwinger equations. Prog. Part. Nucl. Phys. 2019, 105, 1. [Google Scholar] [CrossRef] [Green Version]
- Herold, C.; Nahrgang, M.; Yan, Y.; Kobdaj, C. Dynamical net-proton fluctuations near a QCD critical point. Phys. Rev. C 2016, 93, 021902. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.W.; Deng, J.; Labun, L. Baryon susceptibilities, non-Gaussian moments, and the QCD critical point. Phys. Rev. D 2015, 92, 054019. [Google Scholar] [CrossRef] [Green Version]
- Vovchenko, V.; Anchishkin, D.V.; Gorenstein, M.I.; Poberezhnyuk, R.V. Scaled variance, skewness, and kurtosis near the critical point of nuclear matter. Phys. Rev. C 2015, 92, 054901. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Li, P.; Song, H. Correlated fluctuations near the QCD critical point. Phys. Rev. C 2016, 94, 024918. [Google Scholar] [CrossRef]
- Mukherjee, A.; Steinheimer, J.; Schramm, S. Higher-order baryon number susceptibilities: Interplay between the chiral and the nuclear liquid-gas transitions. Phys. Rev. C 2017, 96, 025205. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Hou, D.; Kojo, T.; Qin, B. Functional renormalization group study of the quark-meson model with ω meson. Phys. Rev. D 2017, 96, 114029. [Google Scholar] [CrossRef] [Green Version]
- Palhares, L.F.; Fraga, E.S.; Kodama, T. Finite-size effects and signatures of the QCD critical endpoint. J. Phys. G 2010, 37, 094031. [Google Scholar] [CrossRef]
- Fraga, E.S.; Palhares, L.F.; Sorensen, P. Finite-size scaling as a tool in the search for the QCD critical point in heavy ion data. Phys. Rev. C 2011, 84, 011903. [Google Scholar] [CrossRef] [Green Version]
- Pan, Z.; Cui, Z.F.; Chang, C.H.; Zong, H.S. Finite-volume effects on phase transition in the Polyakov-loop extended Nambu–Jona-Lasinio model with a chiral chemical potential. Int. J. Mod. Phys. A 2017, 32, 1750067. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, S.; Venugopalan, R.; Yin, Y. Universal off-equilibrium scaling of critical cumulants in the QCD phase diagram. Phys. Rev. Lett. 2016, 117, 222301. [Google Scholar] [CrossRef] [Green Version]
- Bluhm, M.; Nahrgang, M.; Kalweit, A.; Arslandok, M.; Braun-Munzinger, P.; Floerchinger, S.; Fraga, E.; Gazdzicki, M.; Hartnack, C.; Herold, C.; et al. Dynamics of critical fluctuations: Theory – phenomenology – heavy-ion collisions. arXiv 2020, arXiv:2001.08831. [Google Scholar]
- Wu, S.; Wu, Z.; Song, H. Universal scaling of the σ field and net-protons from Langevin dynamics of model A. Phys. Rev. C 2019, 99, 064902. [Google Scholar] [CrossRef] [Green Version]
- Nahrgang, M.; Bluhm, M.; Schaefer, T.; Bass, S. Diffusive dynamics of critical fluctuations near the QCD critical point. Phys. Rev. D 2019, 99, 116015. [Google Scholar] [CrossRef] [Green Version]
- Asakawa, M.; Kitazawa, M.; Müller, B. Note on Search for Critical Point in QCD with Relativistic Heavy Ion Collisions. arXiv 2019, arXiv:1912.05840. [Google Scholar]
- Ohnishi, Y.; Kitazawa, M.; Asakawa, M. Thermal blurring of event-by-event fluctuations generated by rapidity conversion. Phys. Rev. C 2016, 94, 044905. [Google Scholar] [CrossRef]
- Stephanov, M.; Yin, Y. Hydrodynamics with parametric slowing down and fluctuations near the critical point. Phys. Rev. D 2018, 98, 036006. [Google Scholar] [CrossRef] [Green Version]
- Rajagopal, K.; Ridgway, G.; Weller, R.; Yin, Y. Hydro+ in Action: Understanding the Out-of-Equilibrium Dynamics Near a Critical Point in the QCD Phase Diagram. arXiv 2019, arXiv:1908.08539. [Google Scholar]
- An, X.; Basar, G.; Stephanov, M.; Yee, H.U. Fluctuation dynamics in a relativistic fluid with a critical point. arXiv 2019, arXiv:1912.13456. [Google Scholar]
- Mohanty, B.; National Institute of Science Education and Research, Odisha, India. Private Communications, 2019.
- Bzdak, A.; Koch, V.; Oliinychenko, D.; Steinheimer, J. Large proton cumulants from the superposition of ordinary multiplicity distributions. Phys. Rev. C 2018, 98, 054901. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, M.M.; Ahammed, Z.; Alakhverdyants, A.; Alekseev, I.; Alford, J.; Anderson, B.; Arkhipkin, D.; Averichev, G.; Balewski, J.; Barnby, L.; et al. Higher Moments of Net-proton Multiplicity Distributions at RHIC. Phys. Rev. Lett. 2010, 105, 022302. [Google Scholar] [CrossRef]
- Adamczyk, L.; Adkins, J.; Agakishiev, G.; Aggarwal, M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C.; Aparin, A.; Arkhipkin, D.; et al. Energy Dependence of Moments of Net-proton Multiplicity Distributions at RHIC. Phys. Rev. Lett. 2014, 112, 032302. [Google Scholar] [CrossRef]
- Luo, X. Energy Dependence of Moments of Net-Proton and Net-Charge Multiplicity Distributions at STAR. PoS CPOD 2015, 2014, 19. [Google Scholar] [CrossRef]
- Adam, J.; Adamczyk, L.; Adams, J.; Adkins, J.; Agakishiev, G.; Aggarwal, M.; Ahammed, Z.; Alekseev, I.; Anderson, D.; Aoyama, R.; et al. Collision-energy dependence of second-order off-diagonal and diagonal cumulants of net-charge, net-proton, and net-kaon multiplicity distributions in Au + Au collisions. Phys. Rev. C 2019, 100, 014902. [Google Scholar] [CrossRef] [Green Version]
- Luo, X. Exploring the QCD Phase Structure with Beam Energy Scan in Heavy-ion Collisions. Nucl. Phys. A 2016, 956, 75. [Google Scholar] [CrossRef] [Green Version]
- Adam, J.; Adamczyk, L.; Adams, J.; Adkins, J.; Agakishiev, G.; Aggarwal, M.; Ahammed, Z.; Alekseev, I.; Anderson, D.; Aparin, A.; et al. Net-proton number fluctuations and the Quantum Chromodynamics critical point. arXiv 2020, arXiv:2001.02852. [Google Scholar]
- Adamczyk, L.; Adkins, J.; Agakishiev, G.; Aggarwal, M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C.; Aparin, A.; Arkhipkin, D.; et al. Beam energy dependence of moments of the net-charge multiplicity distributions in Au+Au collisions at RHIC. Phys. Rev. Lett. 2014, 113, 092301. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk, L.; Adam, J.; Adamczyk, L.; Adams, J.; Adkins, J.; Agakishiev, G.; Aggarwal, M.; Ahammed, Z.; Ajitanand, N.; Alekseev, I.; et al. Collision Energy Dependence of Moments of Net-Kaon Multiplicity Distributions at RHIC. Phys. Lett. B 2018, 785, 551. [Google Scholar] [CrossRef]
- Aggarwal, M.M.; Ahammed, Z.; Alakhverdyants, A.; Alekseev, I.; Alford, J.; Anderson, B.; Arkhipkin, D.; Averichev, G.; Balewski, J.; Barnby, L.; et al. An Experimental Exploration of the QCD Phase Diagram: The Search for the Critical Point and the Onset of De-confinement. arXiv 2010, arXiv:1007.2613. [Google Scholar]
- Luo, X.; Xu, J.; Mohanty, B.; Xu, N. Volume fluctuation and auto-correlation effects in the moment analysis of net-proton multiplicity distributions in heavy-ion collisions. J. Phys. G 2013, 40, 105104. [Google Scholar] [CrossRef]
- Chatterjee, A.; Zhang, Y.; Zeng, J.; Sahoo, N.R.; Luo, X. Centrality selection effect on higher order cumulants of net-proton multiplicity distributions in relativistic heavy-ion collisions. Phys. Rev. C 2020, 101, 034902. [Google Scholar] [CrossRef] [Green Version]
- Bzdak, A.; Koch, V. Local Efficiency Corrections to Higher Order Cumulants. Phys. Rev. C 2015, 91, 027901. [Google Scholar] [CrossRef] [Green Version]
- Luo, X. Unified description of efficiency correction and error estimation for moments of conserved quantities in heavy-ion collisions. Phys. Rev. C 2015, 91, 034907, Erratum: [Phys. Rev. C 2016, 94, 059901]. [Google Scholar] [CrossRef]
- Kitazawa, M. Efficient formulas for efficiency correction of cumulants. Phys. Rev. C 2016, 93, 044911. [Google Scholar] [CrossRef]
- Nonaka, T.; Kitazawa, M.; Esumi, S. More efficient formulas for efficiency correction of cumulants and effect of using averaged efficiency. Phys. Rev. C 2017, 95, 064912. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Nonaka, T. Efficiency correction for cumulants of multiplicity distributions based on track-by-track efficiency. Phys. Rev. C 2019, 99, 044917. [Google Scholar] [CrossRef] [Green Version]
- Luo, X. Error Estimation for Moments Analysis in Heavy Ion Collision Experiment. J. Phys. G 2012, 39, 025008. [Google Scholar] [CrossRef]
- Thäder, J. Higher Moments of Net-Particle Multiplicity Distributions. Nucl. Phys. A 2016, 956, 320. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Yu, S.; Liu, F.; Luo, X. Cumulants of net-proton, net-kaon, and net-charge multiplicity distributions in Au + Au collisions at = 7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV within the UrQMD model. Phys. Rev. C 2016, 94, 024901. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Xu, J.; Luo, X.; Liu, F. Cumulants of event-by-event net-strangeness distributions in Au+Au collisions at = 7.7–200 GeV from UrQMD model. Phys. Rev. C 2017, 96, 014909. [Google Scholar] [CrossRef] [Green Version]
- Bzdak, A.; Koch, V.; Skokov, V. Baryon number conservation and the cumulants of the net proton distribution. Phys. Rev. C 2013, 87, 014901. [Google Scholar] [CrossRef] [Green Version]
- Braun-Munzinger, P.; Rustamov, A.; Stachel, J. Bridging the gap between event-by-event fluctuation measurements and theory predictions in relativistic nuclear collisions. Nucl. Phys. A 2017, 960, 114. [Google Scholar] [CrossRef] [Green Version]
- He, S.; Luo, X.; Nara, Y.; Esumi, S.; Xu, N. Effects of Nuclear Potential on the Cumulants of Net-Proton and Net-Baryon Multiplicity Distributions in Au+Au Collisions at =5 GeV. Phys. Lett. B 2016, 762, 296. [Google Scholar] [CrossRef] [Green Version]
- He, S.; Luo, X. Proton Cumulants and Correlation Functions in Au + Au Collisions at = 7.7–200 GeV from UrQMD Model. Phys. Lett. B 2017, 774, 623. [Google Scholar] [CrossRef]
- Zhang, Y.; He, S.; Liu, H.; Yang, Z.; Luo, X. Effects of resonance weak decays and hadronic re-scattering on the proton number fluctuations in Au + Au collisions at =5 GeV from JAM model. Phys. Rev. C 2020, 101, 034909. [Google Scholar] [CrossRef] [Green Version]
- Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N.; Akiba, Y.; Akimoto, R.; Al-Bataineh, H.; Alexander, J.; Al-Ta’ani, H.; Angerami, A.; et al. Measurement of higher cumulants of net-charge multiplicity distributions in Au+Au collisions at = 7.7–200 GeV. Phys. Rev. C 2016, 93, 011901. [Google Scholar] [CrossRef] [Green Version]
- Adamczewski-Musch, J.; Arnold, O.; Behnke, C.; Belounnas, A.; Belyaev, A.; Berger-Chen, J.; Biernat, J.; Blanco, A.; Blume, C.; Bohmer, M.; et al. Proton number fluctuations in = 2.4 GeV Au+Au collisions studies with HADES. arXiv 2020, arXiv:2002.08701. [Google Scholar]
- STAR Note 0598: BES-II. white paper. Available online: http://drupal.star.bnl.gov/STAR/starnotes/public/sn0598 (accessed on 28 February 2020).
- Ablyazimov, T.; Abuhoza, A.; Adak, R.; Adamczyk, M.; Agarwal, K.; Aggarwal, M.; Ahammed, Z.; Ahmad, F.; Ahmad, N.; Ahmad, S.; et al. Challenges in QCD matter physics –The scientific programme of the Compressed Baryonic Matter experiment at FAIR. Eur. Phys. J. A 2017, 53, 60. [Google Scholar] [CrossRef]
- NICA white paper. Available online: http://nica.jinr.ru/files/WhitePaper.pdf (accessed on 28 February 2020).
- Sun, K.J.; Chen, L.W.; Ko, C.M.; Pu, J.; Xu, Z. Light nuclei production as a probe of the QCD phase diagram. Phys. Lett. B 2018, 781, 499. [Google Scholar] [CrossRef]
- Yu, N.; Zhang, D.; Luo, X. Search for the QCD Critical Point by Transverse Velocity Dependence of Anti-deuteron to Deuteron Ratio. Chin. Phys. C 2020, 44, 014002. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhang, D.; He, S.; Yu, N.; Luo, X. Light Nuclei Production in Au+Au Collisions at = 5–200 GeV from JAM model. arXiv 2019, arXiv:1909.09304. [Google Scholar]
- Zhang, D. Energy Dependence of Light Nuclei (d, t) Production at STAR. arXiv 2019, arXiv:1909.07028. [Google Scholar]
- Zhang, D. Light Nuclei (d, t) Production in Au + Au Collisions at = 7.7–200 GeV. arXiv 2020, arXiv:2002.10677. [Google Scholar]
- Eidelman, S.; Hayes, K.G.; Olive, K.E.; Aguilar-Benitez, M.; Amsler, C.; Asner, D.; Babu, K.S.; Barnett, R.M.; Beringer, J.; Burchat, P.R.; et al. Review of Particle Physics. Phys. Lett. B 2004, 592, 1. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Bleicher, M.; Huang, S.; Schweda, K.; Stocker, H.; Xu, N.; Zhuang, P. D correlations as a sensitive probe for thermalization in high energy nuclear collisions. Phys. Lett. B 2007, 647, 366. [Google Scholar] [CrossRef] [Green Version]
- Cacciari, M.; Nason, P.; Vogt, R. QCD predictions for charm and bottom production at RHIC. Phys. Rev. Lett. 2005, 95, 122001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogt, R. The Total charm cross-section. Eur. Phys. J. ST 2008, 155, 213–222. [Google Scholar] [CrossRef]
- Abelev, B.; Abrahantes, A.; Adamova, D.; Adare, A.; Aggarwal, M.; Aglieri, G.; Agocs, A.; Agostinelli, A.; Aguilar, S.; Ahammed, Z.; et al. Measurement of charm production at central rapidity in proton-proton collisions at = 7 TeV. JHEP 2012, 2012, 128. [Google Scholar] [CrossRef] [Green Version]
- Acosta, D.; Affolder, T.; Ahn, M.; Akimoto, T.; Albrow, M.; Ambrose, D.; Amidei, D.; Anastassov, A.; Anikeev, K.; Annovi, A.; et al. Measurement of prompt charm meson production cross sections in p collisions at = 1.96 TeV. Phys. Rev. Lett. 2003, 91, 241804. [Google Scholar] [CrossRef] [Green Version]
- Adamczyk, L.; Agakishiev, G.; Aggarwal, M.; Ahammed, Z.; Alakhverdyants, A.; Alekseev, I.; Alford, J.; Anderson, B.; Anson, C.; Arkhipkin, D.; et al. Measurements of D0 and D∗ production in p + p collisions at = 200 GeV. Phys. Rev. D 2011, 86, 072013. [Google Scholar] [CrossRef] [Green Version]
- Ye, Z. Open charm hadron production in p + p, Au + Au and U + U collisions at STAR. Nucl. Phys. A 2014, 931, 520–524. [Google Scholar] [CrossRef]
- Adamczyk, L.; Adam, J.; Adamczyk, L.; Adams, J.; Adkins, J.; Agakishiev, G.; Aggarwal, M.; Ahammed, Z.; Ajitanand, N.; Alekseev, I.; et al. Observation of D0 meson nuclear modifications in Au+Au collisions at = 200 GeV. Phys. Rev. Lett. 2018, 121, 229901. [Google Scholar] [CrossRef] [Green Version]
- Greco, V.; Ko, C.; Rapp, R. Quark coalescence for charmed mesons in ultrarelativistic heavy-ion collisions. Phys. Lett. B 2004, 595, 202. [Google Scholar] [CrossRef] [Green Version]
- Oh, Y.; Ko, C.; Lee, S.; Yasui, S. Heavy baryon/meson ratios in relativistic heavy-ion collisions. Phys. Rev. C 2009, 79, 044905. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Shi, S.; Xu, N.; Zhuang, P. Sequential coalescence with charm conservation in high energy nuclear collisions. arXiv 2018, arXiv:1805.10858. [Google Scholar]
- Plumari, S.; Minissale, V.; Das, S.K.; Coci, G.; Greco, V. Charmed hadrons from coalescence plus fragmentation in relativistic nucleus-nucleus collisions at RHIC and LHC. Eur. Phys. J. C 2018, 78, 348. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Fries, R.J.; Rapp, R. Ds-meson as quantitative probe of diffusion and hadronization in nuclear collisions. Phys. Rev. Lett. 2013, 110, 112301. [Google Scholar] [CrossRef] [Green Version]
- Agakishiev, G.; Aggarwal, M.; Ahammed, Z.; Alakhverdyants, A.; Alekseev, L.; Alford, J.; Anderson, B.; Anson, C.; Arkhipkin, D.; Averichev, G.; et al. Strangeness enhancement in Cu+Cu and Au+Au collisions at = 200 GeV. Phys. Rev. Lett. 2012, 108, 072301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abelev, B.; Aggarwal, M.; Ahammed, Z.; Anderson, B.; Arkhipkin, D.; Averichev, G.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L.; et al. Identified baryon and meson distributions at large transverse momenta from Au+Au collisions at = 200 GeV. Phys. Rev. Lett. 2006, 97, 152301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skands, P.; Carrazza, S.; Rojo, J. Tuning PYTHIA 8.1: The Monash 2013 Tune. Eur. Phys. J. C 2014, 74, 3024. [Google Scholar] [CrossRef] [Green Version]
- Bierlich, C.; Christiansen, J.R. Effects of color reconnection on hadron flavor observables. Phys. Rev. D 2015, 92, 094010. [Google Scholar] [CrossRef] [Green Version]
- Wheaton, S.; Cleymans, J.; Hauer, M. THERMUS: A Thermal model package for ROOT. Comput. Phys. Commun. 2009, 180, 84. [Google Scholar] [CrossRef] [Green Version]
- Adcox, K.; Adler, S.; Ajitanand, N.; Akiba, Y.; Alexander, J.; Aphecetche, L.; Arai, Y.; Aronson, S.; Averbeck, R.; Awes, T.; et al. Measurement of single electrons and implications for charm production in Au+Au collisions at = 130 GeV. Phys. Rev. Lett. 2002, 88, 192303. [Google Scholar] [CrossRef] [Green Version]
- Frixione, S.; Mangano, M.L.; Nason, P.; Ridolfi, G. Heavy quark production. Adv. Ser. Direct. High Energy Phys. 1998, 15, 609–706. [Google Scholar]
- Adamczyk, L.; Adkins, J.; Agakishiev, G.; Aggarwal, M.; Ahammed, Z.; Ajitanand, N.; Alekseev, I.; Anderson, D.; Aoyama, R.; Aparin, A.; et al. Elliptic flow of electrons from heavy-flavor hadron decays in Au + Au collisions at = 200, 62.4, and 39 GeV. Phys. Rev. C 2017, 95, 034907. [Google Scholar] [CrossRef] [Green Version]
- Si, F.; Chen, X.; Zhou, L.; Zhang, Y.; Zhang, S.; Ju, X.; Li, X.; Dong, X.; Xu, N. Charm and beauty isolation from heavy flavor decay electrons in Au+Au collisions at = 200 GeV at RHIC. arXiv 2019, arXiv:1906.08974. [Google Scholar]
- Xie, G. Measurements of open charm hadron production in Au+Au Collisions at = 200 GeV at STAR. PoS HardProbes2018 2018, 142. [Google Scholar]
- Sjöstrand, T.; Mrenna, S.; Skands, P. PYTHIA 6.4 Physics and Manual. JHEP 2006, 605, 26. [Google Scholar] [CrossRef]
- Tavernier, S.P.K. Charmed and bottom flavored particle production in hadronic interactions. Rep. Prog. Phys. 1987, 50, 1439–1489. [Google Scholar] [CrossRef]
- Bamberger, A.; Binon, F.; Bricman, C.; Bruning, H.; Duteil, P.; Gouanere, M.; Hartung, R.; Jansen, J.; Lagnaux, J.; Massas, G.; et al. J/psi production by 24 GeV/c protons. Nucl. Phys. B 1978, 134, 1. [Google Scholar] [CrossRef] [Green Version]
- Corden, M.J.; Dowell, J.; Garvey, J.; Homer, R.; Jobes, M.; Kenyon, I.; McMahon, T.; Owen, R.; Sumorok, K.; Vallance, R.; et al. Experimental results on J/ψ production by π±, K±, p and p¯ incident on hydrogen at 39.5 GeV/c. Phys. Lett. B 1981, 98, 220. [Google Scholar] [CrossRef] [Green Version]
- Antipov, Y.M.; Bessubov, V.; Budanov, N.; Bushnin, Y.; Denisov, S.; Gorin, Y.; Lebedev, A.; Lednev, A.; Mikhailov, Y.; Petrukhin, A.; et al. J/ψ particle production by 70 GeV/c protons. Phys. Lett. B 1976, 60, 309. [Google Scholar] [CrossRef]
- Snyder, H.D.; Hom, D.; Lederman, L.; Paar, H.; Weiss, J.; Yoh, J.; Appel, J.; Brown, B.; Brown, C.; Innes, W.; et al. Production of Ψ(3100) and Ψ′(3700) in p-Be collisions at 400 GeV. Phys. Rev. Lett. 1976, 36, 1415. [Google Scholar] [CrossRef]
- Anderson, K.J.; Henry, G.; McDonald, K.; Pilcher, J.; Rosenberg, E.; Branson, J.; Sanders, G.; Smith, A.; Thaler, J. Production of muon pairs by 150 GeV/cπ+ and protons. Phys. Rev. Lett. 1976, 36, 237. [Google Scholar] [CrossRef]
- Anderson, K.J.; Coleman, B.; Hogan, G.; Karhi, H.; McDonald, K.; Newman, C.; Pilcher, J.; Rosenberg, E.; Sanders, G.; Smith, A.; et al. Production of muon pairs by 225 GeV π±, K±, p± beams on nuclear targets. Phys. Rev. Lett. 1979, 42, 944. [Google Scholar] [CrossRef]
- Siskind, E.J.; Barish, B.; Bartlett, J.; Bodek, A.; Merritt, F.; Shaevitz, M.; Diamant-Berger, A.; Dishaw, J.; Faessler, M.; Liu, J.; et al. Production of Ψ(3100) in 400 GeV/c proton interactions. Phys. Rev. D 1980, 21, 628. [Google Scholar] [CrossRef]
- Gribushin, A.; Abramov, V.; Antipov, Y.; Baldin, B.; Crittenden, R.; Davis, C.; Dauwe, L.; Denisov, S.; Dyshkant, A.; Dzierba, A.; et al. Production of J/ψ mesons in p-Be collisions at 530 GeV/c and 800 GeV/c. Phys. Rev. D 2000, 62, 012001. [Google Scholar] [CrossRef] [Green Version]
- Antoniazzi, L.; Arenton, M.; Cao, Z.; Chen, T.; Conetti, S.; Cox, B.; Delchamps, S.; Fortney, L.; Guffey, K.; Haire, M.; et al. A measurement of J/ψ and ψ′ production in 300 GeV/c proton, anti-proton and π± nucleon interactions. Phys. Rev. D 1992, 46, 4828. [Google Scholar] [CrossRef]
- Alexopoulos, T.; Antoniazzi, L.; Arenton, M.; Ballagh, H.; Bingham, H.; Blankman, A.; Block, M.; Boden, A.; Bonomi, G.; Cao, Z.; et al. Differential cross-sections of J/ψ and ψ′ in 800 GeV/cp-Si interactions. Phys. Rev. D 1997, 55, 3927. [Google Scholar] [CrossRef]
- Schub, M.H.; Jansen, D.; Mishra, C.; Ho, P.; Brown, C.; Carey, T.; Chen, Y.; Childers, R.; Cooper, W.; Darden, C.; et al. Measurement of J/ψ and ψ′ production in 800 GeV/c proton-gold collisions. Phys. Rev. D 1995, 52, 1307. [Google Scholar] [CrossRef] [PubMed]
- Badier, J.; Boucrot, J.; Bourotte, J.; Burgun, G.; Callot, O.; Charpentier, P.; Crozon, M.; Decamp, D.; Delpierre, P.; Gandois, B.; et al. Experimental J/ψ hadronic production from 150 GeV/c to 280 GeV/c. Z. Phys. C 1983, 20, 101. [Google Scholar]
- Abreu, M.C.; Baglin, C.; Baldit, A.; Bedjidian, M.; Bordalo, P.; Bussiere, A.; Busson, P.; Castor, J.; Chambon, T.; Charlot, C.; et al. Charmonia production in 450 GeV/c proton induced reactions. Phys. Lett. B 1998, 444, 516. [Google Scholar] [CrossRef] [Green Version]
- Alessandro, B.; Alexa, C.; Arnaldi, R.; Atayan, M.; Baglin, C.; Baldit, A.; Beole, S.; Boldea, V.; Bordalo, P.; Borenstein, S.; et al. Charmonium production and nuclear absorption in p-A interactions at 450 GeV. Eur. Phys. J. C 2004, 33, 31. [Google Scholar]
- Abreu, M.C.; Alessandro, B.; Baldit, A.; Barriere, C.; Bedjidian, M.; Bordalo, P.; Castor, J.; Chambon, T.; Chaurand, B.; Chiavassa, E.; et al. J/ψ and ψ′ and Drell-Yan production in pp and pd interactions at 450 GeV/c. Phys. Lett. B 1998, 438, 35. [Google Scholar] [CrossRef]
- Morel, C.; Bernasconi, A.; Breedon, R.; Camilleri, L.; Cool, R.; Cox, P.; Cushman, P.; Dick, L.; Dukes, E.; Gabioud, B.; et al. Measurement of the inclusive J/ψ production cross-sections in p and pp collisions at = 24.3 GeV. Phys. Lett. B 1990, 252, 505. [Google Scholar] [CrossRef] [Green Version]
- Abt, I.; Adams, M.; Agari, M.; Albrecht, H.; Aleksandrov, A.; Amaral, V.; Amorim, A.; Aplin, S.; Aushev, V.; Bagaturia, Y.; et al. Measurement of the J/ψ production cross section in 920 GeV/c fixed-target proton-nucleus interactions. Phys. Lett. B 2006, 638, 407. [Google Scholar] [CrossRef] [Green Version]
- Nagy, E.; Regler, M.; Schmidt-Parzefall, W.; Schubert, K.; Winter, K.; Brandt, A.; Dibon, H.; Flugge, G.; Niebergall, F.; Schumacher, P.; et al. Observation of high mass μ+μ- pairs at the ISR. Phys. Lett. B 1975, 60, 96. [Google Scholar] [CrossRef]
- Adler, S.S.; Afanasiev, S.; Aidala, C.; Ajitanand, N.; Akiba, Y.; Alexander, J.; Amirikas, R.; Aphecetche, L.; Aronson, S.; Averbeck, R.; et al. J/ψ production from proton proton collisions at = 200 GeV. Phys. Rev. Lett. 2004, 92, 051802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maltoni, F.; Spengler, J.; Bargiotti, M.; Bertin, A.; Bruschi, M.; Castro, S.; Fabbri, L.; Faccioli, P.; Giacobbe, B.; Grimaldi, F.; et al. Analysis of charmonium production at fixed-target experiments in the NRQCD approach. Phys. Lett. B 2006, 638, 202–208. [Google Scholar] [CrossRef] [Green Version]
- Vogt, R. Phenomenology of charm and bottom production. Z. Phys. C 1996, 71, 475–481. [Google Scholar] [CrossRef]
- Nonaka, T. Measurement of the Sixth-Order Cumulant of Net-Particle Distributions in Au+Au Collisions from the STAR Experiment. In Proceedings of the QM2019, Wuhan, China, 4–9 November 2019. [Google Scholar]
- Pandav, A. Measurement of cumulants of conserved charge multiplicity distributions in Au+Au collisions from the STAR experiment. In Proceedings of the QM2019, Wuhan, China, 4–9 November 2019. [Google Scholar]
- Geraksiev, N.S. The Nuclotron-based Ion Collider Facility Project. The Physics Programme for the Multi-Purpose Detector. J. Phys. Conf. Ser. 2019, 1390, 012121. [Google Scholar] [CrossRef]
- Cassing, W.; Bratkovskaya, E.; Sibirtsev, A. Open charm production in relativistic nucleus-nucleus collisions. Nucl. Phys. A 2001, 691, 753. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.gsi.de/work/forschung/cbmnqm/cbm.htm (accessed on 28 February 2020).
- STAR Endcap TOF Proposal. Available online: https://drupal.star.bnl.gov/STAR/starnotes/public/sn0665 (accessed on 28 February 2020).
- STAR iTPC upgrade Proposal. Available online: https://drupal.star.bnl.gov/STAR/starnotes/public/sn0644 (accessed on 28 February 2020).
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, X.; Shi, S.; Xu, N.; Zhang, Y. A Study of the Properties of the QCD Phase Diagram in High-Energy Nuclear Collisions. Particles 2020, 3, 278-307. https://doi.org/10.3390/particles3020022
Luo X, Shi S, Xu N, Zhang Y. A Study of the Properties of the QCD Phase Diagram in High-Energy Nuclear Collisions. Particles. 2020; 3(2):278-307. https://doi.org/10.3390/particles3020022
Chicago/Turabian StyleLuo, Xiaofeng, Shusu Shi, Nu Xu, and Yifei Zhang. 2020. "A Study of the Properties of the QCD Phase Diagram in High-Energy Nuclear Collisions" Particles 3, no. 2: 278-307. https://doi.org/10.3390/particles3020022
APA StyleLuo, X., Shi, S., Xu, N., & Zhang, Y. (2020). A Study of the Properties of the QCD Phase Diagram in High-Energy Nuclear Collisions. Particles, 3(2), 278-307. https://doi.org/10.3390/particles3020022