Dense Baryonic Matter and Applications of QCD Phase Diagram Dualities
Abstract
:1. Introduction
- (i)
- First, there is a brief overview of dualities similar to ours (universalities) obtained in the so-called large orbifold equivalence principle. Then the idea of the possibility of circumventing the sign problem has been expanded to our dualities and it is argued that it is a feasible scenario.
- (ii)
- It is shown that a problem of catalysis or anti-catalysis of chiral symmetry breaking by chiral imbalance can be resolved just by duality and the rather well-established knowledge of pion condensation properties at isospin density.
- (iii)
- It is shown that the duality can be used to produce new results and new phase diagrams (different sections of the phase diagram). As an example, it is showcased how, from the phase structure of dense quark matter with non-zero isospin density (including the possibility of inhomogeneous condensates (phases)), one can obtain, based on the duality only, the phase structure of dense quark matter with chiral imbalance.
2. (1+1)-Dimensional Models: The GN Model and Its Extensions
2.1. GN Model
2.2. Chiral GN Model (GN)
2.3. NJL2 Model
3. Dense Quark Matter with Isospin and Chiral Imbalance
3.1. Dense Isospin Asymmetric Quark Matter with Non-Zero Chirality: Phase Diagram in QCD Related Model
3.2. Dense Isospin Asymmetric Quark Matter with Non-Zero Chirality: Effective Model Consideration
3.3. Inclusion of Chiral Imbalance and the Consideration of the General Case
3.4. Other Dualities
4. Use of Dualities
4.1. Circumventing the Sign Problem with Use of Dualities
4.2. Predicting the Catalysis of Chiral Symmetry Breaking
4.3. Generating the Phase Diagram without Any Calculations
5. Conclusions
- There has been discussed the possibility of circumventing the sign problem by constructing dualities between QCD phase diagrams with different chemical potentials.
- It is shown that a problem if there exists catalysis or anti-catalysis of chiral symmetry breaking by chiral imbalance, can be resolved just by duality property to the favour of catalysis. And bearing also in mind the lattice simulations results at unphysically large pion mass one can say that there is not much doubt that this issue is settled.
- The whole new phase diagram of dense quark matter with chiral imbalance with the possibility of different inhomogeneous phases has been obtained just by duality only and previously known results.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
TDP | thermodynamic potential |
GN model | Gross-Neveu model |
NJL model | Nambu–Jona-Lasinio model |
CSB | chiral symmetry breaking |
PC | pion condensation |
CPC | charged pion condensation |
ICSB | inhomogeneous chiral symmetry breaking |
ICPC | inhomogeneous charged pion condensation |
References
- Mannarelli, M. Meson Condensation. Particles 2019, 2, 411–443. [Google Scholar] [CrossRef] [Green Version]
- Ayala, A.; Bashir, A.; Dominguez, C.A.; Gutierrez, E.; Loewe, M.; Raya, A. QCD phase diagram from finite energy sum rules. Phys. Rev. D 2011, 84, 056004. [Google Scholar] [CrossRef] [Green Version]
- Ayala, A.; Bashir, A.; Cobos-Martínez, J.J.; Hernández-Ortiz, S.; Raya, A. The effective QCD phase diagram and the critical end point. Nucl. Phys. B 2015, 897, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, M.; Inagaki, T.; Sakamoto, W. Phase Structure of a Four and Eight-Fermion Interaction Model at Finite Temperature and Chemical Potential in Arbitrary Dimensions. Int. J. Mod. Phys. A 2010, 25, 4757. [Google Scholar] [CrossRef] [Green Version]
- Fujihara, T.; Kimura, D.; Inagaki, T.; Kvinikhidze, A. High density quark matter in the NJL model with dimensional vs. cut-off regularization. Phys. Rev. D 2009, 79, 096008. [Google Scholar] [CrossRef] [Green Version]
- Fujihara, T.; Inagaki, T.; Kimura, D.; Kvinikhidze, A. Reconsideration of the 2-flavor NJL model with dimensional regularization at finite temperature and density. Prog. Theor. Phys. Suppl. 2008, 174, 72. [Google Scholar] [CrossRef] [Green Version]
- Friesen, A.V.; Kalinovsky, Y.L.; Toneev, V.D. Vector interaction effect on thermodynamics and phase structure of QCD matter. Int. J. Mod. Phys. A 2015, 30, 1550089. [Google Scholar] [CrossRef] [Green Version]
- Nedelko, S.N.; Voronin, V.E. Domain wall network as QCD vacuum and the chromomagnetic trap formation under extreme conditions. Eur. Phys. J. A 2015, 51, 45. [Google Scholar] [CrossRef] [Green Version]
- Blaschke, D.; Alvarez-Castillo, D.E.; Ayriyan, A.; Grigorian, H.; Lagarni, N.K.; Weber, F. Astrophysical aspects of general relativistic mass twin stars. arXiv 2019, arXiv:1906.02522. [Google Scholar]
- Shahrbaf, M.; Blaschke, D.; Grunfeld, A.G.; Moshfegh, H.R. First-order phase transition from hypernuclear matter to deconfined quark matter obeying new constraints from compact star observations. arXiv 2019, arXiv:1908.04740. [Google Scholar]
- Bauswein, A.; Bastian, N.-U.F.; Blaschke, D.; Chatziioannou, K.; Clark, J.A.; Fischer, T.; Janka, H.-T.; Just, O.; Oertel, M.; Stergioulas, N. Equation-of-state Constraints and the QCD Phase Transition in the Era of Gravitational-Wave Astronomy. AIP Conf. Proc. 2019, 2127, 020013. [Google Scholar]
- Alvarez-Castillo, D.; Blaschke, D. A Mixing Interpolation Method to Mimic Pasta Phases in Compact Star Matter. arXiv 2018, arXiv:1807.03258. [Google Scholar]
- Radzhabov, A.E.; Blaschke, D.; Buballa, M.; Volkov, M.K. Nonlocal PNJL model beyond mean field and the QCD phase transition. Phys. Rev. D 2011, 83, 116004. [Google Scholar] [CrossRef] [Green Version]
- Rajagopal, K. Mapping the QCD phase diagram. Nucl. Phys. A 1999, 661, 150. [Google Scholar] [CrossRef]
- Tawfik, A.N.; Diab, A.M.; Ghoneim, M.T.; Anwer, H. SU(3) Polyakov Linear-Sigma Model With Finite Isospin Asymmetry: QCD Phase Diagram. Int. J. Mod. Phys. A 2019, 34, 1950199. [Google Scholar] [CrossRef]
- Sasaki, C. The QCD Phase Diagram from Chiral Approaches. Nucl. Phys. A 2009, 830, 649C. [Google Scholar] [CrossRef] [Green Version]
- Grigorian, H.; Kolomeitsev, E.E.; Maslov, K.A.; Voskresensky, D.N. On Cooling of Neutron Stars with a Stiff Equation of State Including Hyperons. Universe 2018, 4, 29. [Google Scholar] [CrossRef] [Green Version]
- Kolomeitsev, E.E.; Maslov, K.A.; Voskresensky, D.N. Charged ρ-meson condensation in neutron stars. Nucl. Phys. A 2018, 970, 291. [Google Scholar] [CrossRef] [Green Version]
- Blaschke, D.; Aichelin, J.; Bratkovskaya, E.; Friese, V.; Gazdzicki, M.; Randrup, J.; Rogachevsky, O.; Teryaev, O.; Toneev, V. Topical issue on exploring strongly interacting matter at high densities-nica white paper. Eur. Phys. J. A 2016, 52, 267. [Google Scholar] [CrossRef] [Green Version]
- Kogut, J.B.; Sinclair, D.K. Quenched lattice QCD at finite isospin density and related theories. Phys. Rev. D 2002, 66, 014508. [Google Scholar] [CrossRef] [Green Version]
- Brandt, B.B.; Endrodi, G.; Schmalzbauer, S. QCD phase diagram for nonzero isospin-asymmetry. Phys. Rev. D 2018, 97, 054514. [Google Scholar] [CrossRef] [Green Version]
- Brandt, B.B.; Endrodi, G. QCD phase diagram with isospin chemical potential. PoS LATTICE 2016, 2016, 039. [Google Scholar]
- Schwarz, D.J.; Stuke, M. Lepton asymmetry and the cosmic QCD transition. J. Cosmol. Astropart. Phys. 2009, 0911, 025, Erratum: J. Cosmol. Astropart. Phys. 2010, 1010, E01.. [Google Scholar] [CrossRef]
- Metlitski, M.A.; Zhitnitsky, A.R. Anomalous axion interactions and topological currents in dense matter. Phys. Rev. D 2005, 72, 045011. [Google Scholar] [CrossRef] [Green Version]
- Fukushima, K. Extreme matter in electromagnetic fields and rotation. Prog. Part. Nucl. Phys. 2019, 107, 167. [Google Scholar] [CrossRef] [Green Version]
- Khunjua, T.G.; Klimenko, K.G.; Zhokhov, R.N. Chiral imbalanced hot and dense quark matter: NJL analysis at the physical point and comparison with lattice QCD. Eur. Phys. J. C 2019, 79, 151. [Google Scholar] [CrossRef]
- Khunjua, T.G.; Klimenko, K.G.; Zhokhov, R.N. QCD phase diagram with chiral imbalance in NJL model: Duality and lattice QCD results. J. Phys. Conf. Ser. 2019, 1390, 012015. [Google Scholar] [CrossRef]
- Khunjua, T.G.; Klimenko, K.G.; Zhokhov, R.N. Pion Condensation in Hot Dense Quark Matter with Isospin and Chiral-Isospin Asymmetries within the Nambu—Jona-Lasinio Model. Moscow Univ. Phys. Bull. 2019, 74, 473. [Google Scholar]
- Ruggieri, M.; Peng, G.X.; Chernodub, M. Chiral medium produced by parallel electric and magnetic fields. EPJ Web Conf. 2016, 129, 00037. [Google Scholar] [CrossRef] [Green Version]
- Ruggieri, M.; Lu, Z.Y.; Peng, G.X. Influence of chiral chemical potential, parallel electric, and magnetic fields on the critical temperature of QCD. Phys. Rev. D 2016, 94, 116003. [Google Scholar] [CrossRef] [Green Version]
- Ruggieri, M.; Peng, G.X. Quark matter in a parallel electric and magnetic field background: Chiral phase transition and equilibration of chiral density. Phys. Rev. D 2016, 93, 094021. [Google Scholar] [CrossRef] [Green Version]
- Braguta, V.V.; Goy, V.A.; Ilgenfritz, E.-M.; Kotov, A.Y.; Molochkov, A.V.; Muller-Preussker, M.; Petersson, B. Two-Color QCD with Non-zero Chiral Chemical Potential. J. High Energy Phys. 2015, 1506, 094. [Google Scholar] [CrossRef] [Green Version]
- Braguta, V.V.; Ilgenfritz, E.M.; Kotov, A.Y.; Petersson, B.; Skinderev, S.A. Study of QCD Phase Diagram with Non-Zero Chiral Chemical Potential. Phys. Rev. D 2016, 93, 034509. [Google Scholar] [CrossRef] [Green Version]
- Braguta, V.V.; Ilgenfritz, E.M.; Kotov, A.Y.; Muller-Preussker, M.; Petersson, B.; Schreiber, A. Two-Color QCD with Chiral Chemical Potential. arXiv 2014, arXiv:1411.5174. [Google Scholar]
- Braguta, V.V.; Kotov, A.Y. Catalysis of Dynamical Chiral Symmetry Breaking by Chiral Chemical Potential. Phys. Rev. D 2016, 93, 105025. [Google Scholar] [CrossRef] [Green Version]
- Andrianov, A.A.; Espriu, D.; Planells, X. An effective QCD Lagrangian in the presence of an axial chemical potential. Eur. Phys. J. C 2013, 73, 2294. [Google Scholar] [CrossRef]
- Gatto, R.; Ruggieri, M. Hot Quark Matter with an Axial Chemical Potential. Phys. Rev. D 2012, 85, 054013. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Liu, H.; Huang, M. Spontaneous generation of local CP violation and inverse magnetic catalysis. Phys. Rev. D 2014, 90, 074009. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Liu, H.; Huang, M. Effect of the chiral chemical potential on the chiral phase transition in the NJL model with different regularization schemes. Phys. Rev. D 2016, 94, 014026. [Google Scholar] [CrossRef] [Green Version]
- Ruggieri, M.; Peng, G.X. Critical Temperature of Chiral Symmetry Restoration for Quark Matter with a Chiral Chemical Potential. J. Phys. G 2016, 43, 125101. [Google Scholar] [CrossRef] [Green Version]
- Cao, G.; Zhuang, P. Effects of chiral imbalance and magnetic field on pion superfluidity and color superconductivity. Phys. Rev. D 2015, 92, 105030. [Google Scholar] [CrossRef] [Green Version]
- Suenaga, D.; Suzuki, K.; Araki, Y.; Yasui, S. Kondo effect driven by chirality imbalance. arXiv 2019, arXiv:1912.12669. [Google Scholar]
- Gasser, J.; Leutwyler, H. Light Quarks at Low Temperatures. Phys. Lett. B 1987, 184, 83. [Google Scholar] [CrossRef]
- Florkowski, W.; Broniowski, W. Melting of the quark condensate in the NJL model with meson loops. Phys. Lett. B 1996, 386, 62. [Google Scholar] [CrossRef] [Green Version]
- Bali, G.S.; Bruckmann, F.; Endrodi, G.; Fodor, Z.; Katz, S.D.; Krieg, S.; Schafer, A.; Szabo, K.K. The QCD phase diagram for external magnetic fields. J. High Energy Phys. 2012, 1202, 044. [Google Scholar] [CrossRef] [Green Version]
- Endrődi, G.; Markó, G. Magnetized baryons and the QCD phase diagram: NJL model meets the lattice. J. High Energy Phys. 2019, 1908, 036. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, M.R.B. QCD Phase Diagram Under an External Magnetic Field. Ph.D. Thesis, University of Coimbra, Coimbra, Portugal, 24 Novemmber 2015. [Google Scholar]
- Ferreira, M.; Costa, P.; Lourenço, O.; Frederico, T.; Providência, C. Inverse magnetic catalysis in the (2+1)-flavor Nambu-Jona-Lasinio and Polyakov-Nambu-Jona-Lasinio models. Phys. Rev. D 2014, 89, 116011. [Google Scholar] [CrossRef] [Green Version]
- Mao, S. Inverse magnetic catalysis in Nambu–Jona-Lasinio model beyond mean field. Phys. Lett. B 2016, 758, 195. [Google Scholar] [CrossRef] [Green Version]
- Winstel, M.; Stoll, J.; Wagner, M. Lattice investigation of an inhomogeneous phase of the 2+1-dimensional Gross-Neveu model in the limit of infinitely many flavors. arXiv 2019, arXiv:1909.00064. [Google Scholar]
- Feinberg, J.; Hillel, S. Stable fermion bag solitons in the massive Gross-Neveu model: Inverse scattering analysis. Phys. Rev. D 2005, 72, 105009. [Google Scholar] [CrossRef] [Green Version]
- Gross, D.J.; Neveu, A. Dynamical Symmetry Breaking in Asymptotically Free Field Theories. Phys. Rev. D 1974, 10, 3235. [Google Scholar] [CrossRef]
- Schnetz, O.; Thies, M.; Urlichs, K. Full phase diagram of the massive Gross-Neveu model. Ann. Phys. 2006, 321, 2604. [Google Scholar] [CrossRef] [Green Version]
- Caldas, H.; Kneur, J.-L.; Pinto, M.B.; Ramos, R.O. Critical dopant concentration in polyacetylene and phase diagram from a continuous four-Fermi model. Phys. Rev. B 2008, 77, 205109. [Google Scholar] [CrossRef] [Green Version]
- Thies, M.; Urlichs, K. From non-degenerate conducting polymers to dense matter in the massive Gross-Neveu model. Phys. Rev. D 2005, 72, 105008. [Google Scholar] [CrossRef] [Green Version]
- Mertsching, J.; Fischbeck, H.J. The Incommensurate Peierls Phase of the Quasi-One-Dimensional Fröhlich Model with a Nearly Half-Filled Band. Phys. Stat. Sol. B 1981, 103, 783. [Google Scholar] [CrossRef]
- Machida, K.; Nakanishi, H. Superconductivity under a ferromagnetic molecular field. Phys. Rev. B 1984, 30, 122. [Google Scholar] [CrossRef]
- Caldas, H.; Ramos, R.O. Magnetization of planar four-fermion systems. Phys. Rev. B 2009, 80, 115428. [Google Scholar] [CrossRef] [Green Version]
- Klimenko, K.G.; Zhokhov, R.N.; Zhukovsky, V.C. Superconductivity phenomenon induced by external in-plane magnetic field in (2+1)-dimensional Gross-Neveu type model. Mod. Phys. Lett. A 2013, 28, 1350096. [Google Scholar] [CrossRef] [Green Version]
- Khunjua, T.G.; Klimenko, K.G.; Zhokhov, R.N. Superconducting phase transitions induced by chemical potential in (2+1)-dimensional four-fermion quantum field theory. Phys. Rev. D 2012, 86, 105010. [Google Scholar]
- Klimenko, K.G.; Zhokhov, R.N. Magnetic catalysis effect in the (2+1)-dimensional Gross-Neveu model with Zeeman interaction. Phys. Rev. D 2013, 88, 105015. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.-H.; Balents, L.; Fisher, M.P.A. Exact SO(8) Symmetry in the Weakly-Interacting Two-Leg Ladder. Phys. Rev. B 1998, 58, 1794. [Google Scholar] [CrossRef] [Green Version]
- Kalinkin, A.N.; Shorikov, V.M. Phase Transitions in Four-Fermion Models. Inorg. Mater. 2003, 39, 765. [Google Scholar] [CrossRef]
- Zhokhov, R.N.; Zhukovsky, V.C.; Kolmakov, P.B. The Zeeman effect in a modified Gross—Neveu model in (2 + 1)-dimensional space—time with compactification. Moscow Univ. Phys. Bull. 2015, 70, 226. [Google Scholar] [CrossRef]
- Thies, M. Duality between quark quark and quark anti-quark pairing in 1+1 dimensional large N models. Phys. Rev. D 2003, 68, 047703. [Google Scholar] [CrossRef] [Green Version]
- Basar, G.; Dunne, G.V.; Thies, M. Inhomogeneous Condensates in the Thermodynamics of the Chiral NJL(2) model. Phys. Rev. D 2009, 79, 105012. [Google Scholar] [CrossRef] [Green Version]
- Thies, M. Phase structure of the 1+1 dimensional Nambu–Jona-Lasinio model with isospin. arXiv 2019, arXiv:1911.11439. [Google Scholar] [CrossRef] [Green Version]
- Khunjua, T.G.; Klimenko, K.G.; Zhokhov, R.N.; Zhukovsky, V.C. Inhomogeneous charged pion condensation in chiral asymmetric dense quark matter in the framework of NJL2 model. Phys. Rev. D 2017, 95, 105010. [Google Scholar] [CrossRef] [Green Version]
- Khunjua, T.G.; Klimenko, K.G.; Zhokhov, R.N. Charged pion condensation and duality in dense and hot chirally and isospin asymmetric quark matter in the framework of the NJL2 model. Phys. Rev. D 2019, 100, 034009. [Google Scholar] [CrossRef] [Green Version]
- Ebert, D.; Khunjua, T.G.; Klimenko, K.G. Duality between chiral symmetry breaking and charged pion condensation at large Nc: Consideration of an NJL2 model with baryon, isospin, and chiral isospin chemical potentials. Phys. Rev. D 2016, 94, 116016. [Google Scholar] [CrossRef] [Green Version]
- Khunjua, T.G.; Klimenko, K.G.; Zhokhov, R.N. Duality and Charged Pion Condensation in Chirally Asymmetric Dense Quark Matter in the Framework of an NJL2 Model. Int. J. Mod. Phys. Conf. Ser. 2018, 47, 1860093. [Google Scholar] [CrossRef]
- Khunjua, T.G.; Klimenko, K.G.; Zhokhov, R.N. Charged Pion Condensation in Dense Quark Matter: Nambu–Jona-Lasinio Model Study. Symmetry 2019, 11, 778. [Google Scholar] [CrossRef] [Green Version]
- Fukushima, K.; Kharzeev, D.E.; Warringa, H.J. The Chiral Magnetic Effect. Phys. Rev. D 2008, 78, 074033. [Google Scholar] [CrossRef]
- Cherman, A.; Hanada, M.; Robles-Llana, D. Orbifold equivalence and the sign problem at finite baryon density. Phys. Rev. Lett. 2011, 106, 091603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanada, M.; Yamamoto, N. Universality of phase diagrams in QCD and QCD-like theories. PoS LATTICE 2011, 2011, 221. [Google Scholar]
- Cherman, A.; Tiburzi, B.C. Orbifold equivalence for finite density QCD and effective field theory. J. High Energy Phys. 2011, 1106, 034. [Google Scholar] [CrossRef] [Green Version]
- Andrianov, A.A.; Espriu, D.; Planells, X. Chemical potentials and parity breaking: The Nambu–Jona-Lasinio model. Eur. Phys. J. C 2014, 74, 2776. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.-L.; Cui, Z.-F.; Zong, H.-S. Effect of the chiral chemical potential on the position of the critical endpoint. Phys. Rev. D 2015, 91, 034017. [Google Scholar] [CrossRef]
- Xu, S.-S.; Cui, Z.-F.; Wang, B.; Shi, Y.-M.; Yang, Y.-C.; Zong, H.-S. Chiral phase transition with a chiral chemical potential in the framework of Dyson-Schwinger equations. Phys. Rev. D 2015, 91, 056003. [Google Scholar] [CrossRef] [Green Version]
- Frasca, M. Nonlocal Nambu-Jona-Lasinio model and chiral chemical potential. Eur. Phys. J. C 2018, 78, 790. [Google Scholar] [CrossRef]
- Farias, R.L.S.; Duarte, D.C.; Krein, G.; Ramos, R.O. Thermodynamics of quark matter with a chiral imbalance. Phys. Rev. D 2016, 94, 074011. [Google Scholar] [CrossRef] [Green Version]
- Fukushima, K.; Ruggieri, M.; Gatto, R. Chiral magnetic effect in the Polyakov–Nambu–Jona-Lasinio model. Phys. Rev. D 2010, 81, 114031. [Google Scholar] [CrossRef] [Green Version]
- Chernodub, M.N.; Nedelin, A.S. Phase diagram of chirally imbalanced QCD matter. Phys. Rev. D 2011, 83, 105008. [Google Scholar] [CrossRef] [Green Version]
- Ruggieri, M. The Critical End Point of Quantum Chromodynamics Detected by Chirally Imbalanced Quark Matter. Phys. Rev. D 2011, 84, 014011. [Google Scholar] [CrossRef] [Green Version]
- Chao, J.; Chu, P.; Huang, M. Inverse magnetic catalysis induced by sphalerons. Phys. Rev. D 2013, 88, 054009. [Google Scholar] [CrossRef] [Green Version]
- Cui, F.; Cloet, I.C.; Lu, Y.; Roberts, C.D.; Schmidt, S.M.; Xu, S.S.; Zong, H.S. Critical endpoint in the presence of a chiral chemical potential. Phys. Rev. D 2016, 94, 071503. [Google Scholar] [CrossRef] [Green Version]
- Son, D.T.; Stephanov, M.A. QCD at finite isospin density. Phys. Rev. Lett. 2001, 86, 592. [Google Scholar] [CrossRef] [Green Version]
- Loewe, M.; Villavicencio, C. Thermal pions at finite isospin chemical potential. Phys. Rev. D 2003, 67, 074034. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, P.; Andersen, J.O. Pion and kaon condensation at zero temperature in three-flavor χPT at nonzero isospin and strange chemical potentials at next-to-leading order. arXiv 2019, arXiv:1909.10575. [Google Scholar]
- Buballa, M.; Carignano, S. Inhomogeneous chiral condensates. Prog. Part. Nucl. Phys. 2015, 81, 39. [Google Scholar] [CrossRef] [Green Version]
- Heinz, A. QCD under Extreme Conditions: Inhomogeneous Condensation. Ph.D. Thesis, Frankfurt University, Frankfurt, Germany, September 2014. [Google Scholar]
- Nickel, D. Inhomogeneous phases in the Nambu-Jona-Lasino and quark-meson model. Phys. Rev. D 2009, 80, 074025. [Google Scholar] [CrossRef] [Green Version]
- Nowakowski, D.; Buballa, M.; Carignano, S.; Wambach, J. Inhomogeneous chiral symmetry breaking phases in isospin-asymmetric matter. arXiv 2015, arXiv:1506.04260. [Google Scholar]
- Nowakowski, D. Inhomogeneous Chiral Symmetry Breaking in Isospin-Asymmetric Strong-Interaction Matter. Ph.D. Thesis, Technische Univ. Darmstadt, Darmstadt, Germany, 2017. [Google Scholar]
- Andersen, J.O.; Kneschke, P. Chiral density wave versus pion condensation at finite density and zero temperature. Phys. Rev. D 2018, 97, 076005. [Google Scholar] [CrossRef] [Green Version]
- Mu, C.F.; He, L.Y.; Liu, Y.X. Evaluating the phase diagram at finite isospin and baryon chemical potentials in the Nambu–Jona-Lasinio model. Phys. Rev. D 2010, 82, 056006. [Google Scholar] [CrossRef]
- Khunjua, T.G.; Klimenko, K.G.; Zhokhov, R.N. Dualities and inhomogeneous phases in dense quark matter with chiral and isospin imbalances in the framework of effective model. J. High Energy Phys. 2019, 1906, 006. [Google Scholar] [CrossRef] [Green Version]
- Shovkovy, I.A. Two lectures on color superconductivity. Found. Phys. 2005, 35, 1309. [Google Scholar] [CrossRef] [Green Version]
- Anglani, R.; Nardulli, G.; Ruggieri, M.; Mannarelli, M. Neutrino emission from compact stars and inhomogeneous color superconductivity. Phys. Rev. D 2006, 74, 074005. [Google Scholar] [CrossRef] [Green Version]
- Anglani, R.; Casalbuoni, R.; Ciminale, M.; Ippolito, N.; Gatto, R.; Mannarelli, M.; Ruggieri, M. Crystalline color superconductors. Rev. Mod. Phys. 2014, 86, 509. [Google Scholar] [CrossRef] [Green Version]
- Khunjua, T.G.; Klimenko, K.G.; Zhokhov, R.N. Dense quark matter with chiral and isospin imbalance: NJL-model consideration. EPJ Web Conf. 2018, 191, 05015. [Google Scholar] [CrossRef] [Green Version]
- Khunjua, T.G.; Klimenko, K.G.; Zhokhov-Larionov, R.N. Affinity of NJL2 and NJL4 model results on duality and pion condensation in chiral asymmetric dense quark matter. EPJ Web Conf. 2018, 191, 05016. [Google Scholar] [CrossRef]
- Khunjua, T.G.; Klimenko, K.G.; Zhokhov, R.N. Dualities in dense quark matter with isospin, chiral and chiral isospin imbalance in the framework of the large-Nc limit of the NJL4 model. Phys. Rev. D 2018, 98, 054030. [Google Scholar] [CrossRef] [Green Version]
- Khunjua, T.G.; Klimenko, K.G.; Zhokhov, R.N. Dense baryon matter with isospin and chiral imbalance in the framework of NJL4 model at large Nc: Duality between chiral symmetry breaking and charged pion condensation. Phys. Rev. D 2018, 97, 054036. [Google Scholar] [CrossRef] [Green Version]
- Khunjua, T.G.; Klimenko, K.G.; Zhokhov, R.N. Quark/Hadronic Matter and Dualities of QCD Thermodynamics. arXiv 2019, arXiv:1912.09102. [Google Scholar]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galeazzi, F.; Kastaun, W.; Rezzolla, L.; Font, J.A. Implementation of a simplified approach to radiative transfer in general relativity. Phys. Rev. D 2013, 88, 064009. [Google Scholar] [CrossRef] [Green Version]
- Dexheimer, V. Tabulated Neutron Star Equations of State Modeled within the Chiral Mean Field Model. In Publications of the Astronomical Society of Australia; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Alford, M.G.; Harris, S.P. β equilibrium in neutron-star mergers. Phys. Rev. C 2018, 98, 065806. [Google Scholar] [CrossRef] [Green Version]
- Fischer, T.; Blaschke, D.; Hempel, M.; Klahn, T.; Lastowiecki, R.; Liebendorfer, M.; Martinez-Pinedo, G.; Pagliara, G.; Sagert, I.; Sandin, F.; et al. Core-collapse supernova explosions triggered by a quark-hadron phase transition during the early post-bounce phase. Astrophys. J. Suppl. 2011, 194, 39. [Google Scholar] [CrossRef]
- Ohnishi, A.; Ueda, H.; Nakano, T.Z.; Ruggieri, M.; Sumiyoshi, K. Possibility of QCD critical point sweep during black hole formation. Phys. Lett. B 2011, 704, 284. [Google Scholar] [CrossRef] [Green Version]
- Sumiyoshi, K.; Yamada, S.; Suzuki, H.; Chiba, S. Neutrino signals from the formation of black hole: A probe of equation of state of dense matter. Phys. Rev. Lett. 2006, 97, 091101. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khunjua, T.G.; Klimenko, K.G.; Zhokhov, R.N. Dense Baryonic Matter and Applications of QCD Phase Diagram Dualities. Particles 2020, 3, 62-79. https://doi.org/10.3390/particles3010006
Khunjua TG, Klimenko KG, Zhokhov RN. Dense Baryonic Matter and Applications of QCD Phase Diagram Dualities. Particles. 2020; 3(1):62-79. https://doi.org/10.3390/particles3010006
Chicago/Turabian StyleKhunjua, Tamaz G., Konstantin G. Klimenko, and Roman N. Zhokhov. 2020. "Dense Baryonic Matter and Applications of QCD Phase Diagram Dualities" Particles 3, no. 1: 62-79. https://doi.org/10.3390/particles3010006
APA StyleKhunjua, T. G., Klimenko, K. G., & Zhokhov, R. N. (2020). Dense Baryonic Matter and Applications of QCD Phase Diagram Dualities. Particles, 3(1), 62-79. https://doi.org/10.3390/particles3010006