Dynamical Freeze-Out Phenomena: The Case of K±, φ Transverse Momentum Spectra in Collisions of Au(1.23 A GeV) + Au
Abstract
:1. Introduction
2. BUU Code
3. Numerical Results for Au(1.23 A GeV) + Au
3.1. Impact Parameter Dependence
3.2. Nucleon Density Evolution
3.3. Time Evolution of Rates
3.4. Time Evolution of
4. Discussion and Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Ar(1.756 A GeV) + KCl
References
- Foerster, A.; Uhlig, F.; Boettcher, I.; Debowski, M.; Dohrmann, F.; Grosse, E.; Koczon, P.; Kohlmeyer, B.; Laue, F.; Menzel, M.; et al. First evidence for different freezeout conditions for kaons and anti-kaons observed in heavy ion collisions. Phys. Rev. Lett. 2003, 91, 152301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamczewski-Musch, J.; Arnold, O.; Behnke, C.; Belounnas, A.; Belyaev, A.; Berger-Chen, J.C.; Biernat, J.; Blanco, A.; Blume, C.; Böhmer, M.; et al. Deep sub-threshold ϕ production in Au+Au collisions. Phys. Lett. B 2018, 778, 403. [Google Scholar] [CrossRef]
- Kotte, R.; Kämpfer, B. Acceptance and Count Rate Estimates for Experiments on Sub-Threshold phi Meson Production in Central Collisions of C + C at 2 a GeV; FZR-339; Forschungszentrum Rossendorj (FZR): Dresden, Germany, 14 January 2002. [Google Scholar]
- Kampfer, B.; Kotte, R.; Hartnack, C.; Aichelin, J. Phi puzzle in heavy ion collisions at 2/A-GeV: How many K- from phi decays? J. Phys. G 2002, 28, 2035. [Google Scholar]
- Lorenz, M. Investigating dense nuclear matter with rare hadronic probes. PoS BORMIO 2010, 2010, 038. [Google Scholar]
- Hartnack, C.; Oeschler, H.; Leifels, Y.; Bratkovskaya, E.L.; Aichelin, J. Strangeness Production close to Threshold in Proton-Nucleus and Heavy-Ion Collisions. Phys. Rep. 2012, 510, 119. [Google Scholar] [CrossRef] [Green Version]
- Steinberg, V.; Staudenmaier, J.; Oliinychenko, D.; Li, F.; Erkiner, Ö.; Elfner, H. Strangeness production via resonances in heavy-ion collisions at energies available at the GSI Schwerionensynchrotron. Phys. Rev. C 2019, 99, 064908. [Google Scholar] [CrossRef] [Green Version]
- Weil, J.; Steinberg, V.; Staudenmaier, J.; Pang, L.G.; Oliinychenko, D.; Mohs, J.; Kretz, M.; Kehrenberg, T.; Goldschmidt, A.; Bäuchle, B.; et al. Particle production and equilibrium properties within a new hadron transport approach for heavy-ion collisions. Phys. Rev. C 2016, 94, 054905. [Google Scholar] [CrossRef]
- Inghirami, G.; Hillmann, P.; Tomášik, B.; Bleicher, M. Temperatures and chemical potentials at kinetic freeze-out in relativistic heavy ion collisions from coarse grained transport simulations. arXiv 2019, arXiv:1909.00643. [Google Scholar] [CrossRef] [Green Version]
- Steinheimer, J.; Bleicher, M. Sub-threshold ϕ and Ξ− production by high mass resonances with UrQMD. J. Phys. G 2016, 43, 015104. [Google Scholar] [CrossRef] [Green Version]
- Kolb, E.W.; Turner, M.S. The Early Universe. Front. Phys. 1990, 69, 1. [Google Scholar]
- Andronic, A.; Braun-Munzinger, P.; Redlich, K.; Stachel, J. Decoding the phase structure of QCD via particle production at high energy. Nature 2018, 561, 321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agakishiev, G.; Arnold, O.; Balanda, A.; Belver, D.; Belyaev, A.; Berger-Chen, J.C.; Blanco, A.; Böhmer, M.; Boyard, J.L.; Cabanelas, P.; et al. Statistical model analysis of hadron yields in proton-nucleus and heavy-ion collisions at SIS 18 energies. Eur. Phys. J. A 2016, 52, 178. [Google Scholar] [CrossRef] [Green Version]
- Agakishiev, G.; Balanda, A.; Bannier, B.; Bassini, R.; Belver, D.; Belyaev, A.; Blanco, A.; Böhmer, M.; Boyard, J.L.; Cabanelas, P.; et al. Hyperon production in Ar+KCl collisions at 1.76 A GeV. Eur. Phys. J. A 2011, 47, 21. [Google Scholar] [CrossRef] [Green Version]
- Motornenko, A.; Vovchenko, V.; Greiner, C.; Stoecker, H. Kinetic freeze-out temperature from yields of short-lived resonances. arXiv 2019, arXiv:1908.11730. [Google Scholar]
- Kapusta, J.I.; Li, M. High Baryon Densities Achieveable at RHIC and LHC. Nucl. Phys. A 2019, 982, 903. [Google Scholar] [CrossRef]
- Friman, B.; Hohne, C.; Knoll, J.; Leupold, S.; Randrup, J.; Rapp, R.; Senger, P. The CBM physics book: Compressed baryonic matter in laboratory experiments. Lect. Notes Phys. 2011, 814, 1. [Google Scholar]
- Ablyazimov, T.; Abuhoza, A.; Adak, R.P.; Adamczyk, M.; Agarwal, K.; Aggarwal, M.M.; Ahammed, Z.; Ahmad, F.; Ahmad, N.; Ahmad, S.; et al. Challenges in QCD matter physics—The scientific programme of the Compressed Baryonic Matter experiment at FAIR. Eur. Phys. J. A 2017, 53, 60. [Google Scholar] [CrossRef]
- Schade, H.; Wolf, G.; Kampfer, B. Role of phi decays for K- yields in relativistic heavy-ion collisions. Phys. Rev. C 2010, 81, 034902. [Google Scholar] [CrossRef] [Green Version]
- Lutz, M.F.M.; Korpa, C.L.; Moller, M. Antikaons and hyperons in nuclear matter with saturation. Nucl. Phys. A 2008, 808, 124. [Google Scholar] [CrossRef] [Green Version]
- Tolos, L.; Cabrera, D.; Ramos, A. Strange mesons in nuclear matter at finite temperature. Phys. Rev. C 2008, 78, 045205. [Google Scholar] [CrossRef] [Green Version]
- Kolomeitsev, E.E.; Hartnack, C.; Barz, H.W.; Bleicher, M.; Bratkovskaya, E.; Cassing, W.; Chen, L.W.; Danielewicz, P.; Fuchs, C.; Gaitanos, T.; et al. Transport theories for heavy ion collisions in the 1-A-GeV regime. J. Phys. G 2005, 31, S741. [Google Scholar] [CrossRef] [Green Version]
- Agakishiev, G.; Balanda, A.; Bannier, B.; Bassini, R.; Belver, D.; Belyaev, A.V.; Blanco, A.; Boehmer, M.; Boyard, J.L.; Braun-Munzinger, P.; et al. Phi decay: A Relevant source for K-production at SIS energies? Phys. Rev. C 2009, 80, 025209. [Google Scholar] [CrossRef] [Green Version]
- Gasik, P.; Piasecki, K.; Herrmann, N.; Leifels, Y.; Matulewicz, T.; Andronic, A.; Averbeck, R.; Barret, V.; Basrak, Z.; Bastid, N.; et al. Strange meson production in Al+Al collisions at 1.9 A GeV. Eur. Phys. J. A 2016, 52, 177. [Google Scholar] [CrossRef] [Green Version]
- Piasecki, K.; Herrmann, N.; Averbeck, R.; Andronic, A.; Barret, V.; Basrak, Z.; Bastid, N.; Benabderrahmane, M.L.; Berger, M.; Buehler, P.; et al. Wide acceptance measurement of the K−/K+ ratio from Ni+Ni collisions at 1.91A GeV. Phys. Rev. C 2019, 99, 014904. [Google Scholar] [CrossRef] [Green Version]
- Adamczewski-Musch, J.; Arnold, O.; Behnke, C.; Belounnas, A.; Belyaev, A.; Chernenko, S.; Chlad, L.; Deveaux, C.; Dreyer, J.; Dybczak, A.; et al. Centrality determination of Au + Au collisions at 1.23A GeV with HADES. Eur. Phys. J. A 2018, 54, 85. [Google Scholar] [CrossRef]
- Rabe, B. Untersuchung der Ausfrier-Dynamik von Kaonen in Relativistischen Schwerionenkollisionen. Master’s Thesis, Technische Universität, Dresden, Germany, May 2019. [Google Scholar]
- Barz, H.W.; Zetenyi, M.; Wolf, G.; Kampfer, B. Subthreshold phi meson production in heavy ion collisions. Nucl. Phys. A 2002, 705, 223. [Google Scholar] [CrossRef] [Green Version]
- Steinheimer, J.; Bleicher, M. Sub-threshold strangeness and charm production in UrQMD. J. Phys. Conf. Ser. 2017, 779, 012017. [Google Scholar] [CrossRef] [Green Version]
Input Parameter | Symbol | Au + Au | Ar + KCl |
---|---|---|---|
Simulation duration | (fm/c) | 60 | 60 |
Time step | (fm/c) | 0.5 | 0.5 |
Projectile | / | 197/79 | 40/18 |
Target | / | 197/79 | 39/19 |
Kinetic energy | (A GeV) | 1.23 | 1.756 |
Initial distance between nuclei | (fm) | 2.9 | 2.9 |
Impact parameter | b (fm) | 1–10 | 1–6 |
Number of parallel ensembles | 200 | 200 | |
Number of subsequent iterations | isubs | 200 | 200 |
Incompressibility | (MeV) | 215 | 215 |
Effective mass shift | (MeV) | +23.5 | +23.5 |
Effective mass shift | (MeV) | −75.2 | −75.2 |
Effective mass shift | (MeV) | −22.2 | −22.2 |
Nuclear saturation density | () | 0.16 | 0.16 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabe, B.; Kämpfer, B. Dynamical Freeze-Out Phenomena: The Case of K±, φ Transverse Momentum Spectra in Collisions of Au(1.23 A GeV) + Au. Particles 2019, 2, 511-528. https://doi.org/10.3390/particles2040032
Rabe B, Kämpfer B. Dynamical Freeze-Out Phenomena: The Case of K±, φ Transverse Momentum Spectra in Collisions of Au(1.23 A GeV) + Au. Particles. 2019; 2(4):511-528. https://doi.org/10.3390/particles2040032
Chicago/Turabian StyleRabe, Benjamin, and Burkhard Kämpfer. 2019. "Dynamical Freeze-Out Phenomena: The Case of K±, φ Transverse Momentum Spectra in Collisions of Au(1.23 A GeV) + Au" Particles 2, no. 4: 511-528. https://doi.org/10.3390/particles2040032
APA StyleRabe, B., & Kämpfer, B. (2019). Dynamical Freeze-Out Phenomena: The Case of K±, φ Transverse Momentum Spectra in Collisions of Au(1.23 A GeV) + Au. Particles, 2(4), 511-528. https://doi.org/10.3390/particles2040032